# A Review on Mobile Based Intelligent Systems for Homecare Monitoring of Diabetic Mellitus Foot Ulcer

J.Jayashree and N.Ch.SrimanNarayanaIyengar\*

School of Computer Engineering, VIT University, Vellore-632014, Tamil Nadu, India jayashree.j@vit.ac.in ; nchsniyr@vit.ac.in

#### Abstract

The diabetic foot might display numerous complexities when they are not monitored frequently. Diabetics will lead to foot ulcer which in future leads removal of foot parts. Persistent homecare observing of the diabetic foot is very important where a frameworks coordinated to a Smartphone helped Model for analysis are required by doctors to enhance early finding. This paper presents a review on diverse frameworks related to homecare based diabetic foot monitoring and procedures utilized for diagnosing diabetic's foot.

Keywords: Amputation, Diabetes Mellitus, Foot Ulcer, Neuropathy, Smartphone

### **1. Introduction**

Diabetes is a chronic disease. Diabetes is a metabolism disorder. Diabetes is referred as Diabetes Mellitus (DM) that is People having high sugar for a long period and there is no known cure for diabetes. A person with diabetes has a condition in which the quantity of glucose in the blood is too elevated. This is because the body does not produce enough insulin, produces no insulin, or has cells that do not respond properly to the insulin the pancreas produces. This results in too much glucose building up in the blood. This excess blood glucose eventually passes out of the body in urine. So, even though the blood has plenty of glucose, the cells are not getting it for their essential energy and growth requirements. The rest of the paper is represents as follows: Section 2 describes background and elaborate better on the contribution of this survey on test cases generation.

#### **1.1 Diabetes Mellitus**

The term "diabetes" was first used in 230 BC by Greeks means "a passer through". It was a rare disease during Roman Empire time and it is the first disease described with an Egyptian manuscript. Indian physicians in 400-500 CE first identified Type1 and Type2 diabetes. Diabetes can be divided into two major divisions based on the insulin level and they areType1 and Type2.Detailed explanation of these types with symptoms and all related data's are given in Table1.

| Major Diabetic types               |                                                                                                                                                                                  |                                                                                                                                                                                                                       |  |  |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Features                           | Type 1 Diabetes                                                                                                                                                                  | Type 2 Diabetes                                                                                                                                                                                                       |  |  |  |  |
| Formally called                    | Juvenile-onset                                                                                                                                                                   | Adult-onset                                                                                                                                                                                                           |  |  |  |  |
|                                    | Or                                                                                                                                                                               | Or                                                                                                                                                                                                                    |  |  |  |  |
|                                    | "Insulin-Dependent<br>Diabetes Mellitus" (IDDM)                                                                                                                                  | as "Non-Insulin-<br>Dependent Diabetes<br>Mellitus" (NIDDM)                                                                                                                                                           |  |  |  |  |
| Definition                         | Beta cells in pancreas are<br>being attacked by body's<br>own cells and therefore can't<br>produce insulin to take sugar<br>out of the blood stream.<br>Insulin is not produced. | Diet related insulin<br>release is so large and<br>frequent that receptor cells<br>have become less sensitive<br>to the insulin. This insulin<br>resistance results in less<br>sugar being removed from<br>the blood. |  |  |  |  |
| Symptoms                           | <ul> <li>Thirst</li> <li>Hunger</li> <li>Dry mouth</li> <li>Blurred vision</li> <li>Abdominal pain</li> <li>Frequent urination</li> </ul>                                        | <ul> <li>Fatigue</li> <li>Numbness</li> <li>Frequent infection of skin</li> <li>Urination</li> <li>Sores that slowly heal</li> <li>Thirst and Hunger</li> </ul>                                                       |  |  |  |  |
| Insulin                            | Total lack of insulin                                                                                                                                                            | Too little insulin                                                                                                                                                                                                    |  |  |  |  |
| Age                                | Young<br>Between 5 - 25                                                                                                                                                          | Adults                                                                                                                                                                                                                |  |  |  |  |
| Different                          | Adult- 10%                                                                                                                                                                       | Adult - 90 %                                                                                                                                                                                                          |  |  |  |  |
| proportion in age group            | Children- 98 %                                                                                                                                                                   | Children - 2 %                                                                                                                                                                                                        |  |  |  |  |
| Body physic type                   | Thin                                                                                                                                                                             | Obese                                                                                                                                                                                                                 |  |  |  |  |
| Treatment                          | <ul> <li>Insulin Injections</li> <li>Dietary plan</li> <li>Regular sugar check</li> <li>Treat chronic compilations</li> </ul>                                                    | <ul><li>Diet</li><li>Exercise</li><li>Medication</li></ul>                                                                                                                                                            |  |  |  |  |
| Life expectancy on average reduced | >20 years                                                                                                                                                                        | Up to 10 years                                                                                                                                                                                                        |  |  |  |  |
| Prone ethnic groups                | All                                                                                                                                                                              | <ul> <li>African American</li> <li>Native American</li> <li>Asian or</li> <li>Pacific Islander</li> </ul>                                                                                                             |  |  |  |  |
| Cure                               | None                                                                                                                                                                             | Gastric surgery<br>lifestyle/medication                                                                                                                                                                               |  |  |  |  |

# Table 1. Presents the Detailed Description of Type1 and Type2 Diabetes

#### 1.2. Diabetic Statistic Around the World

Diabetic statistics in the year 2014 in India and worldwide are given in Table2 where there is a constant growth in the diabetic population. Despite putting huge money related weight on people and their families because of the expense of insulin and other vital pharmaceuticals, diabetes likewise has a generous financial effect on nations and national wellbeing frameworks. This is a direct result of an expanded utilization of wellbeing administrations, loss of profitability and the long-term bolster expected to overcome diabetes related difficulties, for example, kidney disappointment, visual deficiency or heart issues. The larger part of nations spend somewhere around 5% and 20% of their allout wellbeing consumption on diabetes. With such a high cost, the illness is a huge test for human services frameworks and a hindrance to manageable financial advancement.

| The current statistic of diabetes mellitus                                              |                |           |   |                                                             |        |  |
|-----------------------------------------------------------------------------------------|----------------|-----------|---|-------------------------------------------------------------|--------|--|
| Worldwide                                                                               |                |           |   | India                                                       |        |  |
| <ul><li>387 Million people worldwide in 2014</li><li>8.3% of adult population</li></ul> |                |           |   | Percentage of population being<br>affected in Indian Cities |        |  |
| Type2 - 90% Type1 - 10%                                                                 |                |           | _ |                                                             |        |  |
| North<br>America                                                                        | 39<br>Million  | 11.4<br>% |   | Kolkata                                                     | 11.7 % |  |
| South and<br>Central<br>America                                                         | 25<br>Million  | 6.4 %     |   | Kashmir                                                     | 6.1 %  |  |
| Africa                                                                                  | 22<br>Million  | 5.1 %     |   | Delhi                                                       | 11.6 % |  |
| Middle<br>East and<br>North Africa                                                      | 37<br>Million  | 9.7 %     |   | Mumbai                                                      | 9.3 %  |  |
| Europe                                                                                  | 52<br>Million  | 7.9 %     |   | Chennai                                                     | 13.5 % |  |
| South and<br>East Asia                                                                  | 75<br>Million  | 8.3 %     |   | Hyderabad                                                   | 16.6 % |  |
| Western<br>Pacific                                                                      | 138<br>Million | 8.5%      |   | Bangalore                                                   | 12.4 % |  |

#### Table 2. Global and National Diabetic Statistics

International Diabetes Federation (IDF) diabetes Atlas for 2015 statistics is given in Table3 based on the gender and region. More than 0.5 M children were affected with Type1 diabetes in 2015 where China, India and United States Stand in the top three countries with diabetes.3,42,000 death cases were recorded in 2014 due to diabetes.

|                                  |                 | 2015    | 2040    |
|----------------------------------|-----------------|---------|---------|
|                                  |                 | 2015    | 2040    |
| Diabetic by                      | Men             | 215.2 M | 328.4 M |
| Gender                           | Women           | 199.5 M | 313.3 M |
| Diabetic in                      | Rural           | 145.1 M | 163.9 M |
| Rural and Urban                  | Urban           | 269.7 M | 477.9 M |
|                                  | North America   | 44.3 M  | 60.5 M  |
| Diabetic                         | South America   | 29.6 M  | 48.8 M  |
| population by<br>region(20 - 79) | Africa          | 14.2 M  | 34.2 M  |
| years                            | South East Asia | 78.3 M  | 140.2 M |
|                                  | Europe          | 59.8 M  | 71.1 M  |
| Top 3 countries                  | China           | 109.6 M | 150.7 M |
| with Diabetes                    | India           | 69.2 M  | 123.5 M |
|                                  | United States   | 29.3 M  | 35.1 M  |

## Table 3. IDF Atlas Statistics (Seventh Edition)

## 2. Neuropathy

Uncontrolled diabetes can harm one's nerves. On the off chance that one has harmed nerves in his legs and feet, he won't not feel heat, icy, or torment. This absence of feeling or deadness in the sole or heel of the foot is called 'sensory diabetic neuropathy'. On the off chance that one does not feel a cut or sore on his foot as a result of neuropathic deadness, the cut could deteriorate and in the end get to be contaminated. The muscles of the foot may not work appropriately, in light of the fact that the nerves that make the muscles work have been harmed. This could bring about the foot to not adjust appropriately and make an excess of weight in one territory of the foot. It is assessed that up to 10% of individuals with diabetes will create foot ulcers in light of nerve harm and peripheral vascular disease. 250 million individuals were determined to have foot ulcer and the greater part of the foot ulcers lead to amazing removal. Removal death rate is 39 to 80%. The following figure illustrates Type 2 diabetes leads to amputation if the patients have diabetics for more than fifteen years.





The diabetic foot might display numerous entanglements on the off chance that it is not consistently controlled. Measurements demonstrate that 25% of diabetics that create

fringe neuropathy will build up a foot ulcer, more than half of them will get to be tainted and 80 % require non-traumatic removal. Based on the organs being affected, neuropathies are classified into four major categories. The explanation for all the types of neuropathy and the organs which it affects are detail given in the Table4.

| Types of Neuropathy with affected organs list |                                                                                                                                                |                                                                                                                                                    |  |  |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Neuropathy<br>Type                            | Explanation                                                                                                                                    | Organs affected                                                                                                                                    |  |  |
| Peripheral<br>neuropathy<br>affects           | The nerve problem affects<br>the nerves outside of the brain<br>and spinal cord. These nerves<br>are part of the peripheral<br>nervous system. | <ul> <li>Toes</li> <li>Feet</li> <li>Legs</li> <li>Hands</li> <li>Arms</li> </ul>                                                                  |  |  |
| Autonomic<br>neuropathy<br>affects            | Damage to the nerves of the<br>involuntary nervous system, the<br>nerves that control the heart and<br>circulation                             | <ul> <li>Heart and blood vessel</li> <li>Digestive system</li> <li>Urinary track</li> <li>Sex organ</li> <li>Sweat gland</li> <li>Lungs</li> </ul> |  |  |
| Proximal<br>neuropathy<br>affects             | The proximal muscles are affected.                                                                                                             | <ul><li>Hips</li><li>Buttocks</li><li>Thighs</li><li>Legs</li></ul>                                                                                |  |  |
| Focal<br>neuropathy<br>affects                | Restricted to one nerve or<br>group of nerves, or one area of<br>the body.                                                                     | <ul> <li>Eyes</li> <li>Facial muscles</li> <li>Ears</li> <li>Pelvis and lower back</li> <li>Chest</li> </ul>                                       |  |  |

# **3.** Surviving Mobile Based Intelligent Systems for Analyzing Diabetic Foot Ulcer

Several techniques and intelligent systems have been used for detecting ulcers and this section discusses the following systems being used by the diabetic patient for detecting the foot ulcer at home using intelligent systems.



# Figure2. Illustrates the basic Strategy being Followed in Homecare Diabetic Foot Monitoring

#### 3.1 An Instrumented Shoe

For the diagnosis of foot ulcer in real-time, Anwar S. Benbakhti (2014) has designed and developed an Instrumented shoe through which foot amputation can be avoided where 80% of the foot ulcers lead to amputation. This instrumented shoe consist of multiple number of different sensors like Humidity sensor, three temperature sensors and six Insole pressure distribution sensors. Using these sensors sweating rate, friction rate and ulcer point pressures can be determined through which ulcer formation can be prevented. There are six high pressure points in the foot and all these points are placed with Force Sensing Resistors through which the pressure at those points can be identified and based on the pressure each point is differentiated by different colors like blue and red. Data's being collected from those sensors are sent through Bluetooth to the Android phone. If the data values show any variations then alerts are being sent to the healthcare.

#### **3.2 Intelligent Footwear**

To measure both temporal plantar pressure and Spatial plantar pressure, intelligent footwear have been developed by Shu Lin (2012) through which real time data's of diabetic can be obtained. This intelligent footwear has been tested and has tried to find the difference between the diabetic and healthy subject in every activities they perform. F Scan is used for identifying the area in foot where the pressure is high and they have identified eight areas. These eight areas are being concentrated in this research. Dynamic information of foot is analyzed. Both healthy and diabetic people with different age, height and weight were elected for this project. Temperature, humidity and centre of pressure were calculated. This instrumented shoe can be continuously used for about twenty hours a day by charging the shoe once and where a port is available in this intelligent shoe for the charging. Once data's are collected, using Bluetooth they are sent to the PC. Results show that the fore foot and the lateral foot areas of diabetic are more prone to ulcer formation. Locations of ulcers are being identified and they are at high pressure.

#### 3.3 SoleScan

An Android application namely SoleScan has been designed for online monitoring both diabetic pressure points and callus formation has been developed by ArindamDulta (2013). Insole surface were analysed using Gabor filters. Image processing algorithm are used for online analysis of sole of the diabetic foot and also for the calculating the pressure. Image processing algorithm can run on Android application. Image of the diabetic foot are captured through the mobile and the sole scan application detect the level of pressure and upload the image being captured to the data server. Offline analysis is done once the images are sent to the server to identify the hot spots. Colors are used for differentiating the pressure areas.

#### **3.4 Plainpes**

A sensor board is designed by Samuel Pfaffen (2011) to monitor diabetic foot in real time. Thecentres of our framework are to give a shabby answer for exact estimations without weakening the versatility of the patient. With a specific end goal to decrease the aggregate expenses of the Planipes framework and to build its adaptability, we chose to depend on the client's smart phone fordata's.

#### 3.5 Heel Pad

The correlation between heelpad properties and parameters is proposed by Panagiotis E. Chatzistergos (2014) using Ultrasound probe and Dynamometer. 17 Non diabetic and 35 diabetic subjects were used for this research. Result shows that Type 2 diabetic subjects have higher stiffness and Loading does not influence heel pad mechanical properties.

#### 3.6. Plantar Pressure Sensitivity System

One of the advances utilized for pressure estimations Loran Platform is designed by Martha Zequera, was utilized to assess repeatability amid unshod remaining in diabetic and non-diabetic subjects, for future diabetic foot clinical assessment coordinated in the outlined PC model.

#### 3.7 Electronic Orthotic Shoe System

To segregate the diabetic patient based on the feet motion FoadDabiri (2008) proposed a system using Electronic orthotic system. Pressure sensor sheets and 3 axis accelerometer are used for monitoring the motion and pressure distribution of feet. Five points in feet were taken for testing this system for thirty seconds and the pressure in those five points was measured using non-invasive sensor. This framework is composed and created utilizing lightweight remote installed frameworks and non-invasive sensors. Besides, we outlined so exploratory results demonstrating how we can extricate the pressure underneath the foot and how we can utilize this data for characterization and step examination. This framework empowers constant checking and gives input to the patient/parental figure.

#### **3.8. Smart Socks**

The first washable and wearable smart socks has been designed and developed by A.Perrier (2010) to prevent ulcer formation. A completely remote, adaptable and launder able "smart sock" has been planned. It is made of a material which strands are sewn in a way they give estimations of the pressure applied under and all around the foot, all things considered, conditions. This gadget is combined with a subject specific Finite Element

foot display the pressure tissues of the foot. Different varieties of fabrics wrapped with silver and Piezo resistive are combined for making the socks to detect the pressure in foot.

#### 3.9 Ultrasonic

In request to consistently screen the mechanical properties of plantar delicate tissue amid physical exercises Bruno M Trindade (2014) used ultrasonic technique and sensors that can be use between the foot and shoe insole. The power was measured by the plate and the weight values at the heel were figured. Plantar tissues strain was figured utilizing the plantar thickness variety got from the gained ultrasound information concerning the connected weight amid the estimation. The outcomes were approximated by an exponential capacity.

#### 3.10 Four Insoles

To evaluate differing insoles plantar pressure impact Martha L Zequera (2010) recommended and produced with different methods on a subjective gathering of patients with diabetes mellitus in the early phases of the infection. Thirteen diabetic patients were chosen for the insole evaluation and ten foot areas were selected for testing. Four sorts of insoles were composed and made by techniques accessible in the business sector; the PC model proposed on this undertaking was utilized as a part of request to plan and produce the insole. The outcomes demonstrate that each persistent requires an individual evaluation and frequently a customized insole.

| Ref/<br>Year  | Mobile<br>based<br>Intelligen<br>t Systems | Predict                                                                          | Sensors and<br>Techniques<br>used                                            | Foot<br>Points<br>Conside<br>red for<br>study | Results                                                                                                                                                               | Subjects<br>Involve<br>d                         |
|---------------|--------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| [1] /<br>2014 | Instrumen<br>ted shoe                      | To monitor<br>foot ulcer                                                         | -Temperature<br>sensor<br>-Humidity<br>sensor<br>-Force sensing<br>resistors | 6                                             | Only based on<br>the foot<br>properties of the<br>diabetic, ulcer<br>formation points<br>can be obtained                                                              | 10<br>healthy<br>subjects                        |
| [2]/<br>2012  | Intelligent<br>footwear                    | Nonstop<br>dynamic<br>foot<br>observing<br>in<br>everyday<br>life of<br>diabetic | -F scan<br>-Temperature<br>sensor<br>-Humidity<br>sensor                     | 8                                             | 1.Ulcerformation in thediabeticfootwherethepressure are veryhigh2. Fore foot andLateral side offoot are moreprone to Ulcerformation3. Sensitive datahavebeengenerated | 10<br>healthy<br>10 non<br>healthy(<br>diabetic) |
| [3]/<br>2013  | Solescan                                   | For<br>recognizin<br>g hot spot<br>in shoe<br>insole                             | - Gabor filters<br>-Image<br>processing<br>algorithm                         | whole<br>foot                                 | High pressure<br>spots are hot<br>spots                                                                                                                               | single<br>subject                                |

 Table 5. Table Shows Mobile based Intelligent Systems

| [4]/<br>2011  | Plainpes<br>for gain<br>and foot<br>pressure<br>analysis |                                                                                      | Force sensing<br>resistors<br>Sensor insole<br>Sensor board         | 16            | Measure foot<br>pressure<br>distribution in<br>spatial density                                                                                                    |                                                                                                          |
|---------------|----------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| [5]/<br>2014  | Heel pad                                                 | To find the<br>correlation<br>between<br>heel pad<br>properties<br>and<br>parameters | Ultrasound<br>probe<br>Dynamometer                                  | Heel          | <ol> <li>Type 2<br/>diabetic subjects<br/>have higher<br/>stiffness</li> <li>Loading does<br/>not influence<br/>heel pad<br/>Mechanical<br/>properties</li> </ol> | 17 Non<br>diabetic<br>35<br>diabetic<br>subjects                                                         |
| [6]/<br>2013  | Plantar<br>Pressure<br>sensitive<br>system               | Diabetic<br>foot<br>syndrome                                                         | Loran EPS/R1<br>Platform                                            |               |                                                                                                                                                                   | 6<br>diabetic<br>8 non<br>diabetic                                                                       |
| [7]/<br>2008  | Electronic<br>Orthotics<br>Shoe<br>system                | Supervise<br>feet motion                                                             | -Pressure<br>sensor sheets<br>-3 Axis<br>Accelerometer<br>- MedNode | 5             |                                                                                                                                                                   |                                                                                                          |
| [8] /<br>2014 | Smart<br>Diabetic<br>socks                               | To foil foot<br>ulcer                                                                | -Finite<br>Element<br>model<br>-Eight<br>Pressure<br>sensors        | Whole<br>foot | 1.Washable<br>smart socks<br>2.High internal<br>strain near bone                                                                                                  | Single<br>subject                                                                                        |
| [9] /<br>2014 | Ultrasonic<br>sensor                                     | To gauge<br>plantar<br>tissue<br>thickness                                           | - Ultrasonic<br>sensor                                              | Heel          | Heel thickness<br>measured with<br>variable pressure                                                                                                              |                                                                                                          |
| [10]/<br>2010 | Insole<br>performan<br>ce                                | To assess<br>different<br>insoles<br>using<br>pressure                               | - Four types<br>of insole<br>- CAD/CAM                              | 10            | Insole should be<br>prepared based<br>on the<br>personalized<br>assessment of<br>the diabetic<br>patient                                                          | 6<br>diabetic<br>subject<br>(>15<br>years of<br>diabetic)<br>7<br>diabetic<br>subject<br>(>5<br>years of |

## 4. Conclusion

In this survey various homecare based diabetic foot monitoring systems have been studied to obtain better life for the diabetic people. All the above homecare based diabetic foot monitoring systems work effectively. But they do not include Vibrators for predicting the sensitivity in diabetic foot. An Android based mobile application can be designed in this contest and this helps to all public to take care of their foot in real time. The application will contain an image of the points on the sole of the foot. The pressure points will be highlighted and the degree of pain at each point specified. The application will also contain various graphs and tables to aesthetically display the data. Based on the various results in the data, the application will provide medical recommendations and conclusions to the user. Alerts will be formed on the basis of the sensors' values and the user will be informed the condition of his foot along with the possibility of an eventual risk of the diseases and disorders caused by these parameters.

#### References

- [1] Anwar S Benbakhti, Samir Boukhenous, CherifZizoua and MokhtarAttari,"An Instrumented Shoe for Ambulatory Prevention of Diabetic Foot Ulceration", Proceedings of IEEE 4th International Conference of Wireless Mobile Communication and Healthcare, Algeria, (2014) November 43-46.
- [2] Shu Lin, Mai Kai Ying, Tao Xiao Ming, Li Ying, Wong Wing Cheung, Lee Ka Fai, *et al.* "Monitoring diabetic patients by novel intelligent footwear system", IEEE International Conference of Computerized Healthcare, (2012) December 91-94.
- [3] ArindamDutta and AnirbanDutta. "soleSCAN mobile phone based monitoring of foot sole for callus formation and the shoe insole for pressure hot spots", Proceedings of IEEE Point-of-Care Healthcare Technologies (PHT),(2013) January 339-342.
- [4] Samuel Pfaffen, Philipp Sommer, Christian Stocker, Roger Wattenhofer, and Samuel Welten, "Planipes: Mobile Foot Pressure Analysis", Proceedings of the First ACM Workshop on Mobile Systems, Applications, and Services for Healthcare, (2011) October
- [5] Panagiotis E. Chatzistergos, RoozbehNaemi, Lakshmi Sundar, AmbadiRamachandran, NachiappanChockalingam, "The relationship between the mechanical properties of heel-pad and common clinical measures associated with foot ulcers in patients with diabetes", Journal of Diabetes and Its Complications., Elsevier., vol. 28, no. 4, (2014) pp.488–493.
- [6] Martha Zequera, William Sandham, A´ ngelaRodr´ıguez, Carlos A. Wilches, Jorge A. Alvarado, "Continuous Homecare Monitoring of Diabetic Foot Syndrome Using Plantar Pressure-Sensitive Systems", Proceedings of IEEE International conference ofEngineering in Medicine and Biology society, (2013)
- [7] FoadDabiri, AlirezaVahdatpour, HydukeNoshadi, HagopHagopian and MajidSarrafzadeh, "Electronic Orthotics Shoe: Preventing Ulceration in Diabetic Patients", Proceedings of 30th IEEE Annual International conference of Engineering in Medicine and Biology Society, (2008) August 771-774.
- [8] Perrier A, Vuillerme C, Luboza V, Bucki M, Cannard F, Diot B, *et al.*"Smart Diabetic Socks: Embedded device for diabetic foot prevention", Journal of Innovation and research in biomedical engineering, Elsevier., vol. 35, no. 2(2014) pp.72–76.
- [9] Bruno M. Trindade, Yuu Ono1, Edward D. Lemaire, and Ibrahim AlMohimeed, "Development of a Wearable Ultrasonic Sensor and Method for Continuous Monitoring of Mechanical Properties of Plantar Soft Tissue for Diabetic Patients", Proceedings of IEEE InternationalUltrasonics Symposium, (2014) September 2112-2115.
- [10] Zequera ML, Solomonidis S, "Performance of Insole in Reducing Plantar Pressure on Diabetic Patients in the Early Stages of the Disease", Proceedings of IEEEAnnual International Conference on Engineering in Medicine and Biology Society (EMBC), (2010) August 2982-2988.
- [11] T. Mori, M. Hamatani, H. Noguchi, M. Oe and S. Sanada, "Insole-Type simultaneous measurement system of plantar pressure and shear force during gait for diabetic patients", Journal of Robotics and Mechatronics, vol. 24, no. 5,(2012) pp.776-772.
- [12] Ulla Hellstrand Tang, Roland Zügner, Vera Lisovskaja, Jon Karlsson, Kerstin Hagber, Roy Tranberg, "Comparison of plantar pressure in three types of insole given to patients with diabetes at risk of developing foot ulcers A two-year, randomized trial", Journal of Clinical & Translational Endocrinology, Elsevier, vol. 1, no. 4 (2014) pp.121-132.
- [13] MetinYavuza, n, RyanW.Brem a, BrianL.Davis b, JalpaPatel c, AbeOsbourne d, Megan R.Matassini e, DavidA.Wood f, IreneO.Nwokolo, "Temperature as a predictive tool for plantar triaxial loading", Journal of Biomechanics, Elsevier, vol. 47, no. 15(2014) pp.3767–3770.

## Authors



**J.Jayashree**, She is working as Assistant Professor in the School of Computer Engineering at VIT University, Vellore, Tamil Nadu, India. Her area of interest includes Intelligent computing and Artificial Intelligence.



**N. Ch. S. N. Iyengar**, He is a Professor, SCS Engineering at VIT University, Vellore, TN, India. His research interests include Distributed Computing, Information Security, Intelligent Computing, and Fluid Dynamics (Porous Media). He had much teaching and research experience with a good number of publications in reputed International Journals & Conferences. He chaired many Intl. Conf. delivered Key note lectures, served as PC Member/Reviewer. He is Editorial Board member for many Int'l Journals like *Int. J. of Advances in Science and Technology*, of SERSC, *Cybernetics and Information Technologies* (CIT)- Bulgaria, Egyptian Computer Science Journal -Egypt, IJCA & IJConvC of Inderscience -China, *etc.*, Also Editor in Chief for International Journal of Software Engineering and Applications(IJSEA) of AIRCC, Advances in Computer Science (ASC) of PPH and Many more.

International Journal of Smart Home Vol. 10, No. 8 (2016)