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Abstract 

Automatic building extraction is one of the most important issues in the fields of 

geoscience and remote sensing. In this letter, by introducing the idea of area morphology 

to the analysis of 3-D point clouds, a novel approach for automatic building extraction 

from airborne LiDAR data was proposed. At first, single scale area opening and area 

closing operator was used to produce normalized point clouds. With the normalized point 

clouds as input, multi-scale area morphology was employed to obtain connected regions, 

and then tree points were removed by PCA based local structural analyzing technique. 

Finally, building regions were extracted by analyzing geometry properties of the obtained 

connected regions without tree points. Experiments for different terrains were conducted. 

And the corresponding experimental results are very promising. 
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1. Introduction 

Building extraction has been one of the most important and challenging tasks for 

applications such as 3-D city modeling, infrastructure planning and disaster emergency 

response. Recently, with the capability of directly providing dense accurate geo-

referenced 3-D point clouds, airborne LiDAR has become a popular used alternative to 

conventional techniques for automatic building extraction.  

Many approaches have been proposed to automatically extract buildings from airborne 

LiDAR data in the past decade [1-4] (and their references). In general, there are mainly 

two strategies for extracting buildings using LiDAR data. The first one is to analyze raw 

point clouds or the corresponding mesh structure directly. And the second one is to 

rasterize the raw LiDAR data onto a regular sampled image (i.e., DSM), and then to 

analyze the DSM or nDSM for extracting buildings. No matter which strategy is 

employed, segmentation is always the first step [1], i.e., acquiring connected regions from 

the input data. Sampath and Shan [2] employed 2-D Voronoi polygons to define the 

neighborhood of a given point, and then structural features for each point were analyzed 

by using PCA based structural analysis technique to segment raw LiDAR data into planar 

and non-planar points. RANSAC plane fitting or 3D Hough Transform plane extraction 

can also be used to segment the raw LiDAR data into planar and non-planar regions [3].E 

Aparecida dos Santos Galvanin [4] translated the raw LiDAR data into a regular sampled 

DSM, and then Markov Random Filed technique was used to analyze the segmented 

aboveground regions. Even though there are still many corresponding researches are 

carrying out to enhance the performance of automatic building extraction from airborne 

LiDAR data, heavy computational burden for the first strategy and information loss 

during rasterization for the second strategy are the main problems far from solved.  

Recently, results given by some hierarchical and multi scale approaches seem to be 

very promising [5-9]. T. Thuy Vu et al [5] introduced grayscale area opening and closing 

operators into nDSM analysis to extract building features. For this method, grayscale area 

morphological operation exhibited its efficiency for addressing large area building 
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extraction task. However, none effort is taken for consideration of the information loss 

problem.  

In this paper, our contributions are: (1) A novel area morphological theory for 3-D 

airborne LiDAR point clouds rather than the rasterized 2-D image is proposed. (2) Based 

on the proposed area morphological operators, area morphological filtering framework for 

building extraction from airborne LiDAR data are given. 

The rest of this paper is organized as follows: In Section II, at first, theory detail of the 

proposed area morphology for airborne LiDAR data is given, and then the corresponding 

area morphological filtering based building extraction method is described. In Section III, 

experiments for two airborne LiDAR data sets with different terrain characters are 

conducted. At last, some remarkable conclusions are given in Section IV. 

 

2. Multi-scale 3D Area Morphological Filtering Based Building 

Extraction  

 
2.1.3. D Area Morphology for Airborne LiDAR Point Clouds: For a given point 

clouds   3N P X Y Z R  where N  is the number of points, we can see it as a 

complete spaceΩ . InΩ , members of the on-set for a given height threshold h  can 

be defined as   h x y z z h  S p  and members of off-set can be defined as 

 , , c

hx y z S  which is the complement of hS  corresponding to the complete spaceΩ . 

With these basic definitions, there will be:  

Definition 1: Connected. For any points pair   1 1 1 1, ,x y zp and  2 2 2 2, ,x y zp in Ω , if 

their Euclidean distance is smaller than a given threshold cT , they are connected. 

Definition 2: Connected component. For any points pair  1 1 1 1, ,x y zp and 

 2 2 2 2, ,x y zp from a same subset iS  of hS , if there exists a connected path only includes 

members of iS  between the two points. This subset iS is called connected component. 

Therefore, for a certain connected component iS , its area can be defined as the number of 

points in it. Therefore,  i iI
S with I  being the indexes of connected components  in hS can 

be used to represent connected components of hS .  

Definition 3: Area opening operator. For the on-set hS , area opening operator can be used 

to remove all connected components iS with area less than a given threshold Ta : 

     Ta i ih Area Ta   S p S S                                                                                         (1) 

Definition 4: Area closing operator. For the off-set c

hS , area closing operator can be used 

to remove all connected components c

iS with area less than a given thresholdTa : 

    c c

Ta i ih Area Ta   S p S S                                                                                         (2) 

Definition 5: Area opening-closing operator (AOC). AOC operator is defined by 

applying area opening followed by area closing with a given parameter Ta on the input 

point clouds.  

Until now, let  , 1,2, ,j hh j N and  , 1,2, ,k TaTa k N be the parameter set to multi 

scale AOC operation. The corresponding scale-space   SP P can be formulated as below 

  
         1k k

j j j

k k Ta j Ta j kSP SP SP h h SP 

P S S
                   

                                      (3) 
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where 0

0SP  P . Therefore, several connected regions can be extracted from the scale-

space   SP P .  

For extracting building regions from candidates obtained by AOC operation on the 

input LiDAR data, region properties should be estimated to form rules. The mainly used 

rules for building region extraction are area or shape related. In order to obtain the 

corresponding properties, edges of the connected component should be defined at first. 

And before defining edge, neighborhood for connectivity analysis should be defined. 

Definition 6: 8-directional-neighborhood. For a given point   x y z p P , a local 

coordinate system 
L L LX O Y  can be established with  ,x y as the original point and with x 

and y axes paralleling to the corresponding axes directions of the object space coordinates. 

With the established coordinate system, 8-directional-neighborhood can be defined as 

illustrated in Figure 1, where R  is the scale of the defined 8-directional-neighborhood. 
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Figure 1. Illustration of the 8-Directional-Neigbor-Regions  

Definition 7: Edge point. For a given point in one of the connected components  i iI
S  of 

hS , if one of the following two conditions is satisfied, this point can be defined as an edge 

point belonging to iS : (1) there is at least one of the 8-directional-neighborhood regions 

with none point in iS ; (2) there is at least one of the 8-directional-neighborhood regions 

with the corresponding closest distance from neighbors in these regions to the center point 

is bigger than a given threshold sE . 

In Figure 2 , connected components of a test LiDAR data with edges being highlighted 

were illustrated. 

                       

        (a) LiDAR data                      (b) connected components 

Figure 2. Illustration of Connected Components for a                                        
Real Airborne LiDAR Data Set 

Besides area of a connected component, with the obtained edge points, several 

important geo-properties can also be obtained. (1) the number of edge points can be seen 

as perimeter. (2) The area of minimum bounding rectangle of the edge points. (3) the 

linearity of the edge points. (4) main directions of the edge points. 

For obtaining the linearity and main directions of the edge points, starting from the 

first edge point 1e , least square line fitting method can be used as below. 
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Step 1. Initializing 
sn and 

bn (the smallest and the biggest numbers of points to line 

fitting),  the tolerance 
l  of line fitting error, the linearity vector 1en 

 L Ο R , and the 

direction vector 1en 
 D Ο R . 

Step 2. For 1: eu n  do 

         Let current scale be l bn n ,  

            While   0u L do 

 getting all of the subsets composed of adjoining 
ln edge points with current 

edge point 
ue  in ; 

 finding the best line fitting result with smallest fitting error 
c , if 

c is smaller 

than l , the linearity of ue is    exp cu  L  and the  uD is assigned as the 

slope of the fitted line. Otherwise, 1l ln n  . 

            While End. 

Step 3. Find the first two main directions from direction vector. 

Step 4. Stop. 

With the corresponding connected components and their geo-properties described 

above, building extraction procedure can be conducted. 

 

2.2. Area Morphological Filtering Based Building Extraction 

With the proposed area morphological operators for airborne LiDAR point clouds, the 

diagram of building extraction procedure in this letter is illustrated in Figure 3. 

 

Extracted 

Buildings

Normalized 

Point Clouds

Scale-Space 

Construction

Removing 

Trees

Building Region 

Extraction

Raw LiDAR 
point clouds

 

Figure 3. Diagram of Building Extraction Procedure 

For building extraction, the raw LiDAR point clouds are firstly processed into 

normalized point clouds (nPC) which represent points with relative height to the 0 m flat 

terrain.  

In order to obtain the nPC, AOC operator is employed in a sliding window way as 

below. 

Step 1.  Initializing the window size w , the sliding step ss ,area threshold Ta  for AOC 

operator, ground height vector 1N Gz Z R , and 3N nPC P R . 

Step 2. Iterative ground fitting. 

 With the upper-left point as the starting upper-left corner of data in the current 

window, let h be the median height of all of the points in current window.  

 AOC operation is carried out.  

 The height values of off-set points c

hS  are used to fitting the terrain surface as 

2 2

00 10 01 11 20 02Z P P X P Y P XY P X P Y                                                                                  (4) 
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 With the obtained fitting surface model, ground heights of the on-set 

points 
hS  can be calculated. For a certain point 

v hp S , the corresponding value of 

 vGz will be  

    min , t

vv v z   Gz Gz                                                                                                      (5) 

where t

vz is the corresponding fitted ground heights for this point. 

 Moving to the next window and do the steps above iteratively. 

Step 3. Obtaining the final nPC with  

   :,3 :,3 nPC nPC Gz .                                                                                          (6) 

With nPC data as input, the corresponding area morphology scale-space   SP P can 

be generated. In practice, the most important problem is to determine the configuration of 

the parameter set  , 1,2, ,j hh j N and  , 1,2, ,k TaTa k N .For consideration that 

connected regions for a certain height scale are fixed for airborne LiDAR data in urban or 

suburb areas, result of AOC operation with bigger area scale is a subset of the 

corresponding result with smaller area scale. Therefore, for building region extraction, 

only one area scale is selected to contain as more as possible regions of the target 

buildings. In practice, this single scale can be selected as the area of the smallest building. 

And for the height scales, the corresponding values can be selected according to prior 

information about building heights of the test scene or can be selected from the local 

minima of the histogram of height values of nPC data (all of these local minima or a 

subset for reduce the computational burden).  

 With the determined parameter set for the area morphology scale-space generation, a 

series of binary point clouds with different number of connected components can be 

acquired. Obviously, in these connected components, there will be points from trees as 

false alarms. Therefore, change of curvature (COC) which is one of the most efficient 

PCA-based eigen-feature is employed to remove these tree points[3]. Specially, COC 

feature of any point 
iip ( 1[1 ]ii N  Z ) from the candidate building regions can be 

determined in the following way: 

   minii jj
jj nbrinds

COC COC


p p                                                                                                  (7) 

where nbrinds is composed of indexes of the K nearest neighbors of point 
iip . And jj is 

one of these indexes. 

Therefore, candidate building regions can be extracted by analyzing rules derived from 

the corresponding geometry properties of connected regions of these binary images. The 

used geometry properties are: (1) rectangularity which is defined as the ratio of region 

area to the corresponding area of minimum bounding rectangle. (2) compactness which is 

defined as the region area divided by its perimeter. (3) linearity and (4) main directions 

which can be calculated as described in section II-B. And the used rules are: 

11 &rect comprule rectangularity T compactness T                                                                  (8) 

 
 

22 &

& ||

rect comp

line

rule rectangularity T compactness T

linearity T main directions

  

 
                          

                                     (9) 

where 1

rectT , 2

rectT ,
compT , and lineT  are four constant thresholds. The symbol  denotes 

perpendicular relationship between two angles. In this letter, the four constant thresholds 

are empirically set to be 0.75, 0.40, 3, and 0.45 respectively. 
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Therefore, for a given connected component: If 1rule is true, it is taken as a 

candidate region; Otherwise, calculating linearity and main directions, if 2rule is 

true it is also taken as a candidate region. 

 

3. Experimental Results 
 

3.1. Test Data sets 

There are two airborne LiDAR data sets with different point densities and different 

terrain styles are used in this letter. The first data set (dataset1 which is illustrated in 

Figure 4. (b)) is a subset of ALS data collected for the USGS San Francisco Coastal 

LiDAR project. The corresponding horizontal and vertical accuracies are 2 m and 0.12 m 

respectively. Its point density is about 2 pts/m2. And the area of this data set is about 

177600 m2, with 387110 LiDAR points. It can be seen that this region is an industrial 

zone with large variation of terrain slope and with several buildings connected with the 

foot of a high land in the scene. The second data set (dataset2 which is illustrated in 

Figure 4. (d)) is a subset of ALS data used for 2012 Data Fusion Contest. The 

corresponding standard deviation derived from the median of absolute deviation in the 

overlap areas is about 2.9 cm. Its point density is about 4 pts/m2. And the area of this data 

set is about 61750 m2, with 25 6650 LiDAR points. 

 

   

(a)                                  (b)                          (c)                            (d) 

Figure 4. The Used raw LiDAR Data Sets: (a)-(b) are Optical Image and 
LiDAR Point Clouds of Dataset1; (c)-(d) are Optical Image and LiDAR 

Point Clouds of Dataset2 
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(a)                                      (b)                             (c)                              (d) 

Figure 5. nPCs and the Corresponding Histograms of the Two Tests 
LiDAR DataS. (a)-(b) are nPCs of data set 1 and Data Set 2; (c)-(d) are 

Histograms of Data Set 1 and Data Set 2 
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Figure 6. AOC Operation Results for the Two Data Sets.                                  
The First Row are Results of Dataset1 and the                                                 

Second Row are Results of Dataset2.                                                                                                             
(From Left to Right is Corresponding Results of the Finest Scale to the 

Coarsest Scale) 

    
(a)                             (b)                           (c)                          (d) 

Figure 7. Building Extraction Results:                                                                     
(a)-(b) Results of SS and MS Methods for Dataset1;                                               

(c)-(d) Results of MS Methods for Dataset2. 

 
3.2. Experimental Results 

For evaluating the performance of the proposed method, two comparison methods were 

conducted. The first method is realized with only a single height scale (SS for short). The 

corresponding scale-space of the second method was constructed with multiple height 

scales  (MS for short). For both of these two methods, raw LiDAR data sets should be 

transformed into nPCs at first (see Figure 5. (a)-(b)). And then, height scales should be 

determined. To release the computational burden, at most four height scales are used. 

Specially, in this letter, these height scales were acquired by analyzing local minima of 

histogram (100 bars) of the height values of nPC. For a given bar with its left 3 bars and 

right 3 bars as neighbors, if its value is the minimum of values of these neighbors, the 

corresponding center height value is treated as a candidate height scale. For the two data 

sets used, the corresponding histograms were illustrated in Figure 5. (c)-(d). The acquired 

height scales were [2.7609 7.1783 11.5957  14.5406] and [3.6200 5.2748 7.9639 12.7216], 

and the corresponding first value was selected for SS method as the height scale. 

With the obtained height scales, AOC operation with area scale being 10 m2 was 

applied with these height scales respectively. The corresponding AOC operation results 

were illustrated in Figure 6. And the final building extraction results of SS and MS 

methods were illustrated in Figure 7. 

 

3.3. Accuracy Assessment and Discussion 

To assess the accuracy of the proposed method, point-based evaluation was applied. At 

first, building points of the raw LiDAR data were manually labeled as reference data. 

Comparing with the reference data, true positive (TP), false positive (FP), and false 
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negative (FN) points were counted. With these values, correctness (Corr), completeness 

(Comp) and quality (Qual) are calculated as below: 

TP
Corr

TP FN




TP
Comp

TP FP




TP
Qual

TP FN FP


 
 

The final results of these quantitative criteria for dataset1 and dataset2 were given 

in Table 1 and Table 2 respectively. 

Table 1. Performance Comparison of SS and MS Building Extraction 
Method for data set 1 

 TP FN FP Correctness Completeness TotalQuality Time (s) 

SS 54957 23180 1984 0.7033 0.9652 0.6859 1548.52 

MS 76474 1663 2090 0.9787 0.9734 0.9532 2965.29 

Table 2. Performance Comparison of SS and MS Building Extraction 
Method for Data Set 2 

 TP FN FP Correctness Completeness TotalQuality Time (s) 

SS 42111 4330 1247 0.9068 0.9712 0.8831 1288.36 

MS 42150 4291 1237 0.9076 0.9715 0.8841 2317.62 

For dataset1, the corresponding terrain undulate is large. And there are large 

buildings at the root of a high land. Therefore, with only one height scale, SS 

method cannot extract buildings connected with the high land. As a result, we can 

see from Figure.7.(a)-(b) and Table 1 that the performance of SS method is much 

poorer than the corresponding results of MS method. On the other hand, by using 

multiple height scales, Correctness, Completeness, and Quality of MS method are 

all bigger than 0.95. For dataset2, the corresponding terrain is very flat. From            

Figure 7(c)-(d) and Table 2 we can see that the corresponding performance of SS 

and MS are almost the same. And both Correctness and Completeness are bigger 

than 0.9, the Quality is also bigger than 0.88. As to the computational efficiency, 

with Intel(R) Core(TM) i3-3220 CPU @ 3.30 GHz computer processor and 8 GB 

RAM memory, the proposed algorithms are developed using MATLAB R2012a. For 

dataset1, average time consumptions are 1548.52 s and 2965.29 s for SS and MS 

respectively. And for dataset2, the corresponding time are 1288.36 s and 2317.62 s. 

We can see that the proposed method is efficient for large scene processing. 

 

4. Conclusions 

In this paper, a very promising automatic building extraction framework for airborne 

LiDAR data is proposed by introducing area morphology idea into the raw LiDAR point 

clouds. The proposed method has high robustness to terrain character. By employing the 

proposed method with only one height scale, buildings in flattens area can be extracted 

efficiently. And the multi-scale solution of the proposed method can work well for scene 

with large terrain undulate. 
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