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Abstract 

Aiming at the problem that μC/OS-II does not support round-robin scheduling of the same 

priority task, a two-level hybrid task scheduling strategy was proposed. In the first level, by 

putting the task priority as criterion for task scheduling, a preemptive scheduling of different 

priority task was implemented. And in the second level, adopting time slice circulars 

scheduling strategy, round-robin scheduling of same priority task was implemented. The 

waiting list of tasks was  designed by on-chip registers of FPGA and the ready list of tasks 

was designed by RAM  of  FPGA,  and  to  implement  time  slice  circulars scheduling, 

hardware  circuit for finding  successor  of  task was designed. The system adopted VHDL, 

and simulated by the software ISE10.1. The simulation results show that the hardware 

implementation of the system is well-worked.  
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1. Introduction 

μC/OS-II is a preemptive [1] real-time kernel of priority-based, it supports a maximum of 

64 tasks, 56 tasks of them are available to users. However, the priority of each task must be 

different in the application [2-4]. Therefore, μC/OS-II does not support the task scheduling 

with same priority currently. But, some tasks require the task scheduling with same priority in 

practice [5]. In addition, RTOS kernel is generally the software which added to the 

application. It increases the cost of ROM and RAM, and the additional burden of the 

application [6]. For the existing software-based real-time operating system, improvement to 

the scheduling algorithm can not make it better to improve real-time performance [7-9]. 

Based on the above problems, this paper modified μC/OS-II kernels firstly, so that it 

supported preemptive scheduling on priority-based and time slice circulars scheduling with 

same priority at the same time. Then the hardware was designed for the modified algorithm 

and the hardware task scheduler was implemented based on the combinational circuits. 

 

2. Improvement of Task Scheduling Algorithm 

μC/OS-II kernels adopts the priority to task as the unique identifier [10]. Therefore, to find 

the ready task with the highest priority is the key of the scheduling algorithm. Ready list is an 

important data structure of μC/OS-II, which records all the ready tasks in μC/OS-II by the 

array OSRdyTbl[] and the variable OSRdyGrp. The ready task with the highest priority will 

be found by searching the ready list. 

The basic idea of time slice circulars scheduling algorithms is that all the ready tasks in the 

system form a queue according to first-come-first-service [11]. The processor is assigned to 
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the first task in the queue for every scheduling, it executes a time slices [12], then the task re-

entering the end of the ready queue, waiting for the next scheduling.  

The disadvantage of the scheduling management algorithm of μC/OS-II is that the number 

of task supports is a small number (maximum 64). It doesn’t support multiple tasks 

scheduling with same priority and time slice circulars scheduling algorithm [13]. Aiming at 

these problems, the algorithm is modified as follows, the method of one task corresponds to 

one priority was extended to 4 tasks shares the same priority in μC/OS-II. So the number of it 

supports can up to 256 tasks. The task identification (ID) is the unique identifier instead of 

priority. The scheduling algorithm is divided into two levels, in the first level, adopting the 

search algorithm of ready list to find the ready task group which has the highest priority. And 

in the second level, adopting different scheduling strategies according to the different of the 

number of ready task which has the highest priority. If there is only one task is ready, the 

system will output the task ID, and CPU executes this task; if there are two or more ready 

tasks which have the highest priority, the system will start the clock, and time slice circulars 

scheduling algorithm will be adopted to schedule ready tasks. 

 

3. Hardware Implementation of Scheduling Algorithm 
 

3.1. Implementation of Task Control Block 

Each task has a task control block (TCB) after being created in μC/OS-II. TCB is used to 

manage the task [14], and it is a data structure. When the CPU usage right of task is deprived, 

TCB is used to save the task state. The task scheduling kernels implements TCB queue by 

using on-chip register of FPGA. TCB structure is designed as follows. Each priority 

corresponds to a set of registers for storing the information of 4 tasks with same priority. 

PrioStat is the priority state, and it is ready when one of 4 tasks is ready at least. 

OSTCBCount is the number of ready tasks with same priority. OSTCBId is task identifier, 

OSTCBStat is task state, OSTCBDly is task waiting latency, OSTCBStkBottom is task stack 

bottom pointer and OSTCBEventPtr is task event control block pointer. The parameter list is 

shown as follows: 

type tcb is record 

PrioStat           : std_logic; 

OSTCBCount      : std_logic_vector( 2 downto 0); 

OSTCBId1        : std_logic_vector( n downto 0); 

OSTCBStat1       : std_logic; 

OSTCBDly1       : std_logic_vector( n downto 0); 

OSTCBStkBottom1  : std_logic_vector( n downto 0); 

OSTCBEventPtr 1   : std_logic_vector(n downto 0); 

…… 

OSTCBId4         : std_logic_vector( n downto 0); 

OSTCBStat4        : std_logic; 

OSTCBDly4        : std_logic_vector( n downto 0); 

OSTCBStkBottom1     : std_logic_vector( n downto 0); 

OSTCBEventPtr4    : std_logic_vector(n downto 0); 

end record; 

The data structure cuts part parameters of original TCB and keeps the meaning of part 

parameters of original TCB, see the specific reference [15]. 

 
3.2. Implementation of Search Algorithm of Ready List 

Ready list enquiry circuit is shown in Figure 1. It is the key of the first level algorithm, the 

ready task with the highest priority will be found by ready list. Priority decision tables 

OSUnMapTbl[] uses on-chip RAM of FPGA to store. OSRdyTbl[] and OSRdyGrp, two 
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variables in the ready list, are implemented by using on-chip register of FPGA, which are 

used to store ready priority instead of ready task(a ready priority may correspond to a 

plurality of ready tasks). 64 priority status, PrioStat0, PrioStat1, ... PrioStat63, as the trigger 

signal of ready list enquiry circuit. 

It requires two clock cycles to find the highest ready priority. In the first clock cycle, signal 

Y is effectively, which means to find the high 3 bit of the highest ready priority, the data of 

OSRdyGrp input address register Addr. The system reads data from this memory unit and 

output to the register prio_y. And in the second clock cycle, signal X is effectively, which 

means to find the low 3 bit of the highest ready priority, prio_y is the selection signal. The 

system selects the group of the highest ready priority and runs this group data as the address 

of RAM. Then the data are read from this memory unit and outputted to the low 3 bit of 

priority register prio_x. The output of ready list is the highest priority of ready task, it is the 

key parameter of the second level scheduling algorithm. 
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Figure 1. Ready List Enquiry Circuits Diagram 

3.3. Implementation of Task Scheduling Algorithm with Same Priority  

According to the output of the first level scheduling algorithms, the second level 

scheduling algorithms is started. If only one task is ready with the highest priority, the system 

will find the task ID and output parameters which the task saves to CPU register and CPU 

executes this task. If there are two or more ready tasks which have the highest priority, time 

slice circulars scheduling algorithms will be adopted to schedule ready tasks.  

Time slice circulars scheduling is implemented by combination enquiry circuits in this 

paper. Hardware implementation of time slice circulars scheduling circuits is shown in Figure 

2. 
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Figure 2. Hardware Implementation Circuit Diagrams of Time Slice Circulars 
Task Scheduling 

State_R is a register with 4bit. If State_R=0110, which means the task 2 and task 3 are 

ready. Cur_R is the task number register which occupying time slice currently. Cur_R has 

only one bit is 1. If Cur_R=0010, which means time slice is occupied by the task 3. Next_R is 

the task that it will occupy time slice next time. If Next_R=0100, which means the task 2 will 

occupy time slice next time. 4 task status, OSTCBStat1, OSTCBStat2, OSTCBStat3, 

OSTCBStat4, will sent to priority status register PrioStat after or operation, which will be 

used by the first level scheduling. Cur_R is the selection signal and the task ID which is 

occupying time slice will be outputted. 

The logic of the next task that occupies time slices enquiry circuits are showed as follows: 

_ iState R , _ iCur R , 0,1,2,3i   are the input variables of circuits, and 

respectively connect corresponded to the bit of register State_R and Cur_R. 

_ iNext R , 0,1,2,3i   are the output variables of circuits, and respectively connect 

corresponded to the bit of register Next_R. iM ， iN ， iZ ， iB and iC ( 0,1, 7i   )are the 

intermediate variables. 

In order to implement the round-robin search of task, the input variables 

_ iState R , 0,1,2,3i   are substituted twice, the method of substitution is shown in 

formula(1). 

4

_ 0,1,2,3

_ 4,5,6,7

i i

i i

M State R i

M State R i

 


 
                                                                                            (1) 

_ iCur R , 0,1,2,3i  , the input variables, are the task sequence number which are 

occupying time slice. It is extended to 8 bits and shown in formula (2). 

_ 0,1,2,3

0 4,5,6,7

i i

i

N Cur R i

N i

 


 
                                                                                    (2) 
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The mask circuit is configured by using the task sequence number iN , 0,1, 7i  which 

are extended and occupying time slice. It is shown in formula (3). 

1

0

1,2 7

i i

i i i

Z N i

Z Z N i

 


  
                                                                                                 (3) 

The variables 
iM  that represent task ready state, the variables iN  that represent task 

sequences number which occupy time slice and the variables 
iZ  that represent masks are 

used to configured circuits, so that all the subsequent ready tasks which are occupying time 

slice currently will be found. The method is shown in formula (4).  

( )i i i iB Z N M  , 0,1, 7i                                                                                                (4) 

To find the first ready task from all the subsequent ready tasks. iC  are the variables of task 

sequences number. The method is shown in formula (5). 
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
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                                                                                                     (5) 

8 bits sequence number variables iC  are cut to 4 bits sequence number variables and 

outputted. The method is shown in formula (6). 

4_ 0,1,2,3i i iNext R C C i                                                                                          (6) 

For example, if State_R=0011，Cur_R=0001, then Next_R=0010, which is the next task 

that time slices scheduling algorithms will be executed. 

 

3.4. Hardware Overall Implementation of Task Scheduling 

Task management of μC/OS-II mainly includes create tasks, delete tasks, suspend tasks, 

resume tasks, query tasks, task scheduling and so on. The task status will be changed when 

create tasks, delete tasks, suspend tasks and resume tasks, and the change will trigger task 

scheduling. Hardware overall implementation of task scheduler circuits is shown in Figure 3. 



International Journal of Smart Home 

Vol. 10, No. 4 (2016) 

 

 

92   Copyright ⓒ 2016 SERSC  

PrioStat

OSTCBId1

OSTCBStat1

…

OSTCBId4

OSTCBStat4

PrioStat

OSTCBId1

OSTCBStat1

…

OSTCBId4

OSTCBStat4

PrioStat

OSTCBId1

OSTCBStat1

…

OSTCBId4

OSTCBStat4

TCB_reg0

TCB_reg1

…

TCB_reg63

0

1

2

3

4

5

6

7

…

…

OSRdyTbl[0]

OSRdyTbl[1]

OSRdyTbl[2]

OSRdyTbl[3]

OSRdyTbl[4]

OSRdyTbl[5]

OSRdyTbl[6]

OSRdyTbl[7]

…
…

OSRdyGrp

OSRdyTbl[]

ready list search 

circuit

time slice 

circular task 

scheduling

circuit

…

Prio_x

Prio_y

Prio[5:0]

time slice 

circular task 

scheduling

circuit

…

time slice 

circular task 

scheduling

circuit

…

selector…

Out_Id0

Out_Id1

Out_Id63

Cur_Id

 

Figure 3. Hardware Overall Implementation of Task Scheduler Circuit Diagrams 

In the improved real-time operating system, the task is divided into 64 levels according to 

the priority. Each priority can create 4 tasks at most, and 4 task states determine the ready 

state in this priority. The priority is ready when one of 4 tasks is ready at least. The change of 

64 priority status triggers the priority ready list, the highest priority ready task Prio will be 

found by searching ready list, then the second level scheduling will work. The number of 

ready tasks will be got by searching the state of 4 tasks with this priority OSTCBStat, which 

will be stored in register OSTCBCount. If OSTCBCount=1, ready task will be searched, the 

parameters will be sent to CPU register and CPU executes this task. If OSTCBCount>1, 

which means more than one task with the highest priority is ready, the ready task with same 

priority enquiry circuits is started and these tasks are executed in the way of time slice 

circulars.  

 

4. Experimental Results and Analysis 

In order to verify the correctness and effectiveness of task scheduling algorithms in this 

paper, the design adopted VHDL, and synthesized and simulated by ISE 10.1 which is the 

development software of Xilinx Company. Function simulation of hardware tasks 

management scheduler is shown in Figure 4. 
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Figure 4. Function Simulation Diagrams of Hardware Tasks Management 
Scheduler 

The simulation results are analyzed as follows: 

1) Create the task whose ID is 2 and priority is 2 at 10ns. At this point there is only one 

task, task 2, so out_cur_taskid is task 2 currently. 

2) Create the task whose ID is 1 and priority is 1 at 25ns. The priority to task 1 is higher 

than the priority to task 2, CPU usage right of task 2 is deprived and task 1 is 

executed at this time. So out_cur_taskid is task 1 currently. 

3) Create the tasks, ID is 3 and priority is 3 at 50ns and ID is 4 and priority is 4 at 70ns. 

The priority of task 1 is the highest at this time, so out_cur_taskid is also task 1 

currently. 

4) Delete task 1 at 90ns. The priority of task 2 is the highest at this time, so task 2 is 

executed. 

5) Suspend task 2 at 120ns. Task 2 and task 3 have the same priority 3. Task 3 and task 

4 adopt time slice circulars scheduling, which is shown in out_cur_taskid. 

6) Request signals are effectively, the input ID is 4, and the output port will output the 

parameters of task 4 at 210ns. Resume task 2 at 230ns, the priority of task 2 is 2, 

which is the highest, so out_cur_taskid is task 2 currently. 

Suppose there are 6 tasks running in the operating system, the usage of hardware resources 

in entire system is shown in Table 1. According to Table 1, resources of FPGA and 

performance meet the need of real-time operating system. 

The analysis of the results verifies the correctness and high efficiency of using hardware 

logic to implement operating system scheduler, which meets the requirement of real-time 

operating system. 

Table 1. The Practical Usage of Hardware in xc4vlx15-12sf363 Platform 

Logic Utilization Used Available Utilization 

Number of Slices Latches 465 12288 3% 

Number of Slices Flip Flops 712 27392 2% 

Number of 4 input LUTs 946 12288 7% 

Number of bonded IOBs 58 240 24% 

Number of BUFGCTRLs 6 32 18% 
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5. Conclusion 

After researching task management and scheduling algorithms of μC/OS-II carefully, the 

scheduling algorithm was improved, the real-time operating system was changed to the 

system with task priority scheduling and time slice circulars scheduling by adding time slice 

circulars scheduling algorithms. Hardware task scheduler of μC/OS-II was implemented by 

FPGA and TCB was implemented by on-chip register. Hardware implemented of task 

management kept the correctness of system calls, gave full play to multitasking potential 

parallelism, reduced processors overhead and the execution time of the system calls. So, 

hardware scheduler has its value of research and use. 
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