
International Journal of Smart Home

Vol. 10, No. 4 (2016), pp. 87-94

http://dx.doi.org/10.14257/ijsh.2016.10.4.09

ISSN: 1975-4094 IJSH

Copyright ⓒ 2016 SERSC

Hardware Implementation of Two-level Scheduling Algorithm in

μC/OS-II

Guangwu Zhang
1
, Yan Li

1*
, Yidong Chen

1
, Huaiguo Dong

1
, Huanhuan Chi

2
,

Min Shi
1
 and Junfeng Gao

1

1. Computer Science College, Harbin University of Science and Technology, Harbin,

150080, China;

2. Computing Center of Heilongjiang Nursing College, Harbin, 150036, China

liyan@hrbust.edu.cn

Abstract

Aiming at the problem that μC/OS-II does not support round-robin scheduling of the same

priority task, a two-level hybrid task scheduling strategy was proposed. In the first level, by

putting the task priority as criterion for task scheduling, a preemptive scheduling of different

priority task was implemented. And in the second level, adopting time slice circulars

scheduling strategy, round-robin scheduling of same priority task was implemented. The

waiting list of tasks was designed by on-chip registers of FPGA and the ready list of tasks

was designed by RAM of FPGA, and to implement time slice circulars scheduling,

hardware circuit for finding successor of task was designed. The system adopted VHDL,

and simulated by the software ISE10.1. The simulation results show that the hardware

implementation of the system is well-worked.

Keywords: Real-time operating system; Time slice circulars scheduling; Hardware task

scheduler; Field Programmable Gate Array (FPGA)

1. Introduction

μC/OS-II is a preemptive [1] real-time kernel of priority-based, it supports a maximum of

64 tasks, 56 tasks of them are available to users. However, the priority of each task must be

different in the application [2-4]. Therefore, μC/OS-II does not support the task scheduling

with same priority currently. But, some tasks require the task scheduling with same priority in

practice [5]. In addition, RTOS kernel is generally the software which added to the

application. It increases the cost of ROM and RAM, and the additional burden of the

application [6]. For the existing software-based real-time operating system, improvement to

the scheduling algorithm can not make it better to improve real-time performance [7-9].

Based on the above problems, this paper modified μC/OS-II kernels firstly, so that it

supported preemptive scheduling on priority-based and time slice circulars scheduling with

same priority at the same time. Then the hardware was designed for the modified algorithm

and the hardware task scheduler was implemented based on the combinational circuits.

2. Improvement of Task Scheduling Algorithm

μC/OS-II kernels adopts the priority to task as the unique identifier [10]. Therefore, to find

the ready task with the highest priority is the key of the scheduling algorithm. Ready list is an

important data structure of μC/OS-II, which records all the ready tasks in μC/OS-II by the

array OSRdyTbl[] and the variable OSRdyGrp. The ready task with the highest priority will

be found by searching the ready list.

The basic idea of time slice circulars scheduling algorithms is that all the ready tasks in the

system form a queue according to first-come-first-service [11]. The processor is assigned to

International Journal of Smart Home

Vol. 10, No. 4 (2016)

88 Copyright ⓒ 2016 SERSC

the first task in the queue for every scheduling, it executes a time slices [12], then the task re-

entering the end of the ready queue, waiting for the next scheduling.

The disadvantage of the scheduling management algorithm of μC/OS-II is that the number

of task supports is a small number (maximum 64). It doesn’t support multiple tasks

scheduling with same priority and time slice circulars scheduling algorithm [13]. Aiming at

these problems, the algorithm is modified as follows, the method of one task corresponds to

one priority was extended to 4 tasks shares the same priority in μC/OS-II. So the number of it

supports can up to 256 tasks. The task identification (ID) is the unique identifier instead of

priority. The scheduling algorithm is divided into two levels, in the first level, adopting the

search algorithm of ready list to find the ready task group which has the highest priority. And

in the second level, adopting different scheduling strategies according to the different of the

number of ready task which has the highest priority. If there is only one task is ready, the

system will output the task ID, and CPU executes this task; if there are two or more ready

tasks which have the highest priority, the system will start the clock, and time slice circulars

scheduling algorithm will be adopted to schedule ready tasks.

3. Hardware Implementation of Scheduling Algorithm

3.1. Implementation of Task Control Block

Each task has a task control block (TCB) after being created in μC/OS-II. TCB is used to

manage the task [14], and it is a data structure. When the CPU usage right of task is deprived,

TCB is used to save the task state. The task scheduling kernels implements TCB queue by

using on-chip register of FPGA. TCB structure is designed as follows. Each priority

corresponds to a set of registers for storing the information of 4 tasks with same priority.

PrioStat is the priority state, and it is ready when one of 4 tasks is ready at least.

OSTCBCount is the number of ready tasks with same priority. OSTCBId is task identifier,

OSTCBStat is task state, OSTCBDly is task waiting latency, OSTCBStkBottom is task stack

bottom pointer and OSTCBEventPtr is task event control block pointer. The parameter list is

shown as follows:

type tcb is record

PrioStat : std_logic;

OSTCBCount : std_logic_vector(2 downto 0);

OSTCBId1 : std_logic_vector(n downto 0);

OSTCBStat1 : std_logic;

OSTCBDly1 : std_logic_vector(n downto 0);

OSTCBStkBottom1 : std_logic_vector(n downto 0);

OSTCBEventPtr 1 : std_logic_vector(n downto 0);

……

OSTCBId4 : std_logic_vector(n downto 0);

OSTCBStat4 : std_logic;

OSTCBDly4 : std_logic_vector(n downto 0);

OSTCBStkBottom1 : std_logic_vector(n downto 0);

OSTCBEventPtr4 : std_logic_vector(n downto 0);

end record;

The data structure cuts part parameters of original TCB and keeps the meaning of part

parameters of original TCB, see the specific reference [15].

3.2. Implementation of Search Algorithm of Ready List

Ready list enquiry circuit is shown in Figure 1. It is the key of the first level algorithm, the

ready task with the highest priority will be found by ready list. Priority decision tables

OSUnMapTbl[] uses on-chip RAM of FPGA to store. OSRdyTbl[] and OSRdyGrp, two

International Journal of Smart Home

Vol. 10, No. 4 (2016)

Copyright ⓒ 2016 SERSC 89

variables in the ready list, are implemented by using on-chip register of FPGA, which are

used to store ready priority instead of ready task(a ready priority may correspond to a

plurality of ready tasks). 64 priority status, PrioStat0, PrioStat1, ... PrioStat63, as the trigger

signal of ready list enquiry circuit.

It requires two clock cycles to find the highest ready priority. In the first clock cycle, signal

Y is effectively, which means to find the high 3 bit of the highest ready priority, the data of

OSRdyGrp input address register Addr. The system reads data from this memory unit and

output to the register prio_y. And in the second clock cycle, signal X is effectively, which

means to find the low 3 bit of the highest ready priority, prio_y is the selection signal. The

system selects the group of the highest ready priority and runs this group data as the address

of RAM. Then the data are read from this memory unit and outputted to the low 3 bit of

priority register prio_x. The output of ready list is the highest priority of ready task, it is the

key parameter of the second level scheduling algorithm.

s
e
le

c
to

r

OSRdyTbl[0]

OSRdyTbl[1]

OSRdyTbl[2]

OSRdyTbl[7]

s
e
le

c
to

r

OSRdyGrp

re
g
is

te
r

Addr[7:0]

R
A

M

clk

read re
g
is

te
r

s
e
le

c
to

r

Out[2:0]

Prio_x

Prio_y
OSRdyTbl[3]

OSRdyTbl[4]
OSRdyTbl[5]

OSRdyTbl[6]

...

X/Y X/Y

Figure 1. Ready List Enquiry Circuits Diagram

3.3. Implementation of Task Scheduling Algorithm with Same Priority

According to the output of the first level scheduling algorithms, the second level

scheduling algorithms is started. If only one task is ready with the highest priority, the system

will find the task ID and output parameters which the task saves to CPU register and CPU

executes this task. If there are two or more ready tasks which have the highest priority, time

slice circulars scheduling algorithms will be adopted to schedule ready tasks.

Time slice circulars scheduling is implemented by combination enquiry circuits in this

paper. Hardware implementation of time slice circulars scheduling circuits is shown in Figure

2.

International Journal of Smart Home

Vol. 10, No. 4 (2016)

90 Copyright ⓒ 2016 SERSC

PrioStat

OSTCBCount

OSTCBId1

OSTCBStat1

…

OSTCBId2

OSTCBStat2

…

OSTCBId3

OSTCBStat3

…

OSTCBId4

OSTCBStat4

0
1
2
3

0
1
2
3

The next

occupancy

time slice

task

enquiry

circuit

0
1
2
3

s
e
le

c
to

r

State_R

Cur_R

Next_R

Out_Id

Figure 2. Hardware Implementation Circuit Diagrams of Time Slice Circulars
Task Scheduling

State_R is a register with 4bit. If State_R=0110, which means the task 2 and task 3 are

ready. Cur_R is the task number register which occupying time slice currently. Cur_R has

only one bit is 1. If Cur_R=0010, which means time slice is occupied by the task 3. Next_R is

the task that it will occupy time slice next time. If Next_R=0100, which means the task 2 will

occupy time slice next time. 4 task status, OSTCBStat1, OSTCBStat2, OSTCBStat3,

OSTCBStat4, will sent to priority status register PrioStat after or operation, which will be

used by the first level scheduling. Cur_R is the selection signal and the task ID which is

occupying time slice will be outputted.

The logic of the next task that occupies time slices enquiry circuits are showed as follows:

_ iState R , _ iCur R , 0,1,2,3i  are the input variables of circuits, and

respectively connect corresponded to the bit of register State_R and Cur_R.

_ iNext R , 0,1,2,3i  are the output variables of circuits, and respectively connect

corresponded to the bit of register Next_R. iM ， iN ， iZ ， iB and iC (0,1, 7i )are the

intermediate variables.

In order to implement the round-robin search of task, the input variables

_ iState R , 0,1,2,3i  are substituted twice, the method of substitution is shown in

formula(1).

4

_ 0,1,2,3

_ 4,5,6,7

i i

i i

M State R i

M State R i

 


 
 (1)

_ iCur R , 0,1,2,3i  , the input variables, are the task sequence number which are

occupying time slice. It is extended to 8 bits and shown in formula (2).

_ 0,1,2,3

0 4,5,6,7

i i

i

N Cur R i

N i

 


 
 (2)

International Journal of Smart Home

Vol. 10, No. 4 (2016)

Copyright ⓒ 2016 SERSC 91

The mask circuit is configured by using the task sequence number iN , 0,1, 7i  which

are extended and occupying time slice. It is shown in formula (3).

1

0

1,2 7

i i

i i i

Z N i

Z Z N i

 


  
 (3)

The variables
iM that represent task ready state, the variables iN that represent task

sequences number which occupy time slice and the variables
iZ that represent masks are

used to configured circuits, so that all the subsequent ready tasks which are occupying time

slice currently will be found. The method is shown in formula (4).

()i i i iB Z N M  , 0,1, 7i  (4)

To find the first ready task from all the subsequent ready tasks. iC are the variables of task

sequences number. The method is shown in formula (5).

0 0

1 0 1

2 0 1 2

3 0 1 2 3

4 0 1 2 3 4

5 0 1 2 3 4 5

6 0 1 2 3 4 5 6

7 0 1 2 3 4 5 6 7

C B

C B B

C B B B

C B B B B

C B B B B B

C B B B B B B

C B B B B B B B

C B B B B B B B B

















 (5)

8 bits sequence number variables iC are cut to 4 bits sequence number variables and

outputted. The method is shown in formula (6).

4_ 0,1,2,3i i iNext R C C i   (6)

For example, if State_R=0011，Cur_R=0001, then Next_R=0010, which is the next task

that time slices scheduling algorithms will be executed.

3.4. Hardware Overall Implementation of Task Scheduling

Task management of μC/OS-II mainly includes create tasks, delete tasks, suspend tasks,

resume tasks, query tasks, task scheduling and so on. The task status will be changed when

create tasks, delete tasks, suspend tasks and resume tasks, and the change will trigger task

scheduling. Hardware overall implementation of task scheduler circuits is shown in Figure 3.

International Journal of Smart Home

Vol. 10, No. 4 (2016)

92 Copyright ⓒ 2016 SERSC

PrioStat

OSTCBId1

OSTCBStat1

…

OSTCBId4

OSTCBStat4

PrioStat

OSTCBId1

OSTCBStat1

…

OSTCBId4

OSTCBStat4

PrioStat

OSTCBId1

OSTCBStat1

…

OSTCBId4

OSTCBStat4

TCB_reg0

TCB_reg1

…

TCB_reg63

0

1

2

3

4

5

6

7

…

…

OSRdyTbl[0]

OSRdyTbl[1]

OSRdyTbl[2]

OSRdyTbl[3]

OSRdyTbl[4]

OSRdyTbl[5]

OSRdyTbl[6]

OSRdyTbl[7]

…
…

OSRdyGrp

OSRdyTbl[]

ready list search

circuit

time slice

circular task

scheduling

circuit

…

Prio_x

Prio_y

Prio[5:0]

time slice

circular task

scheduling

circuit

…

time slice

circular task

scheduling

circuit

…

selector…

Out_Id0

Out_Id1

Out_Id63

Cur_Id

Figure 3. Hardware Overall Implementation of Task Scheduler Circuit Diagrams

In the improved real-time operating system, the task is divided into 64 levels according to

the priority. Each priority can create 4 tasks at most, and 4 task states determine the ready

state in this priority. The priority is ready when one of 4 tasks is ready at least. The change of

64 priority status triggers the priority ready list, the highest priority ready task Prio will be

found by searching ready list, then the second level scheduling will work. The number of

ready tasks will be got by searching the state of 4 tasks with this priority OSTCBStat, which

will be stored in register OSTCBCount. If OSTCBCount=1, ready task will be searched, the

parameters will be sent to CPU register and CPU executes this task. If OSTCBCount>1,

which means more than one task with the highest priority is ready, the ready task with same

priority enquiry circuits is started and these tasks are executed in the way of time slice

circulars.

4. Experimental Results and Analysis

In order to verify the correctness and effectiveness of task scheduling algorithms in this

paper, the design adopted VHDL, and synthesized and simulated by ISE 10.1 which is the

development software of Xilinx Company. Function simulation of hardware tasks

management scheduler is shown in Figure 4.

International Journal of Smart Home

Vol. 10, No. 4 (2016)

Copyright ⓒ 2016 SERSC 93

Figure 4. Function Simulation Diagrams of Hardware Tasks Management
Scheduler

The simulation results are analyzed as follows:

1) Create the task whose ID is 2 and priority is 2 at 10ns. At this point there is only one

task, task 2, so out_cur_taskid is task 2 currently.

2) Create the task whose ID is 1 and priority is 1 at 25ns. The priority to task 1 is higher

than the priority to task 2, CPU usage right of task 2 is deprived and task 1 is

executed at this time. So out_cur_taskid is task 1 currently.

3) Create the tasks, ID is 3 and priority is 3 at 50ns and ID is 4 and priority is 4 at 70ns.

The priority of task 1 is the highest at this time, so out_cur_taskid is also task 1

currently.

4) Delete task 1 at 90ns. The priority of task 2 is the highest at this time, so task 2 is

executed.

5) Suspend task 2 at 120ns. Task 2 and task 3 have the same priority 3. Task 3 and task

4 adopt time slice circulars scheduling, which is shown in out_cur_taskid.

6) Request signals are effectively, the input ID is 4, and the output port will output the

parameters of task 4 at 210ns. Resume task 2 at 230ns, the priority of task 2 is 2,

which is the highest, so out_cur_taskid is task 2 currently.

Suppose there are 6 tasks running in the operating system, the usage of hardware resources

in entire system is shown in Table 1. According to Table 1, resources of FPGA and

performance meet the need of real-time operating system.

The analysis of the results verifies the correctness and high efficiency of using hardware

logic to implement operating system scheduler, which meets the requirement of real-time

operating system.

Table 1. The Practical Usage of Hardware in xc4vlx15-12sf363 Platform

Logic Utilization Used Available Utilization

Number of Slices Latches 465 12288 3%

Number of Slices Flip Flops 712 27392 2%

Number of 4 input LUTs 946 12288 7%

Number of bonded IOBs 58 240 24%

Number of BUFGCTRLs 6 32 18%

International Journal of Smart Home

Vol. 10, No. 4 (2016)

94 Copyright ⓒ 2016 SERSC

5. Conclusion

After researching task management and scheduling algorithms of μC/OS-II carefully, the

scheduling algorithm was improved, the real-time operating system was changed to the

system with task priority scheduling and time slice circulars scheduling by adding time slice

circulars scheduling algorithms. Hardware task scheduler of μC/OS-II was implemented by

FPGA and TCB was implemented by on-chip register. Hardware implemented of task

management kept the correctness of system calls, gave full play to multitasking potential

parallelism, reduced processors overhead and the execution time of the system calls. So,

hardware scheduler has its value of research and use.

Acknowledgements

This study was supported by the Technology Innovation Talent Research Foundation of Harbin (No.

2013RFXXJ034), the National Natural Science Foundation of China(No.61103149), the Education

Department Foundation of Heilongjiang Province(No.12521100) and the Natural Science Foundation of

Heilongjiang Province(No. F2015038).

References

[1] W. Zhongkai and Z. Lei, “Research on task scheduling in μC/OS-II”, J. Journal of Shandong University of

Technology(Natural Science Edition), vol. 23, no. 2, (2009), pp. 30-35

[2] L. Dapeng, “Research on task scheduling algorithm of same priority in μC/OS-II”, J. Control Engineering of

China, vol. 19, (2012), pp. 218-221.

[3] S. Moon, J. Rexford and K. Shin, “Scalable hardware priority queue architectures for high-speed packet

switch”, J. IEEE Transactions on Computers, vol. 49, no. 11, (2000), pp. 1215-1227,

[4] P. Lei, H. Zhongdong and M. Hua, “Solving priority inversion and deadlock problems in μC/OS-II”, J.

Computer Applications and Software, vol. 8, (2011), pp. 200-202.

[5] Z. Hang and L. Xiaowen, “Improvement on task scheduling algorithm of μC/OS-II kernel”, J. Journal of

Chongqing University of Posts and Telecommunications, vol. 2, no. 3, (2010), pp. 360-364.

[6] L. Kessal, N. Abel and S. M. Karabernoi, “Reconfigurable computing design methodology and hardware

tasks scheduling for real-time image processing”, J. Real-time Image Processing, no. 3, (2008), pp. 131-147.

[7] H. Shuhui and C. Jian, “Analysis and comparison of several embedded real-time operating system”, J.

Microcontroller & Embedded Systems, no. 5, (2007), pp. 5-8.

[8] M. VETRONILLE, L. OST, MARCON and C. A. M. RTOS, ”Scheduler implementation in hardware and

software for real time application”, C. Proceedings of the Seventeenth IEEE International Workshop on

Rapid System Prototyping. Washington, DC: IEEE Press, (2006), pp. 163-168.

[9] C.Jiahua, S. Hongsheng and W. Baojin, “The design and realization of hardware RTOS”, J. Application of

Electronic Technique, vol. 34, no. 5, (2008), pp. 34-37.

[10] S. Beibei, “Implementation of μC/OS-II task scheduling algorithm with hardware instruction”, J.

Microcontroller & Embedded Systems, no. 009, (2010), pp. 5-7.

[11] H. Sai, Z. Haibi and X. Huijun, “A fair dynamic quantum algorithm”, J. Journal of Natural Science of Hunan

Normal University, vol. 35, no. 5, (2006), pp. 30-36.

[12] G. Fuqiang, Q. Changshuo and Y. Jiyuan, “Extension of time slice circulars scheduling in μC/OS-II kernel”,

J. Journal Computer Applications, no. 4, (2009), pp.1128-1142.

[13] Z. Bo, W. Shiji and Q. Weidong, “SHUM-UCOS: A real-time operating system for reconfigurable systems

using uniform multi-task model”, J. Chinese Journal of Computer, vol. 29, no. 2, (2006), pp. 208-218.

[14] W. Nana and G. Bing, “Improvement of Priority Scheduling Algorithm Based on μC/OS-II”, J. Computer

Technology and Development, vol. 11, (2011), pp. 11-14

[15] J. J. Labrosse, “Embedded real-time operating system UC/OS-II”, Shao Beibei translation. (2nd Edition),

BeiJing: Beihang University Press, vol. 126, (2003).

[16] L. Yan, L. Jie, Y. Xiaohua and L.Jingsong, “The Implementation of Advanced DES Encryption Algorithm

Based on FPGA”, J. Journal of Harbin University of Science and Technology, no. 5, (2012), pp. 17.

