
International Journal of Smart Home

Vol. 10, No. 3, (2016), pp.191-200

http://dx.doi.org/10.14257/ijsh.2016.10.3.19

ISSN: 1975-4094 IJSH

Copyright ⓒ 2016 SERSC

An Embedded Software Power Consumption Model based on

Software Architecture and Support Vector Machine Regression

Xiong Wei
1,2,*

, Xiaobin Liu
1
, Bing Guo

1
,

Shen Yan

3
and Wenli Zhang

1
Computer Science College, Sichuan University, Chengdu, SC 610064, China

2
Leshan Vocational & Technical College, Leshan, SC 614000, China

3
School of Control Engineering, Chengdu University of Information Technology,

Chengdu SC 610225, China
1
guobing@scu.edu.cn,

2
xwedu79@163.com

Abstract

As embedded devices prevail in daily life, high energy consumption caused by

embedded software caught academic attentions. Multifarious testing and predicting

methods are developed accordingly. This paper proposes a model about energy

consumption of embedded device based on analysis of embedded software structure and

support vector machine regression. The nonlinear relationship between energy

consumption and software structure is revealed. The research finds software structure is

determined by features like number of components, complexity of component interface,

component coupling, and path length. These features are qualified and modeled by using

support vector machine regression and energy consumption is predicted based on this

model. The experiments results confirm the proposed model.

1. Introduction

Embedded technology is used in many fields, such as industrial control, image

processing [1] and even those used in people’s daily life. The wide use of embedded

devices raises issues of energy consumption. The annual power consumption of embedded

devices has reached over l000 billion kw [2]. In embedded system design, energy

consumption is also becoming a prominent consideration in the effort to prolong service

time under the restriction of limited electricity. For example, in the literature [3-4], the

author presents how to maximize real-time performance while consuming the least amount

of energy. In the literature [5] the author utilizes an algorithm to reduce access time and

energy consumption for scratch pad memories in embedded multicore systems.
Measuring and estimating the energy consumption for an embedded system has become

a key issue, and much progress has been made in this regard. In the literature [6], the
author puts forward an energy consumption model based on the (communicating sequential
process) (CSP) algebraic language. In the literature [7], the author utilizes a time delay
Petri net, modeling with tasks, and analyzes the relationships between tasks,
communication protocol, etc. In the literature [8], the author proposes an N-linear function
relationship in analyzing the software architecture characteristics in an effort to minimize
energy consumption, but the accuracy of this model is poor in practice, so it cannot meet
practical requirements. In the literature [9], the author puts forward a fitting and predicting
model by using BP neural, but the defects of this model are neural network over-fitting and
low generalization ability. Research on embedded system energy consumption, mainly
comprises three levels: instruction level, software architecture structure level, algorithm
level. The instruction level is shown in Figure 1.

Although analysis can only be done after the software is fully developed, estimating the
energy consumption of embedded system is needed in the software design stage. Software
architecture and algorithm level can provide energy analysis in the software design phase.

mailto:guobing@scu.edu.cn

International Journal of Smart Home

Vol. 10, No. 3, (2016)

192 Copyright ⓒ 2016 SERSC

Figure 1. Energy Consumption Analysis Levels

According to Hayes Roth's: software architecture is an abstract system specification,

mainly including functional components, component interface and component connectors.

As shown in Figure 2, components are encapsulations of a certain function, the connectors

are the intermediary between components. Through interface, they interact with each other.

Figure 2. Software Architecture

In this paper, we consider software architecture structure elements as being closely

related to energy consumption. Through experiments, we actually found that a few

characteristics of the software system structure and the energy consumption have a

particular internal relationship which cannot be simply regarded as a linear .or quadratic

function. We extracted five characteristics which are closely associated with energy

consumption, and used a support vector machine regression to fit and predict energy

consumption and achieved favorable results.

This paper proposes an energy consumption model based on embedded software

architecture characteristics and support vector machine regression. Section 2 describes the

quantifying of the software architecture characteristics. Section 3 describes the support

vector machine regression. Section 4 shows the process of the experiment. Section 5

concludes this paper.

2. Quantifying with Software Engineering Methods

Programs, (usually in c, c++, Java), are compiled into binary code, and hardware

completes the corresponding actions, such as memory reading, writing and arithmetic logic

operations, etc., so as to accomplish a certain function. In the process, hardware executes

instructions and triggers the corresponding circuit causing energy consumption.

According to the software architecture and the features of power consumption, this

paper extracts five characteristics: valid code lines, number of components, complexity of

component interface, component coupling, and path length. These characteristics can

reflect how software driven hardware causes power consumption.

algorithm level

architecture structure level

instruction level

International Journal of Smart Home

Vol. 10, No. 3, (2016)

Copyright ⓒ 2016 SERSC 193

Definition 1: Embedded software power consumption equals the average power

consumption multiplied by software running time, expressed as:


2

1

t

t

PdtE (1)

E represents the total energy consumption, and t represents the running time. For

accuracy, we test software energy consumption multible times and calculate the average as

total energy consumption.

Definition 2: The average power consumption of embedded software is a nonlinear

function of software structure characteristic (linear as a special category of nonlinear

function). , expressed as:

P = f(C) = f (C1,C2,... Cn) (2)

P represents the average power consumption;f represents a nonlinear function of

embedded software characteristics;symbols C1, C2, . . . Cn represent software architecture

characteristics.

2.1. Valid Code Lines Quantifying

Valid code lines are in the first consideration because it has a close relationship with the

elements behind it. We divide program code into the categories of valid and invalid code.

The main distinction is if there is a contribution to energy consumption.

Valid code is the code which can generate binary instructions by compilation. It mostly

includes variable calculation, variable assignment, initialization functions, function calls,

etc. In a fixed platform, each binary code has a fixed energy consumption value. And in a

fixed compiler platform and environment, the generated binary code amount is also fixed.

Therefore valid code lines affect energy consumption greatly. When calculating the valid

code lines of a program, we consider the following situations:

a. for loop structure, unroll into basic assignment, computing statements are considered;

b. b. for virtual functions, only valid code lines of child class are considered;

c. for branch structure, according to the actual situations, the probability of each branch is

set, multiplied by valid code lines of each branch, and the sum to count is calculated;

d. for child class, the public valid code lines of the parent class to count is added.

2.2. Number of Components

Components are an encapsulation of software modules accomplishing independent

functions. The component number reflects the number of modules and valid code lines. So

the number of components indirectly affects energy consumption. The software component

number can be obtained by the design of the software architecture.

2.3. Average Complexity of Components Interface Quantifying

Through interface, components communication and accomplishing control and data

flow interactions, component interface is divided into input interface and output interface.

A larger interface number implies a greater chance of invocations of components. So

component interface complexity has an indirect effect on energy consumption. According

to the literature [10], the component j input interface complexity is expressed as the

following formula:







q

i

LiLj

j emI

1

|1
|

 (3)

The component j output interface complexity is:

International Journal of Smart Home

Vol. 10, No. 3, (2016)

194 Copyright ⓒ 2016 SERSC








q

i

LL

j

ij

mO

1

|1
|

2 (4)

The output and input interface complexity is:

3
jjj OIA  (5)

So the average complexity of components interface can be expressed as:






m

j

jC A
m

R

1

1

 (6)

 (m---- software components quantity ; Ij ----- the input interface complexity;

 q -----the total number of input interface ; Lj------ the layer depth of component j;

 Li ------- the layer depth of component i.)

2.4. Path Length Quantifying

The number of components involved in running can be regarded as path length,

therefore a longer path means more components involved in running. So path length has an

indirect effect on energy consumption. Path length metrics has two types: single metrics

and multiple-branches metrics. Sequential structure and cycle structure can be regarded as

single metrics, and selective structure can be regarded as multiple-branch metrics. For

single path, we can directly count the number of components as path length. As shown in

Figure 3 (a), we can count five components for length path. For multiple-branches, firstly

we multiply the component’s number by the running probability of the branch, and

secondly calculate the sum of all branches and take the sum as the path length. As shown

in Figure 3 (b), if the path a-b-c probability is 30% and the a-b-d-e probability is 70%, we

can get 3*30%+4*70%=3. 7 as the path length.

(a) (b)

Figure 3. Path Length

2.5. Components Coupling Quantifying

Components coupling is the metric of correlation degree between modules. It includes

control relationship, called relationship, and data transfer. The coupling strength depends

on the component interface complexity. There are many mature methods of measuring

coupling in software engineering, such as CK Metrics Suite and MOOD Metrics. This

paper uses MOOD metrics. The average component coupling formula can be expressed as:

TCTC

CCcouplinghas

AC

n

i

n

j

ji




 
 

2

1 1

),(_[

 (7)

Tc represents the total number of components.

),(_
ji

CCcouplinghas
= 1 Ci and Cj coupling

 (8)
= 0 Ci and Cj no coupling

International Journal of Smart Home

Vol. 10, No. 3, (2016)

Copyright ⓒ 2016 SERSC 195

3. Support Vector Machine Regression Prediction

Support vector machine is a pattern recognition and regression method based on

statistical learning theory. It can successfully solve small samples, nonlinear and high

dimensional pattern recognition problems.

Compared with artificial neural network and its applications [11], support vector

machine is based on the principle of structural risk minimization, and its optimization goal

includes two indicators: empirical risk and confidence risk. The neural network method is

only based on empirical risk minimization, however empirical risk minimum is not equal

to the actual risk being minimum. So the generalization ability and the small samples

learning of the support vector machine are better than those of the neural network.

The support vector machine is used for classification and regression (SVR). For SVR,

given a training set, the elements have an unknown distribution p (x, y):

X = {),)...(,(),,(
,2,211 nn

yxyxyx } with RyRx
i

n

i
 , ,and the function

}:|{ RRffF
n
 (9)

The basic regression problem is to minimize the function

)},()),((({][yxdPxxfycfR   . (10)

In the above function, c is the loss function, and indicates how to penalize the errors

between y and f (x).

Support vector machine regression (SVR) includes nu-SVR and ɛ-SVR [12, 13]. Their

main difference is that the parameter nu is used in nu-SVR to control the number of

support vectors, while the parameter epsilon is used in ɛ-SVR. In this paper we use ɛ-SVR.

ɛ-SVR regression in trying to solve the following constrained quadratic programming

problem:

)(
2

1
min

*

1

i

N

i

i
C  



 (11)

0,

;1,

;

*

*







ii

iii

iii

Nify

yf







Kernel functions are used in ɛ-SVR to map linear inseparable set in a low dimensional

space to a higher dimensional space to separate through dot product operation.Kernel

functions include:

linear kernel : j
i

j
i

xxxxk ),(; (12)

polynomial kernel:
d

iji j
xxxxk)1)((),( (13)

Radial Basis kernel :)
||||

exp(),(
2

2



j

j

xx
xxk

i

i


 ; (14)

sigmod kernel:)),(tanh(),(
j

xxkxxk
i

i (15)

Among them, the radial basis function (RBF) is widely used because compared with the

other kernel functions, it has the following advantages:

a. the kernel function can map samples to a higher dimensional space;

b. linear kernel function is a special case of RBF;

c. compared with polynomial kernel function, the RBF requires fewer parameters.

In this paper, we choose RBF kernel function.

s.t

..

International Journal of Smart Home

Vol. 10, No. 3, (2016)

196 Copyright ⓒ 2016 SERSC

4. Experimental Results

In the experiment, we used HMSim and Libsvm. HMSim as a high precision

instruction-level power consumption simulation platform, and simulated the single-core

processor ARM7 instructions set. It supports Embedded Linux and UC/OSII operating

system applications. We tested a program power consumption three times on the HMSim,

and calculated the average as the program power consumption. We compared the test

values with the predicted values of the programs and drew conclusions. All these

procedures include Mp3 decoding, bubble sort, maze problem programs, etc. The

experiments use Libsvm as ɛ-SVR regression tools. Libsvm is a simple and efficient SVM

pattern recognition and regression software package. Using Libsvm for regression, there

are three main steps: data normalization, parameter selection, training and prediction. , The

selection of the parameters is critical, as it is directly related to the accuracy of prediction.

The main process is as follows:

Step 1: data preprocessing and normalization

In order to improve training speed, and prevent the influence of large attribute values

upon small attribute values, the original data has to be scaled to [1-1] interval.

Step 2: choosing kernel function and parameters

In this paper, we choose the RBF kernel function. ɛ-SVR regression using RBF kernel

needs to optimize three parameters: gamma parameter of the kernel function (in Libsvm

gamma=1/2σ
2
) and the loss function ‘c’ and ‘p’. The n-cross validation method is used to

find the optimal parameters. In n-cross validation [14-15], the training set is divided evenly

into subsets: ℓ1, ℓ2, . . . , ℓn. At first, take ℓ1 as test set, ℓ2, ℓ3, . . . ℓn as training set. , The

first group parameters are obtained,then take ℓ2 as test set, ℓ1, ℓ3, . . . ℓn as training set, get

the second group parameters;.; In this way get n groups of parameters, finally take the

final average values as the parameters of ɛ-SVR. Using this method can prevent the

occurrence of over fitting and enhance the generalization ability.

Step 3: Training and predicting

We use the obtained parameter values as training parameters to get the training model,

and finally input the training model as parameters to predict the power consumption

values.

The experiment has two groups: Group I and Group II, both including the training set

and the test set. In Group I, the training set includes 11 procedures, and the test set includes

7 procedures. Through n-cross validation, we got the best training parameters c=1024, g=0.

25, p=0. 0009765625. In Group II, the training set includes 8 procedures, and the test set

includes 6 procedures. Through cross validation, we got the best training parameters

c=1024, g=0. 0625, p=1. 0. The following 4 tables are the training sets and test set. Tables

1 and 2 are the training set and the test set of Group I. Table 3 and Table 4 are the training

set and the test set of Group II.

Table 1. The Training Set 1

SN LOC TC Rc Rp AC

1 330 5 3.19156 11.5 0.35

2 421 7 2.8995 13 0.21429

3 467 7 2.66201 9 0.19048

4 452 7 2.66201 9 0.19048

5 710 8 2.78312 10.5 0.15625

6 319 4 2.96598 8 0.5

7 510 8 2.89715 13 0.2

International Journal of Smart Home

Vol. 10, No. 3, (2016)

Copyright ⓒ 2016 SERSC 197

8 526 8 2.98312 10 0.25

9 641 9 3.09651 12 0.14815

10 1437 11 3.10221 18 0.24825

11 1902 14 2.71982 21 0.20217

Table 2. The Test Set 1

SN LOC TC Rc Rp AC

1 355 4 2.71982 6 0.41667

2 2027 22 4.00993 31 0.10451

3 301 6 2.27648 13 0.36111

4 468 6 2.71982 12 0.34012

5 1072 10 2.71044 21 0.24825

6 450 6 2.83525 12 0.23655

7 1100 11 2.79455 21 .0.36653

Table 3. The Training Set 2

SN LOC TC Rc Rp AC

1 82 3 2.04385 4 0.5

2 91 3 2.04385 4 0.5

3 284 4 2.96598 11 0.5

4 225 4 2.96598 8 0.5

5 172 4 2.71982 6 0.41667

6 149 4 2.71982 6 0.41667

7 440 5 3.2485 7 0.4

8 530 5 3.3455 7 0.4

Table 4. The Test Set 2

(SN ------ the serial number of procedures; LOC------ valid code lines;

 TC ------ the number of components; Rc------component interface complexity;

 Rp------the average path length; AC------ the average coupling.)

The following figures are the results(comparison between measured and predicted values:

SN LOC TC Rc Rp AC

1 197 5 2.27648 6 0.25

2 99 3 2.04385 4 0.5

3 212 5 3.19156 8 0.32

4 430 4 2.5785 7 0.4

5 450 5 2.6475 8 0.45

6 520 5 2.8435 8 0.5

International Journal of Smart Home

Vol. 10, No. 3, (2016)

198 Copyright ⓒ 2016 SERSC

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7

measured value
estimated value

(a) The Group I Results

0

200

400

600

800

1000

1 2 3 4 5 6

measured value
estimated value

(b) The Group II Results

Figure.5. Comparison between Measured and Predicted Values

From the above figures, in Group I, the maximum devi-ation between the estimated

values and the measured values is 17%, the minimum deviation is 4%. In Group II, the

maximum deviation between the estimated values and the measured values is 19%, and the

minimum deviation is 3%. The deviations are within the acceptable range. In summary,

1. Embedded software power consumption is significantly associated with software

architecture characteristics, and their correlation being nonlinear is reasonable.

2. All five characteristics are closely related with energy consumption, but their impacts

are different. Characteristics of valid code lines has the greatest impact among the five.

3. Using ɛ-SVR to fit and estimate the power consumption can effectively reflect the

nonlinear relationship between energy consumption and software structure characteristics,

and the small sample learning performance and generalization ability are preferable.

5. Conclusion and Future Work

This paper puts forward an energy consumption model of embedded software based on

an embedded software architecture characteristic and support vector machine regression.

The model reveals the nonlinear relationship between energy consumption and software

architecture characteristic. According to software engineering methods, we firstly extracted

and quantified five characteristics which are closely related to energy consumption, then

used a support vector machine regression method to determine and estimate energy

consumption. The experiments results are: the maximum deviation between the estimated

International Journal of Smart Home

Vol. 10, No. 3, (2016)

Copyright ⓒ 2016 SERSC 199

values and the measured values is 19%, and the minimum is 3%. The experiments proved

the rationality of this thesis and effectiveness of the estimating method.

In future work, quantitative research on the correlation coefficient between software

characteristics and energy consumption will be further researched. In addition, the

relationship between other software characteristic and energy consumption will be studied.

Acknowledgment

This work was supported in part by the State Key Program of National Natural Science

Foundation of China (No.61332001, 61272104 and 61073045).

References

[1] C. Wang and S. Zhu, “A design of FPGA-based system for image processing”, Review of Computer

Engineering Study, vol. 2, no. 1, (2015), pp. 25-30.

[2] G. B; Y. Shen and Z. L. Shao, “The redefinition and some discussion of green computing Chinese

Journal of Computers”, no. 12, (2009).

[3] J. Niu, C. Liu, Y. Gao and M. Qiu, “Energy Efficient Task Assignment with Guaranteed Probability

Satisfying Timing Constraints for Embedded Systems”, IEEE Transactions on Parallel and Distributed

Computing (TPDC), vol. 25, no. 8, (2014) August, pp. 2043-2052.

[4] M. Qiu and E. H. M. Sha, “Cost Minimization while Satisfying Hard/Soft Timing Constraints for

Heterogeneous Embedded Systems”, ACM Transactions on Design Automation of Electronic

Systems(TODAES), vol. 14, no. 2, Article 25, (2009), pp. 1-30.

[5] Y. Guo, Q. Zhuge, J. Hu, J. Yu, M. Qiu and E. H.M. Sha, “Optimal Data Placement and Duplication for

Embedded MultiCore Systems with Scratch Pad Memory”, IEEE Transactions on Computer Aided

Design of Integrated Circuits and Systems (TCAD), vol. 32, no. 6, (2013), pp. 809-817.

[6] T. T. Zhang, X. Wu, L. CD and D. Yw, “On energy-consumption analysis and evaluation for component

based embedded system with CSP”, Chinese Journal of Computers, in Chinese with English abstract,

vol. 32, no. 9, (2009), pp. 1-8.

[7] L. Q. Chen, Z. Q. Shao and G. S. Fan, “Energy consumption modeling and analysis for distributed

realtime and embedded systems”, Journal of East China University of Science and Technology, (Nature

Science Edition), (in Chinese with English abstract), vol. 35, no. 2, (2009), pp. 250-255.

[8] C. Y. Seo, S. Malek and N. Medvidovic, “Estimating the energy consumption in pervasive Java-based

systems In”, Proc of the 7th Working IEEE/IFIP Conf. on Software Architecture(WICSA 2008)

NewYork：IEEE Press, (2008), pp. 277-280.

[9] L. XiaoBin and G. Bin, “Embedded Software Energy Modeling Method at Architecture Level”, Journal

of Software, vol. 23, no. 2, (2012), pp. 230-239.

[10] X. M. Wang, “A model of measuring software structure complexity and its auto-realization”, Computer

Application, vol. 19, no. 6, (2009), pp. 16-19.

[11] T. Wang and H. Yan, “Research fire alarm system based on extension neural network”, Review of

Computer Engineering Study, vol. 2, no. 1, (2015), pp. 9-16.

[12] B. Scholkopf, A. Smola and R. Williamson, “New support vector algorithms”, Neural Computation, no.

12, (2000), pp. 1207-1245.

[13] B. Scholkopf, J. Platt and J. S. Taylor, “Estimating the support of a high dimensional distribution”,

Neural Computation, no. 13, (2001), pp. 1443-1471.

[14] O. Chapelle and V. Vapnik, “Choosing multiple parameters for support vector machines”, AT&T

Research Labs, vol. 46, no. 3, (2002), pp. 1-3.

[15] V Cherkassky and Y Ma, “Practical selection of VM parameters and noise estimation for SVM

regression”, Special Issue on SVM, vol. 24, no. 15, (2002), pp. 82.

International Journal of Smart Home

Vol. 10, No. 3, (2016)

200 Copyright ⓒ 2016 SERSC

