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Abstract 

As embedded devices prevail in daily life, high energy consumption caused by 

embedded software caught academic attentions. Multifarious testing and predicting 

methods are developed accordingly. This paper proposes a model about energy 

consumption of embedded device based on analysis of embedded software structure and 

support vector machine regression. The nonlinear relationship between energy 

consumption and software structure is revealed. The research finds software structure is 

determined by features like number of components, complexity of component interface, 

component coupling, and path length. These features are qualified and modeled by using 

support vector machine regression and energy consumption is predicted based on this 

model. The experiments results confirm the proposed model. 

 

1. Introduction 

Embedded technology is used in many fields, such as industrial control, image 

processing [1] and even those used in people’s daily life. The wide use of embedded 

devices raises issues of energy consumption. The annual power consumption of embedded 

devices has reached over l000 billion kw [2]. In embedded system design, energy 

consumption is also becoming a prominent consideration in the effort to prolong service 

time under the restriction of limited electricity. For example, in the literature [3-4], the 

author presents how to maximize real-time performance while consuming the least amount 

of energy. In the literature [5] the author utilizes an algorithm to reduce access time and 

energy consumption for scratch pad memories in embedded multicore systems.  
Measuring and estimating the energy consumption for an embedded system has become 

a key issue, and much progress has been made in this regard. In the literature [6], the 
author puts forward an energy consumption model based on the (communicating sequential 
process) (CSP) algebraic language. In the literature [7], the author utilizes a time delay 
Petri net, modeling with tasks, and analyzes the relationships between tasks, 
communication protocol, etc. In the literature [8], the author proposes an N-linear function 
relationship in analyzing the software architecture characteristics in an effort to minimize 
energy consumption, but the accuracy of this model is poor in practice, so it cannot meet 
practical requirements. In the literature [9], the author puts forward a fitting and predicting 
model by using BP neural, but the defects of this model are neural network over-fitting and 
low generalization ability. Research on embedded system energy consumption, mainly 
comprises three levels: instruction level, software architecture structure level, algorithm 
level. The instruction level is shown in Figure 1. 

Although analysis can only be done after the software is fully developed, estimating the 
energy consumption of embedded system is needed in the software design stage. Software 
architecture and algorithm level can provide energy analysis in the software design phase.  
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Figure 1. Energy Consumption Analysis Levels 

According to Hayes Roth's: software architecture is an abstract system specification, 

mainly including functional components, component interface and component connectors. 

As shown in Figure 2, components are encapsulations of a certain function, the connectors 

are the intermediary between components. Through interface, they interact with each other. 

 

 

Figure 2. Software Architecture 

In this paper, we consider software architecture structure elements as being closely 

related to energy consumption. Through experiments, we actually found that a few 

characteristics of the software system structure and the energy consumption have a 

particular internal relationship which cannot be simply regarded as a linear .or quadratic 

function. We extracted five characteristics which are closely associated with energy 

consumption, and used a support vector machine regression to fit and predict energy 

consumption and achieved favorable results. 

This paper proposes an energy consumption model based on embedded software 

architecture characteristics and support vector machine regression. Section 2 describes the 

quantifying of the software architecture characteristics. Section 3 describes the support 

vector machine regression. Section 4 shows the process of the experiment. Section 5 

concludes this paper. 

 

2. Quantifying with Software Engineering Methods 

Programs, (usually in c, c++, Java), are compiled into binary code, and hardware 

completes the corresponding actions, such as memory reading, writing and arithmetic logic 

operations, etc., so as to accomplish a certain function. In the process, hardware executes 

instructions and triggers the corresponding circuit causing energy consumption.  

According to the software architecture and the features of power consumption, this 

paper extracts five characteristics: valid code lines, number of components, complexity of 

component interface, component coupling, and path length. These characteristics can 

reflect how software driven hardware causes power consumption.  

algorithm level 

architecture structure level 

instruction level 
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Definition 1: Embedded software power consumption equals the average power 

consumption multiplied by software running time, expressed as:  


2

1

t

t

PdtE                                                                                                              (1) 

E represents the total energy consumption, and t represents the running time. For 

accuracy, we test software energy consumption multible times and calculate the average as 

total energy consumption.  

Definition 2: The average power consumption of embedded software is a nonlinear 

function of software structure characteristic (linear as a special category of nonlinear 

function). , expressed as:  

P = f(C) = f (C1,C2,... Cn)                                       (2) 

P represents the average power consumption;f represents a nonlinear function of 

embedded software characteristics;symbols C1, C2, . . . Cn represent software architecture 

characteristics.  

 

2.1. Valid Code Lines Quantifying 

Valid code lines are in the first consideration because it has a close relationship with the 

elements behind it. We divide program code into the categories of valid and invalid code. 

The main distinction is if there is a contribution to energy consumption. 

Valid code is the code which can generate binary instructions by compilation. It mostly 

includes variable calculation, variable assignment, initialization functions, function calls, 

etc. In a fixed platform, each binary code has a fixed energy consumption value. And in a 

fixed compiler platform and environment, the generated binary code amount is also fixed. 

Therefore valid code lines affect energy consumption greatly. When calculating the valid 

code lines of a program, we consider the following situations: 

 

a. for loop structure, unroll into basic assignment, computing statements are considered; 

b.  b. for virtual functions, only valid code lines of child class are considered;  

c. for branch structure, according to the actual situations, the probability of each branch is 

set, multiplied by valid code lines of each branch, and the sum to count is calculated; 

d. for child class, the public valid code lines of the parent class to count is added.  

 

2.2. Number of Components  

Components are an encapsulation of software modules accomplishing independent 

functions. The component number reflects the number of modules and valid code lines. So 

the number of components indirectly affects energy consumption. The software component 

number can be obtained by the design of the software architecture. 

 

2.3. Average Complexity of Components Interface Quantifying 

Through interface, components communication and accomplishing control and data 

flow interactions, component interface is divided into input interface and output interface. 

A larger interface number implies a greater chance of invocations of components. So 

component interface complexity has an indirect effect on energy consumption. According 

to the literature [10], the component j input interface complexity is expressed as the 

following formula: 







q

i

LiLj

j emI

1

|1
|

                                                                                                                        (3) 

The component j output interface complexity is:  
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The output and input interface complexity is: 

3
jjj OIA                                                                                                                                 (5) 

So the average complexity of components interface can be expressed as: 






m

j

jC A
m

R

1

1

                                                                                                                                (6) 

  (m---- software components quantity ;         Ij ----- the input interface complexity; 

  q -----the total number of input interface ;  Lj------ the layer depth of component j; 

  Li ------- the layer depth of component i.)  

 

2.4. Path Length Quantifying 

The number of components involved in running can be regarded as path length, 

therefore a longer path means more components involved in running. So path length has an 

indirect effect on energy consumption. Path length metrics has two types: single metrics 

and multiple-branches metrics. Sequential structure and cycle structure can be regarded as 

single metrics, and selective structure can be regarded as multiple-branch metrics. For 

single path, we can directly count the number of components as path length. As shown in 

Figure 3 (a), we can count five components for length path. For multiple-branches, firstly 

we multiply the component’s number by the running probability of the branch, and 

secondly calculate the sum of all branches and take the sum as the path length. As shown 

in Figure 3 (b), if the path a-b-c probability is 30% and the a-b-d-e probability is 70%, we 

can get 3*30%+4*70%=3. 7 as the path length. 

 

                               
(a)                                                                         (b) 

Figure 3. Path Length 

2.5. Components Coupling Quantifying 

Components coupling is the metric of correlation degree between modules. It includes 

control relationship, called relationship, and data transfer. The coupling strength depends 

on the component interface complexity. There are many mature methods of measuring 

coupling in software engineering, such as CK Metrics Suite and MOOD Metrics. This 

paper uses MOOD metrics. The average component coupling formula can be expressed as:  
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                                                                            (7) 

Tc represents the total number of components. 

),(_
ji

CCcouplinghas
= 1   Ci and Cj coupling   

                                                               (8) 
= 0   Ci and Cj no  coupling 
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3. Support Vector Machine Regression Prediction 

Support vector machine is a pattern recognition and regression method based on 

statistical learning theory. It can successfully solve small samples, nonlinear and high 

dimensional pattern recognition problems. 

Compared with artificial neural network and its applications [11], support vector 

machine is based on the principle of structural risk minimization, and its optimization goal 

includes two indicators: empirical risk and confidence risk. The neural network method is 

only based on empirical risk minimization, however empirical risk minimum is not equal 

to the actual risk being minimum. So the generalization ability and the small samples 

learning of the support vector machine are better than those of the neural network.  

The support vector machine is used for classification and regression (SVR). For SVR, 

given a training set, the elements have an unknown distribution p (x, y):  

X = { ),)...(,(),,(
,2,211 nn

yxyxyx } with RyRx
i

n

i
 , ,and the function  

}:|{ RRffF
n
                                         (9) 

The basic regression problem is to minimize the function 

)},()),((({][ yxdPxxfycfR   .                                     (10) 

In the above function, c is the loss function, and indicates how to penalize the errors 

between y and f (x).  

Support vector machine regression (SVR) includes nu-SVR and ɛ-SVR [12, 13]. Their 

main difference is that the parameter nu is used in nu-SVR to control the number of 

support vectors, while the parameter epsilon is used in ɛ-SVR. In this paper we use ɛ-SVR. 

ɛ-SVR regression in trying to solve the following constrained quadratic programming 

problem:                       
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Kernel functions are used in ɛ-SVR to map linear inseparable set in a low dimensional 

space to a higher dimensional space to separate through dot product operation.Kernel 

functions include: 

linear kernel : j
i

j
i

xxxxk ),( ;                                                                                       (12) 

polynomial kernel: 
d

iji j
xxxxk )1)((),(                                                           (13) 

Radial Basis kernel : )
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sigmod kernel: )),(tanh(),( 
j

xxkxxk
i

i                                                                  (15) 

 

Among them, the radial basis function (RBF) is widely used because compared with the 

other kernel functions, it has the following advantages:  

a. the kernel function can map samples to a higher dimensional space; 

b. linear kernel function is a special case of RBF; 

c. compared with polynomial kernel function, the RBF requires fewer parameters.  

In this paper, we choose RBF kernel function.  

s.t

.. 
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4. Experimental Results 

In the experiment, we used HMSim and Libsvm. HMSim as a high precision 

instruction-level power consumption simulation platform, and simulated the single-core 

processor ARM7 instructions set. It supports Embedded Linux and UC/OSII operating 

system applications. We tested a program power consumption three times on the HMSim, 

and calculated the average as the program power consumption. We compared the test 

values with the predicted values of the programs and drew conclusions. All these 

procedures include Mp3 decoding, bubble sort, maze problem programs, etc. The 

experiments use Libsvm as ɛ-SVR regression tools. Libsvm is a simple and efficient SVM 

pattern recognition and regression software package. Using Libsvm for regression, there 

are three main steps: data normalization, parameter selection, training and prediction. , The 

selection of the parameters is critical, as it is directly related to the accuracy of prediction. 

The main process is as follows:  

Step 1: data preprocessing and normalization 

In order to improve training speed, and prevent the influence of large attribute values 

upon small attribute values, the original data has to be scaled to [1-1] interval.  

Step 2: choosing kernel function and parameters 

In this paper, we choose the RBF kernel function. ɛ-SVR regression using RBF kernel 

needs to optimize three parameters: gamma parameter of the kernel function (in Libsvm 

gamma=1/2σ
2
) and the loss function ‘c’ and ‘p’. The n-cross validation method is used to 

find the optimal parameters. In n-cross validation [14-15], the training set is divided evenly 

into subsets: ℓ1, ℓ2, . . . , ℓn. At first, take ℓ1 as test set, ℓ2, ℓ3, . . . ℓn as training set. , The 

first group parameters are obtained,then take ℓ2 as test set, ℓ1, ℓ3, . . . ℓn as training set, get 

the second group parameters;. . . . .;  In this way get n groups of parameters, finally take the 

final average values as the parameters of ɛ-SVR. Using this method can prevent the 

occurrence of over fitting and enhance the generalization ability.   

Step 3: Training and predicting  

We use the obtained parameter values as training parameters to get the training model, 

and finally input the training model as parameters to predict the power consumption 

values.  

The experiment has two groups: Group I and Group II, both including the training set 

and the test set. In Group I, the training set includes 11 procedures, and the test set includes 

7 procedures. Through n-cross validation, we got the best training parameters c=1024, g=0. 

25, p=0. 0009765625. In Group II, the training set includes 8 procedures, and the test set 

includes 6 procedures. Through cross validation, we got the best training parameters 

c=1024, g=0. 0625, p=1. 0. The following 4 tables are the training sets and test set. Tables 

1 and 2 are the training set and the test set of Group I. Table 3 and Table 4 are the training 

set and the test set of Group II. 

Table 1. The Training Set 1 

SN LOC TC Rc Rp AC 

1 330 5 3.19156 11.5 0.35 

2 421 7 2.8995 13 0.21429 

3 467 7 2.66201 9 0.19048 

4 452 7 2.66201 9 0.19048 

5 710 8 2.78312 10.5 0.15625 

6 319 4 2.96598 8 0.5 

7 510 8 2.89715 13 0.2 
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8 526 8 2.98312 10 0.25 

9 641 9 3.09651 12 0.14815 

10 1437 11 3.10221 18 0.24825 

11 1902 14 2.71982 21 0.20217 

Table 2. The Test Set 1 

SN LOC TC Rc Rp AC 

1 355 4 2.71982 6 0.41667 

2 2027 22 4.00993 31 0.10451 

3 301 6 2.27648 13 0.36111 

4 468 6 2.71982 12 0.34012 

5 1072 10 2.71044 21 0.24825 

6 450 6 2.83525 12 0.23655 

7 1100 11 2.79455 21 .0.36653 

Table 3. The Training Set 2 

SN LOC TC Rc Rp AC 

1 82 3 2.04385 4 0.5 

2 91 3 2.04385 4 0.5 

3 284 4 2.96598 11 0.5 

4 225 4 2.96598 8 0.5 

5 172 4 2.71982 6 0.41667 

6 149 4 2.71982 6 0.41667 

7 440 5 3.2485 7 0.4 

8 530 5 3.3455 7 0.4 

Table 4. The Test Set 2 

 

(SN ------ the serial number of procedures;                  LOC------ valid code lines; 

        TC ------ the number of components;      Rc------component interface complexity;     

        Rp------the average path length;                              AC------ the average coupling. ) 

 

The following figures are the results(comparison between measured and predicted values:        
      

SN LOC TC Rc Rp AC 

1 197 5 2.27648 6 0.25 

2 99 3 2.04385 4 0.5 

3 212 5 3.19156 8 0.32 

4 430 4 2.5785 7 0.4 

5 450 5 2.6475 8 0.45 

6 520 5 2.8435 8 0.5 
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(a) The Group I Results 
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(b) The Group II Results 

Figure.5. Comparison between Measured and Predicted Values 

From the above figures, in Group I, the maximum devi-ation between the estimated 

values and the measured values is 17%, the minimum deviation is 4%. In Group II, the 

maximum deviation between the estimated values and the measured values is 19%, and the 

minimum deviation is 3%. The deviations are within the acceptable range. In summary, 

1. Embedded software power consumption is significantly associated with software 

architecture characteristics, and their correlation being nonlinear is reasonable. 

2. All five characteristics are closely related with energy consumption, but their impacts 

are different. Characteristics of valid code lines has the greatest impact among the five.  

3. Using ɛ-SVR to fit and estimate the power consumption can effectively reflect the 

nonlinear relationship between energy consumption and software structure characteristics, 

and the small sample learning performance and generalization ability are preferable.  

 

5. Conclusion and Future Work 

This paper puts forward an energy consumption model of embedded software based on 

an embedded software architecture characteristic and support vector machine regression. 

The model reveals the nonlinear relationship between energy consumption and software 

architecture characteristic. According to software engineering methods, we firstly extracted 

and quantified five characteristics which are closely related to energy consumption, then 

used a support vector machine regression method to determine and estimate energy 

consumption. The experiments results are: the maximum deviation between the estimated 
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values and the measured values is 19%, and the minimum is 3%. The experiments proved 

the rationality of this thesis and effectiveness of the estimating method. 

In future work, quantitative research on the correlation coefficient between software 

characteristics and energy consumption will be further researched. In addition, the 

relationship between other software characteristic and energy consumption will be studied. 
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