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Abstract 

A new data-mining approach based on power curve profiles is put forward to monitor 

the power generation performance of wind turbines in this paper. Through assessing the 

wind-speed power datasets, the weakened power generation performance of turbines 

could be identified effectively by this approach. Shapes of power curve profiles over 

consecutive time intervals are constructed by fitting power curve models into wind-speed 

power datasets. In this research, we designed the Auto-adapt Optimal Interclass Variance 

algorithm, optimal constraint in each wind-speed power sub-dataset is explored for 

governing the data-driven method based on distance-based outlier detection and variance 

analysis model. The AOIV algorithm achieves the self-optimization of the threshold 

parameter and reaches a high degree of robustness to variations in wind-power 

generation performance monitoring. The blind industrial researches are conducted to 

validate the effectiveness of this approach, also indicates the decrease of error rates while 

detecting weakened power generation performance and the improvement of turbines’ 

power output. 
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1. Introduction

 

Wind energy is a clean, efficient and renewable natural energy, which is 

considered to be one of the most potential energy sources in the world . And all over 

the world, many countries pay attention to it[1]. Wind power generation is a high 

efficiency, zero pollution transfer mode from wind energy to electricity,  the 

application of wind power can promote the development and utilization of 

renewable energy. The wind turbine with great power generation performance, as 

the direct participants of wind power, is to ensure the stable development of wind 

power generation enterprises as well as planning management decision.  

The power generation performance characteristics of wind turbines are by the 

response curve of output power. According to the definition of IEC61400-12-1, the 

power curve of wind turbine is the relationship curve of the output power of the 

generator with the average wind speed of 10 minutes, and which is an important 

indicator to measure the power generation performance of the wind turbine[2-4]. It 

not only reflects the performance of the wind turbine is in accord with the design of 

the product, but also embodies the characteristics of wind turbine actual 
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operation[5].However, the power curve of wind turbine is often influenced by air 

density, system control, ambient temperature and so on. The original wind-speed 

power data collected by SCADA system often contains a variety of abnormal 

data[6-11]. 

The traditional data-mining methods which detect weakened power generation 

performance through building model training of historical datasets with certain ratio 

generally have inevitable prediction error, so the identification of the poor power 

generation performance of turbines is not accurately for the real-time data. Kusiak 

et al. [12] introduced non-parametric methods for modeling the wind power curve 

from industrial data and analyzed model fitting residuals to detect anomalies. 

Ustuntas [13]applied cluster center fuzzy logic modeling for power curve 

estimation. Kusiak and Li [14] investigated fault diagnosis through analyzing 

patterns of power curve fitting residuals. The philosophy of studies is to develop 

statistical boundaries for detecting outliers based on a derived reference power 

curve. Qiu et al. [15] and Feng et al. [16] presented physics-based data analysis 

methods for detecting anomalies of wind turbine assemblies and performing 

diagnosis with SCADA data. Besides, K-NN clustering and least square fitting 

method are usual used in the analysis of the power curve of wind turbine. But the 

process above mentioned methods is more complicated and not well be applied to 

the poor unit generation performance.  

In this paper, a data mining approach is proposed to assess the wind power 

generation performance through analyzing the variation of wind power curves rather 

than individual data points. The power curve data of a wind turbine is partitioned 

into sub-datasets based on consecutive equal time intervals and each sub-dataset 

provides a power curve of the wind turbine over the time interval. And the outlier-

detection approach and variance analysis model are used better to realize the self-

optimization of the variance threshold parameter of each sub-dataset in the Auto-

adapt Optimal Interclass Variance(AOIV) algorithm. The AOIV algorithm is 

effective applied to evaluate the performance of turbines with data in wind power 

company. The effectiveness of the proposed approach is demonstrated through some 

blind industrial studies. It can enhance the operation stability of the wind turbine 

and improve economic benefits of wind power enterprise. 

 

2. General Power Curve Properties 

 
2.1. Wind Energy and Power Curve 

Wind power refers to the kinetic energy of wind. The wind turbine is capable of 

absorbing the wind energy through blades, then converting it into rotating 

machinery to drive the generator to generate electricity, so as to realize the 

conversion of the energy[16]. When the wind speed through the impeller is V , the 

theory wind energy on the blade at the time of the unit is E : 

 
3

00.5E AV                                                                                                            

(1) 

 

Where E  is the theoretical wind energy; 0  is the reference air density; A  is the 

swept area of the blade; V  is the wind speed; 

Due to the restriction of aerodynamic characteristics, wind turbine blades can 

only absorb part of the wind energy[17]. According to Baez theory, the maximum 

power of the blade can be obtained from the wind energy is maxP in the ideal 

condition: 
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3

max 08 / 27P AV                                                                                                      

(2) 

 

Thus, the theoretical maximum efficiency of the wind turbine generator is pC : 

 
3

max max 0/ 2 / 0.593pC P E P AV                                                                               

(3) 

 

pC  also known as theoretical wind energy utilization coefficient, the ideal blade 

can only absorb a portion of its energy from the natural wind, and other non 

absorption parts can be interpreted as the rotational kinetic energy left in the wake 

flow. Power curve of wind turbine under the ideal operation state shown in Figure 1.  
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Figure 1. Ideal Power Curve  

2.2.  Betz Theory and Power Curve 

For the actual wind turbine, the blade structure of the wind turbine is not satisfied 

with the ideal conditions, and the transmission system and the generator and other 

energy conversion links are lost. So the actual wind energy utilization coefficient is 

lower than the theoretical wind energy, that is 0.593PC  [18].The useful power 

output of wind turbine actually obtained can be expressed as formula (4): 

 
3

00.5 PP AV C                                                                                                           

(4) 

 

The relationship of wind energy utilization coefficient pC and pitch angle   and 

tip speed ratio   is in (5): 
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(5) 

 

Where the  is the tip speed ratio, and the  is the pitch angle of wind turbine, 

1 0.5176c  , 2 116c  , 3 0.4c  , 4 5c  , 5 21c  , 6 0.0068c  ; The change curves pC  for 

0   is shown in Figure 2. 
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Figure 2. Changing Curve of pC  

3. Data-Mining Based on Power Curve 

 
3.1.  Data Preprocessing 

Before mining the power curve profiles, the data are preprocessed according to 

the methodology used in wind power generation enterprise of China. That 

encompasses the three following steps: 1) validity check, 2) data range check, and 

3) missing data processing. Moreover, these anomalies should be removed to make a 

separate analysis if necessary. Actually, the simplified rules as follows are often 

used when taking into account time and high-efficiency.  

a)wind speed < cut-in speed—the cut-in speed is the wind speed value at which 

the turbine starts operating; pitch angle about 90
o
. 

b)wind speed between cut-in speed and cut-out speed—power output zero or 

negative. 

c)wind speed > cut-out speed—the cut-out speed is the wind speed value at which 

the turbine stop generating available power; pitch angle about 90
o
. 

The data satisfied above rules should be removed. The preprocessing result of 

sample turbine is shown in Figure 3. 



International Journal of Smart Home  

Vol. 10, No. 2, (2016) 

 

 

Copyright ⓒ 2016 SERSC  141 

0 5 10 15 20 25

0

500

1000

1500

2000

Wind speed(m/s)

P
o
w

e
r(

k
W

)

 

 

Pre-anomaly 1

Pre-anomaly 2

Pre-anomaly 3

Pre-normal

 

Figure 3. Power Curve Preprocessing  

3.2.  Data-Mining with AOIV Algorithm 

Data mining with the AOIV algorithm is the core of detecting anomalies based on 

power curve in wind turbine power generation performance monitoring.  

(1) OIV Algorithm 
The optimal interclass variance(OIV) algorithm based on the power curve is a 

simple and efficient data-mining method for the power curve analysis of wind 

turbines, and which detects anomalies by combined with the initial variance 

threshold. The specific cleaning process of the algorithm is as follows.  

Given a sample dataset of turbines 1 1 2 2{( , ), ( , ),..., ( , )}n nU x y x y x y ,and satisfy 

1i iy y  , (2, )i n , x  represents wind speed, y  is expressed as power, and n  is the 

total number of sample points. The profile for depicting the characteristic of the 

power curve contained in U is   if and only if   satisfies (6). 
 

2

2 1

1
arg max{ ( * ( ) ) }

n

j

j

y y S






 

                                                                                              

(6) 

 

Where jy  is the jth  power value; y  is the average of first   power value;   is 

constant; S  is initial threshold. 

Let t  index U , 1, 2,...,t W ,a set of power curve profiles,   can be obtained 

through (6). W  is the total number of sub-datasets, and the interval of wind speed is 

0.5m/s by default. Particularly the downtime data points are not considered here. In 

certain sub-dataset, the abnormal data can be successfully detected by obtained   

that only if satisfies (7) and (8). 
  

( ) {( , ) | ( , ) ( ),1 }n i i i iU t x y x y U t i                                                                                (7) 

( ) {( , ) | ( , ) ( ), ( , ) ( )}l i i i i i i nU t x y x y U t x y U t                                                                          (8) 

 

Where the ( )nU t  represents the normal data in the sub-dataset; ( )lU t  represents the 

abnormal data in the sub-dataset. 
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At last, the data processing results of power curve of each sub-dataset are 

classified and sorted, the normal and the abnormal data sets are obtained in (9) and 

(10). 

 
{ (1), (2),..., ( )}n n n nV U U U W                                                                                               (9) 

{ (1), (2),..., ( )}l l l lV U U U W                                                                                                  (10) 

 

Where the nV  is the power curve data for power generation performance normally. 

lV  is the power curve data for the lower power generation performance.   

OIV algorithm block diagram is as follows. 
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Figure 4. Block Diagram of OIV Algorithm 

(2) AOIV Algorithm 
The auto-adapt optimal interclass variance(AOIV) algorithm is proposed to 

enhance the accuracy with the combination of the outlier detection and the 

optimization of the variance threshold in this research. 

A. The Detection of Outliers 

The outlier detection approach based on the distance is effective to detect power 

curves with different curvature. And the detected outlier should be removed and 

belongs to the category of the abnormal dataset. ( , )i i iu x y represent a data point in 

the sample set U , The distance between two points is defined: 
 

1/

1 1 1( , ) (| | | | )k k k

k i i i i i id u u x x y y                                                                                    (11) 

 

If k=1, then 
 

1 1 1 1( , ) | | | |i i i i i id u u x x y y                                                                                               (12) 

 

At this time ,the distance is the absolute value distance. 

If k=2,then 
 

2 2 1/2

2 1 1 1( , ) (| | | | )i i i i i id u u x x y y                                                                                     (13) 

 

At this time, the distance is the Euclidean distance. 

Definition 3.1 For any point ( , )i i iu x y  in U , given a relative small positive 

number  , if any point ( , )i i iu x y  in data set U  satisfy with condition: 1( , )k i id u u   , 

so 1iu   is the  -proximal point of iu , and the set of all  -proximal points is  -

neighborhood of iu . 

Definition 3.2 For any point ( , )i i iu x y  in U , given a relative small positive 

number  ,select an empirical critical value 0N . Assume that the number of  -

neighborhood of iu  is iN ，if 0iN N ,The point iu  is called an isolated point of U . 

B. The Optimization of Variance Threshold 
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The improved model of variance analysis is effective to achieve the optimal 

variance threshold for each sub-dataset. Given a set of sliding variance samples is 

1 2{ , ,.., }kZ z z z , k represents the total number of sample points. To define the value 

range of S is 1 2[ , ]s s , and satisfy with S N . The default value is 1 21, 500s s  . The 

sample set Z  is divided into two groups by selecting different values of S  in turn, 

and the following calculation is performed if and only if there are two groups of 

data, otherwise should be ignored and reselect the S value. Assume that the two 

groups of data in an specific S  are 1 1 2{ , ,.., }Z z z z  and 2 1{ , ,.., }kZ z z z  , and the 

internal error and external error between 1Z  and 2Z  is calculated in (14) and (15). 

 
2 2

1 2

1 1

( ) ( )
k

j j

j j

z Z z Z





  

                                                                                            (14) 

2 2
1 2( ) * ( ) *( )Z Z Z Z k                                                                                         (15) 

 

Where   presents external error;   presents internal error; z  presents sliding 

variance; 1Z  presents the mean value of data set 1Z ; 2Z  presents the mean value of 

data set 2Z ; Z  presents the mean value of the sliding variance sample Z ; The value 

S  is the optimal variance threshold for the sub-dataset when only satisfy with 

formula (16). 
 

2

1

arg max( / )
s

S S

S s

S  


                                                                                                  (16) 

 

In order to avoid the effect of the algorithm on the data distribution in the normal 

operation mode of the wind turbine., S  usually need to join a certain threshold 

supplementary quantity   which not less than minimum variance values of normal 

running mode of wind turbine.  
 

'S S                                                                                                                           (17) 

 

Where 'S presents  the variance threshold after the update; 

The principle diagram of the auto-adapt optimal interclass variance(AOIV) 

algorithm is as follows: 
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Figure 5. Block Diagram of AOIV Algorithm 

4. Industrial Studies   

 
4.1.  Data Preprocessing 

In order to verify the effectiveness of the approach and the application of the 

power generation performance monitoring, this paper investigates the 10-min 
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SCADA data of 33 wind turbines collected from May 31, 2013 to May 8, 2013 in a 

100MW Class wind farm in China. The collected data contained values of wind 

turbine performance parameters, wind conditions, as well  as the fault logs. And the 

basic parameters of the turbine are shown in table 1. 

Table 1. Wind Turbine Parameter Table 

Turbine Parameter Value 

Rated power /kw 1500 

Power adjustment mode Variable pitch, variable speed 

Impeller diameter /m 70 

Hub height /m 68 

Cut-in wind speed (m.s-1) 2 

Rated wind speed(m.s-1) 12 

Cut-out wind speed (m.s-1) 25 

Maximum wind speed (m.s-1) 60 

 

4.2.  Contrastive Analysis between Algorithms 

To compare the data-mining effect between two algorithms in chapter 3, this 

section presents some industrial studies based on turbines’ 10-min SCADA data 

which collected randomly from a wind farm in China.  

Two kinds of different variance thresholds are selected to inspect the OIV 

algorithm. Meanwhile, the threshold supplementary quantity value in the AOIV 

algorithm is 30 that usually determined by turbine’s type. The results are shown in 

figure 6 and figure 7. 
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Figure 6. Processed Power Curve with OIV Algorithm  

As shown in Figure 6, (a) express the processed results of the OIV algorithm with 

the variance threshold of 50, (b) express the processed results of the OIV algorithm 

with the variance threshold of 85. From the above results we can see ,in the wind 

speed range of 6-8m/s, the existence of outlier greatly reduce the data-mining 

accuracy of OIV algorithm. While the increase of the variance threshold value, this 

impact has a varying degree of reduction. But the data-mining effect of the whole 

unit is poorer. This is due to the threshold values in each wind speed range is 

different. 
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Figure 7. Processed Power Curve with AOIV Algorithm  

Figure 7 shows the processed results of the same turbine with AOIV algorithm. 

The algorithm has added to the processing module of isolated points, which can 

avoid the impact of the data mining process; Meanwhile, variance analysis model is 

subtly used to realize the tracking and optimization of the threshold each wind-

speed interval, and the generality of the algorithm is enhanced. The comparison is 

shown in table 2. ND is the amount of detected normal-data, LD is the amount of 
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detected limited-power data. HD is the amount of detected halt-data. EDoN is the 

amount of error detection in ND. EDoL is the amount of error detection in LD. 

EDoH is the amount of error detection in HD. 

Table 2. Contrastive Analysis Table 

Parameter  Artificial OIV(S=50) OIV(S=85) AOIV 

ND 1341 1105 1282 1370 

LD 426 662 485 397 

HD 938 938 938 938 

EDoN 0 32 196 30 

EDoL 0 268 255 12 

EDoH 0 0 0 0 

 

Table 2 shows the data-mining results among the artificial statistics results, OIV 

algorithm and AOIV algorithm. Both of normal data and limit data have different 

degrees of error detection with OIV algorithm, and the variance threshold value is 

negatively correlated with the amount of the detected limit -data and positively 

correlated with the detected normal-data. After improving the algorithm, data 

processing results has a lower error rate. In fact, the impact of these error -detected 

data is very small and can be neglected. In addition, the method of detecting halt -

data above three data-mining algorithm are same law in chapter 3.1 so that the 

amount of error detected halt-data is zero. In short, the AOIV algorithm based on 

power curve has more general and higher accuracy. 

 

4.3.  Performance Monitoring of Turbines 

 

4.3.1. The Data-Mining with AOIV Algorithm  

Taking into account the number of test turbines, here is only given some 

representative turbines selected  from 33 turbines. As shown in figure 8, (a) is the 

power curve of turbine 15081504. (b) is the power curve of turbine 15081505. (c) is 

the power curve of turbine 15081506. (d) is the power curve of turbine 15081507. 
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(d) 

Figure 8. Processed Power Curve with AOIV Algorithm 

From Figure 8 it can be seen that this approach can effectively detect the various 

power curve profile. Among them, the turbines 15081505 and 15081507 processing 

results are better; Turbine 15081504 has some abnormal points which are not 

detected in the low wind speed zone, this is likely due to be affected by air density, 
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but the impact on the assessment and analysis of the power generation performance 

of turbines is very small; Turbine 15081505, 15081506 and 15081507 has been 

partially detected in the rated wind speed zone, which is due to the amount of data is 

too small to be mistaken for an isolated point, it can be neglected. According to the 

above, this approach algorithm has better versatility and accuracy. 

 

4.3.2. The Analysis of Detected Faults 

Through the analysis of data-mining results, it is easy to find that there are a large 

number of scattered points that represent the poor power generation performance. 

Certainly this method successfully identified the anomalies of turbines, which 

should be carried out relevant maintenance or technical innovation. If these 

abnormal profiles are analyzed deeply by the professional, the root cause of poor 

power generation performance of turbines will be found.  

The patterns of irregular profiles in processed turbines can be briefly categorized 

to three main situations. Taking turbine 15081515,15081516 and 15081517 for 

example to describe the detailed analysis procedure in Figure 9 - 11. 
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Figure 9. Abnormal Data 

In Figure 9, the turbine 15081515 does not generate power normally so that 

power curves display abnormal curvatures. Actually, this is because of the pitch 

faults which usually seriously affect power generation performance of turbines. 
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Figure 10. Abnormal Data 
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The power curve of turbine 15081516 in figure 10 is abnormal apparently. There 

are two faults in this turbine. One is the pitch faults and another is the human 

factors  which schematically reduce the power generation for making full use of 

electricity in different regions.  
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Figure 11. Abnormal Data 

In Figure 11, the abnormal scattered points is usually due to the high temperature 

caused by cooling system failures in the gearbox, and it is difficult to produce a 

ideal power curve with adjusting control system. For such a situation, it is necessary 

to maintain the cooling system of the wind turbine. 

In short, the power generation performance could be monitored with the AOIV 

algorithm. 

 

5. Conclusion   

In this paper, we proposed a data-mining method to identify impaired power 

generation performance by analyzing the curvature and shape of the wind power 

curve. The outlier detection based-on distance were applied to eliminate the impact 

of isolated points in the power curve analysis, while the variance analysis model 

realize the self-adaptive threshold to enhance the accuracy rating of data-mining. 

Compared to other methods, this way could more accurately and fleetly detect the 

anomalies of turbines just by analyzing power curve without complex sample 

training. It can also process the real time data for online monitoring and identify the 

weakened performance of generating unit. 

Some industrial studies were conducted to prove the effectiveness and accuracy 

of the algorithm. We have mined the power curve of 33 sets of wind turbines, and 

the great data results are obtained. The future research will investigate an intelligent 

method to identify the fault type and the root cause with poor performance of 

turbines. In addition, the relationship between wind power and multiple parameters 

will be considered in the data mining.  
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