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Abstract @

In this paper, a Price learning based Load Dlst trat ( ) is proposed at
first. In PLDS model, Smart Power Service, Util mpany%mstory Load Curves

are included, and by considering both the av ge electrlc comsumption cost and the
average electricity consumption habit, we p a co t|m|zat|on model to solve
the model. In order to accelerate the c nce of P D a price learning mechanism
is proposed, which learns a price cur rd| hlstory price data, and predicts
price as a learned price for the next er g%:«mlzatmn cycle of PLDS is one day
or 24 hours, and in order to fugt prov shaving performance, an extended
version of PLDS named Pbﬁ ce lea @based Load Redistribution Strategy) is
proposed, whose optimization cycle | hour. The optimization models of PLDS
and PLRS are the same, the dlffe s between them are the optimization cycle and
the constraint concht he Si n we compared the convergence performance,
peaking shavm ance I cost among PLDS, PLRS and other strategy ODC
in reference [1 we fou at‘the convergence performances of PLDS and PLRS
are both b‘ C. The peak shaving performance of PLRS is better than
that of OD e lon nd the total cost of PLRS is very close to that of ODC.

Keywords: Pri @hing, Electricity Consumption Habit, Load Distribution Strategy,
Convex Optimi@‘Model

1. Intr ion

I grid, Demand Response Management (DRM) plays an important role for both

y companies and electricity users. For the utility companies, DRM reduces the

r at the peak hour, and increases the power at the valley hour in general, which

ensures small fluctuations for the generation capacity. For the customers (electricity

users), generally DRM increases the electricity price at the peak hour and reduces the

electricity price at the valley hour, which shifts the elastic load from the peak hour to the
valley hour, which results into the cost reduction.

The DRM mainly has two types: Incentive Based Programs (IBP) and Price Based
Programs (PBP) [1-2]. In IBP, the capacity and load are managed by the utility companies,
which will increase the capacity or reduce the load actively to balance the capacity and
load. Besides, the load demands or capacities can be sold on the market, and the utility
companies buy the demand load or capacities for its co-ordination of supply and demand.
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Although IBP performs well in coordinating the demand and supply, it rarely considers
the electricity users’ benefits, which are an important consideration in the PBP.

In PBP, the electricity price is not fixed all the time, and by adjusting price the
electricity users are guided to use high-power equipment at the low price periods, and
consume less electricity at the high price periods. The electricity users can save a lot of
cost when the electricity price is varying. The main programs are [3]: Time of Use (TOU),
Critical Peak Pricing (CPP), Extreme Day CPP (ED-CPP), Extreme Day Pricing (EDP)
and Real Time Pricing (RTP), etc. Recent years, many research works have used the
dynamic pricing mechanism as an effective way to schedule the demand load. The
electricity price is the tie that links the utility company and electricity users. In general,
every DRM program has two participation sides, and each participation side has its own
utility function and cost function, based on which the DRM program model is built. The
objective functions are various.

I. Koutsopoulos et. al., in [4] have proposed a stochastic model and two online (mdo
scheduling programs for the minimizing the long-term average power grid ogetatiesfal
cost. The two programs are Threshold Postponement (TP) and Controlled e??ﬁR),
and a queue model is adopted. The two programs can save the operation st’effectively,
but the cost of electricity users is not considered. In [5], Z&‘g’et. aldp da DRM

n

program for the HVAC (heating ventilation and air-copditi g) loa eduling. The
> power d. Based on an
extended Lyapunov optimization approach, &

control objective is to reduce the variation of nonrgneyve
@ rol a W is proposed to
approximately solve the DRM model. In [6], S ohsenian*Rad et. al., proposed a

game theory based energy consumption <€chedulinge sttategy. The global optimal
performance in terms of minimizing the.er@ osts is achigVed at the Nash equilibrium
of the formulated energy consumptio aqe lin The simulation results showed
that the approach can reduce the p %aver of the total energy demand, the
total energy costs and each user’ charges. 7], B. Liu et. al., presented a home
energy management schedu@;&l ithm, bﬁ on market DR program and household
comfort constraints. The com constrai \ the controlled temperature in the house
staying in a suitable r to mee man body's requirement. This work only
considers the TOU’pr' i nd thege iSwi0 interaction between the system operator and
the electricity use ,P. Ya . al., propose a game-theoretic approach to optimize
TOU pricing str (GT-T@U r demand fluctuations are used to model the utility
companies' Nand thesdifference between the nominal demand and the actual
consumpti odele e cost of user. The optimal TOU price is achieved at the
Nash equilibrium. T lation results showed that the method is effective in leveling
the user demand, (@asing the costs for the utility companies, and increasing user
benefits.

As the electri¢ Vehicle (EV) increase, designing a DRM for the EV charging is an

importa&g. In [9], the authors pointed out that a more dynamic electricity price

would the users save more money and manage their usage preferences more
flexi order to get a real-time pricing program, the authors proposed a differential
model for the EV charging DRM, and after some iteration the electricity price

e demand converge to a stable optimal value. In [10], Z. Tan et al., proposed a

DRM maodel which contains the renewable distributed generators for the EV charging. In
this model, the price contains two parts: the base price which is fixed and the fluctuation
cost. The EVs can sell back energy to the grid. Simulation results show that the DRM
model has the ability to shift the demand and save money for electricity users. L. Gan et.
al., in [11] have proposed a decentralized protocol ODC (Optimal Decentralized Charging)
for the negotiating day-ahead EV charging scheduling, where the EVs select their own
charging profiles for the following day according to the electricity price. The algorithm
can shift the charging load to fill the overnight electricity demand valley. Although the
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ODC is the EV charging algorithm, it also can schedule other electrical equipment for the
DRM.

Besides the description above, many other factors are also considered in the DRM. In
[12-14], the DRM programs schedule all kinds of loads, and they include many kinds of
energy, such as wind energy, solar energy, which are uncertain renewable energy
resources. In [15-16], J. M. Guerrero et al studied the DRM for the microgrid, which
generates the electricity independently by using the distributed generations, and can sell
the redundant electricity to the power grid. In [17], C. Gouveia designed the DRM
programs which adopted the energy storage system for the load scheduling.

In [18], R. Deng et. al., reviewed the mathematical models and approaches for the
DRM. The authors pointed out that the mathematical approaches are mainly convex
optimization, game theory, dynamic programming, markov decision process, stochastic
programming and particle swarm optimization. They also concluded that the
mathematical models mainly contain two types of function: the utility function d thee
cost function.

In this paper, we mainly focus on the designing a price learning based gram
for the load distribution. Our program has two versions: the PLDS and P have
different cycle lengths. The programs consider the user' ge elec c umptlon
habit, and their convergences are improved after adopti e ric Iea mechanism.

Our contributions lie in accelerating the convergence esign price learning
mechanism, and proposing two DRM programs @ and %{uth different cycle
lengths, and the peak shaving performance a é as7total cost RS is similar to that
*
2

of ODC.
This paper is organized as follows. we intgduce the system model and

the principles of PLDS. In Section 3, er i the extended version PLRS. In
Section 4, we present the simulationﬁ , con the future work.

2. Load Distribution SQ LD%)

2.1. Model Definition

In order to | the PL% ore clearly, some mathematical variables are
defined at first. mber of electricity users in the residential area.
P={p,, p2 D Qﬁ |s containing the 24 hours calculated prices by the
utility co 6 -+, X,,} 1S @ vector containing the 24 hours average
electr|C|ty consum mands for each user in this residential area, and the total

demand vector e 24 hours is X,=NX . B={, b,,b;,---,b,,} is a vector
containing th urs user's average electr|C|ty consumption habit, which is also
named asic load. The total electricity consumption habit is B, =NB .

y user's house has a smart meter with the same maximum power
which is denoted by z . We let Z={z,z,,2,,---,2,,} , and

=---=2,,=12, then every element in X should be less than z.

e assume there are only one utility company and one residential area. In this
model, an intermediate organization Smart Power Service (SPS) between the utility
company and the residential area electricity users is put forward. The SPS is
responsible for the coordination between the utility company and residential users to
optimize the electricity price and demand. The frame diagram of PLDS is shown in
Figure 1.
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Figure 1. The PLDS Frame Diagram ?y
divided

In PLDS, we schedule the demand in a day, which is the cycle length a
into 24 hours. In everyday, utility company updates t Q%ﬁcny %} cording to
the average electricity consumption demand X . the average
electricity consumption demand X according tg pate p sent from the
utility company. The progress is executed i t|ve , and in order to
accelerate the convergence, a price Iearn me anis roposed After some
iteration, the average electricity consump mand'%d the price P are stable,

which means the optimization proces nded The mized X and P will be
broadcasted to the residential users make all the residential users
obey the optimized average elect onsu demand through a mechanism,

which does not belong to the s f this pap nd we assume all the users obey
the optimized average eIe% nsum demand
The PLDS is executed by tains Load Distribution Module, Price

Learning Module and it Loax ulating Module. The Load Distribution
Module is the coge e and {n rge of calculating out the optimized X for

every electrlclty\m The, PritedLearning Module is designed for predicting an
electricity pric prove ‘b oflvergence, and the predicted electricity price is
used by t |str| ion "Module. The Habit Load Calculating Module is in
charge of ating average electricity consumption habit or average basic
load in this area. T age basic load reflects the average electricity usage habit
of this residentia

2.2. Load Djstr ion Module

le, we consider both the average electricity consumption cost and the
ctricity consumption habit. The average electricity consumption habit is
ed by using the mean square deviation between X and B, which measures
%ifference between the optimized average electricity consumption demand and
thé”average electricity consumption habit. The optimization problem is:

minPX" +c¢|| X -B|3
st. 0<x <z,ie[l-,24] (1)
I X Ml =l Bl

Where the parameter c¢ is adjustable, which belongs to (0,+00) . If c=0, the

problem is a cost minimization problem, and if ¢ is big enough, the problem
becomes a difference between X and B minimization problem. The constraint
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condition | X |,=|B]|l, means the sum of the optimized average electricity

consumption demand should equals to that of the average electricity consumption
habit, in other words, there is no demand reduction, and only demand shift exists in
PLDS.

The problem (1) is a convex problem, and it can be transformed into:

minPX" +¢(X —B)-(X —B)"
st. 0<x <zie[l--24] (2)
I XAl =l Bl
By derivation, we obtain the first order derivative:
—df(;() —P+2¢(X —B) (3)

The optimal value of X without constraint condition is denoted by X, ?y
Xop =B —?cP %
If we consider the constraint condition for t@ Iue , (1) should be

transformed into a Lagrange function:
= T —_— . —_— T f—
L(X, t4, 15 115) = PXT +¢(X —B) (X - B) ;@ Z) S )
+/~tz-X+ﬂ3-(IIXII1—IIBu1)O \

Where 4, u,, 1, are the Lagran \iplie;@d L, are non-negative vector,
and u;, is a scalar. s\\
Because the vector Xﬂz&re lgo@'don-negative, the constraint condition
0

X[, =8|, is converted into:

1 1 Q\
(X-B)-1T = \ (6)
Where | _{16\\5} isa @m with the size as 24. By replacing (5) with (6),

we get:
L(x,ul,ﬂz,QPXT )-(X=B)" =4 (X -2)

+ﬂz(bt 3 (X =B)-IT

Then we o@he first order deviation of (7), and the optimized X with the
constraint ion

oL(x, ¥s)

(7)

=P+2c(X —B)— 24y + 1, + 1131 =0 (8)

@cause the problem (2) is convex, and there is only one global optimization
poit X_... In order to make the optimized X meet the constraint conditions, we

construct the Lagrange Function (7) and get the optimized value X¢,,. The optimized

opt*
Xop is located at the neighborhood of X, .. In this paper, we use an iterative

manner to search a feasible solution X7, which is closest to X,,. The steps are

shown in follows:
Stepl: initialize X =X, ,; Set the step size 4, 4,, 4, and the precision o .

Step2: calculate the Lagrange multipliers g4, 1, and u, according to:
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=4 max{X —Z,0};
Hy, =, max{X,0};

Mz = A (X _B)lT
Step3: update X "% = X +%(,u1—,u2 —u,l) .

Step4: If | X" _X |<o, the optimized average demand is obtained and the

optimization is ended; else X = X"*and go to Step2.

In order to get the optimal value X , we also need the price P and average basic
load B, which is acquired from the Price Learning Module and Habit Load
Calculating Module respectively.

2.3. Habit Load Calculating Module

*
In order to get the average electricity consumption habit in this re3|de M
we use the latest H days' average total load demand curves of thls re rea

After bemg divided by the electricity user number N, we, further o verage
ric

single user’s load demand curve in this res1dent1a1 f’the days We
formulate the following equation to calculate the t onsumption
habit or the average basic load B for each eIect@

(9)

j=1

argminf(B)=i(B_x{i}).(B_X{j})T Q 9

Equation (9) can be solved by settm\ irst on@\ivative as zero, and we get
the average basic load as: %
: o ‘\\

3 x
B=12

10
H ‘Q (9
2.4. Price Learnlng \
In order to te t rgence we use a learned price as a signal to
schedule thg \%e electrici onsumptlon demand X . The price learning module
always rec h

training se h the M . According to the (11), a price prediction function
P(l) is put forwar Least Square method:

argmmZ(P(I)@) (P()-P™T (11)

P(l) 1=

é ty price from the utility company, and puts it into a

If w@ M +1 into P(l), then we can get the predicted price: P,

learn — P(I +1) .
@am and B are all calculated out, the SPS lets P =R,,,,, and put PandB into

adjust the vector X . The updated X will be sent to the utility company for
thé”price updating. If the utility company has updated a new price according to X ,
the new price will be sent to the price learning module as a training sample data and
then get a newly learned price R, The process is repeated until P and X are stable.

earn*

3. Extended Load Distribution Strategy PLRS

In the model PLDS, the price P and average electricity consumption demand X are
optimized at the beginning of a day, and there is no optimization process executed in
other time period of this cycle. In order to make the cycle length more flexible, we
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propose an extended load distribution strategy PLRS, which optimizes the electricity price
and average electricity consumption demand in every hour.

Assume the current time is the k™ hour. Let X, ={x |ie[L2--,k-1]}, and
Xro ={X; [P €[k, k+1,---,24]}, then X, = X, U Xg,. The X, is the optimized and fixed
average electricity consumption demand vector for the past k hours and X, is the not

optimized average electricity consumption demand vector for the future 24-k hours. The
similar definition is also suitable for the electricity price. Let Py, ={p; |i€[12,---,k —1]},

and Py, ={p; |i e[k, k+1,---,24]}, then P, =P, UP,,.
In the PLRS model, we define a varied average electricity consumption habit
S=XyUS,, and S, ={s; | je[k,k+1---,24]}. S can be optimized by the following

optimization problem:

min||S-B|j;

st.s; =x,1<i<k-1 ?*\(é)

IS, =[B1,

2
By solving (12), we obtain the optimized vector S, @‘ K,k +@d]}. Then we

get three vectors with the same size 24—k +1: O
S; ={s; | j e[k, k+1---,24]}

e.g., calling PLDS, aft few ite@ we can get the optimized X, and P,

respectively: N

Xio =46 | | e[@ﬂ}\&
Pr. ={p] | k+1,-

Then we get t @nized average electricity consumption demand x, and price p,
at the k™ hour; put them into the optimized vector X, and Py, respectively:

Xpy ={x [Wef:2,--- k-1]}

%_‘ ||€[1!2!'1k_1]}
ere x, in Xg equals to x, in Xq,, and p, in P, equals to p, in P, .

Meanwhile, the vector X,, Py, and S, also changed:

S, ={s; | j e[k +Lk+2,---,24]}
X ={%; | e[k +1k+2,--,24]}

PRZ :{pj | J e[k+11k+21"'i24]}

Copyright © 2016 SERSC 85



International Journal of Smart Home
Vol. 10, No. 11, (2016)

The process is repeated in every hour until one day is ended, and finally we obtain the
optimized average electricity consumption demand vector X, ={x |i<[L2,---,24} as

well as the optimized price Py, ={p; |i€[L12,---,24}. The average electricity consumption
cost is Py, - X1, -

4. Simulation

4.1. Data and Parameters Setting

We chose the PJIM market data from March 16 to 20 in 2015, which are statistics
hourly load demand and can be acquired from [19]. We assume there are N =1000C users
in this residential area. After the PJM market data of these days are divided by N, the
average electricity consumption data of these days belong to the interval [2.5kW, 3.3kW],
for each user, which is roughly reasonable compared with that in real world. Ac
the average electricity consumption data of these H=>5 days for each user, we cal
average electricity consumption habit B according to (10). We set z =10 fdr si

The price function is P(x)=0.043"?, where x is_the\element0f,t
average electricity consumption demand X for each | the re
values are listed in the Table 1:

In the following subsections, we si t theg nce performance of PLDS, and

parameters’

Table 1. Parame

we compare the convergence of P with that in [11]. We will further simulate
the peak shaving performan LDS and ODC. At last, the electricity
consumption costs of these S ies are m&
4.2. Convergence Per l%we \

In order to ev L he con ce, we compare the PLDS with the ODC in [11].
Because the PL S the PL° n €very hour, the convergence of PLDS is suitable for

PLRS, and 0 nee evaluate PLRS's convergence. We set the parameter ¢ =1.
The total |C|ty ption demand is NX . The convergence performance
simulation results ar in Figure 2.

Load(kW)

25

10

Iteration number 0 o Hour(h)

(a) The demand convergence performance of ODC
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x 10

=== /3

=== W,

< SO .
/

25

10

Iteration number 0

*
Hour(h) V
(b) The demand convergence performance of PLDS @;
ce

Figure 2. The Total Electricity Consumption D%md C

From the Figure 2, we find that the PLDS converges o’ a“demagd curve with small
peak load, and the peak-valley difference is r@. rapi \VY; Iso find that the
ODC's convergence performance is worse than thais0f PLD the total electricity
consumption demand curve of PLDS is morQQt than th@ ODC when the iteration

number is 7.
As the simulation iteration increase ; earne ice also converges to the price
calculated by the utility company, iS sh \p gure 3. We let P,,,,— P denote

the difference between the learpe and the rice (calculated by utility company
in each iteration), and let the&ull

n dis;ar@'ueasure the difference between them.

N

Iteration number Hour

@O (a) The price convergence

Copyright © 2016 SERSC 87



International Journal of Smart Home
Vol. 10, No. 11, (2016)

0.03 3 3 T 3 3 3 T 3 3

0.025 - i

0.02 A

0.015 A

Price Difference

0.01r !

0.005 - A

0 r m e I - £
0 5 10 15 20 25 30 35 40 45 50
Iteration number

(b) The Euclidean distance converges to zero

Figure 3. The Convergence Performance of Prlce

In Figure 3(a), the difference between the learned price and the r aIIy
converges to a Zero vector. In Figure 3(b), the dlsta the t gradually
converges to zero, which means that after some |terat| equals to the

real price. O
4.3. Peak Shaving Performance

In this subsection, we will simulate the t@mized’ city consumption demand
curve to illustrate the peak shaving effiéi S and ODC. The parameter
c is set as 0.4. In order to describe rformance better, we set three
circumstances, which have differ Ieng tartmg point. The circumstances
parameters are set in Table 2

Para. Name ‘

Circumstances Qno m 1:00 AM 12:00 PM next day
Circumstances 7w N 1:00 AM 12:00 PM after three days
Circumstnces Three 8:00 AM 8:00 AM after three days

Circumstances
at the first time period. The PLRS will execute the optimization

Two
optimization st
strategy at eEer ur in all the circumstances. The total electricity consumption demand

curves ar n in the Figure 4.

Q)O
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3.6
340 —S— PLDS Load Demand,c=0.4
' ~ PLRS Load Demand,c=0.4
—<— ODC Load Demand,c=0.4,
3.2 — Basic Load B
s 3
=
3
J 2.8r
26
24+
22 r r r r
0 5 10 15 20

(a) The total electricity consumption demand curves_in\Circums @
3.6
~——©— PLDS Load Demand
- PLRS Load Dem @
3.4 + ODC Load Demal , \
X

—— Basic Load

Load(kW)

L
40

Time

(b@t | electricity consumption demand curves in Circumstances Two

Q)O
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3.6/ —&— PLDS Load Demand,c=0.4
PLRS Load Demand,c=0.4
—<— ODC Load Demand,c=0.4,
3.4 —*%— Basic Load B
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P G oy
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5 N 9 /
/- Roed B/
2.4 Nt 24 A
r r r r TN Ny, M
10 20 30 40 \ 0 70 80
Time

(c) The total electricity consumption deman Cxa nces Three
Figure 4. The Total Electr|C|ty C sumptlo nd Curves

In Figure 4(a), we find that the opti g tal ele x consumption demand curve

of PLRS has better performance in p vin ed with PLDS. But both PLDS
and PLRS have poor performance c %C and we think the main reason for
this phenomenon is that PLD o@ ecutes oncenat the starting point of the cycle, and
PLRS executes at each thta just th imization demand for the future hours.
Because PLRS calls PLDS at edch ha@ peak shaving performance will be similar
with that of PLDS in the few hou

As time goes on, that PLRS Has the smaller load fluctuations compared with
that of ODC, whi trates, t S has better peak shaving performance in the long
term shown in Fi (b), an re"4(c).

onl

Becaus y e tes the optimization process only once, its peak shaving
performan e wor g these three strategies.

In order to
we comparé the

te the total electricity consumption costs of PLDS, PLRS, and ODC
with the strategy Without Load Distribution (WLD). The total

eIectnc@onsumptlon cost of WLD is calculated as Nz P(b,)b, , and that of PLDS and
i=1
%are NPX" and NP, X.," respectively
order to evaluate the electricity consumption cost, we select a cycle which starts
from the 8:00 AM and ends at 8:00 AM in the next day. The simulation parameters are
the same with that in subsection 4.3. Simulation results are shown in the Figure 5.
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WLD PLDS c=0.4 PLRS c=0.4

Figure 5. The Total Electricity Consumption Cost 0

117~

1.16 -

115

114~

Total bill ($)

I

i

w
T

112

111+

According to Figure 5, we find that the total cost of O hz: min
cost of PLRS is very close to that of ODC. The rea this
length is 24 hours, which is too short for PLRS ving of PLRS is
worse than that of ODC. The PLDS has the hlghes cost a&ﬂ ese three strategies
PLDS, PLRS and ODC. The WLD has the w @)St savm rformance.

5. Conclusion and Future Work
In this paper, we propose a prlce %g bas &stribution strategy PLDS and an

extended strategy PLRS. In Dw cycle lengthis 24 hours, and that of PLRS is 1
hour. The PLDS executes t ti tion ss only once at the starting point of the

cycle, and PLRS executes the |m|z i ess at each hour of the cycle. The PLRS
calls the PLDS at eac ur. Sm‘ﬂkn results show that the PLDS has better
convergence compar DC. PhLRSYias a better peak shaving compared to that of
ODC in the long &Q\ terms total cost, the cost of PLRS is very close to that of
ODC.

Althougt S has m| ed the average electricity consumption demand, users
may not b on5|ste aI life. Then how to design a mechanism making all the
users obey the optimi erage electricity consumption demand in maximum degree is

our future work
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