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Abstract 

In this paper, a Price learning based Load Distribution Strategy (PLDS) is proposed at 

first. In PLDS model, Smart Power Service, Utility Company and History Load Curves 

are included, and by considering both the average electricity consumption cost and the 

average electricity consumption habit, we proposed a convex optimization model to solve 

the model. In order to accelerate the convergence of PLDS, a price learning mechanism 

is proposed, which learns a price curve according to the history price data, and predicts 

price as a learned price for the next iteration. The optimization cycle of PLDS is one day 

or 24 hours, and in order to further improve the peak shaving performance, an extended 

version of PLDS named PLRS (Price learning based Load Redistribution Strategy) is 

proposed, whose optimization cycle length is 1 hour. The optimization models of PLDS 

and PLRS are the same, and the differences between them are the optimization cycle and 

the constraint conditions. In the simulation, we compared the convergence performance, 

peaking shaving performance and total cost among PLDS, PLRS and other strategy ODC 

in reference [11], and we found that the convergence performances of PLDS and PLRS 

are both better than that of ODC. The peak shaving performance of PLRS is better than 

that of ODC in the long term, and the total cost of PLRS is very close to that of ODC.  

 

Keywords: Price learning, Electricity Consumption Habit, Load Distribution Strategy, 

Convex Optimization Model 

 

1. Introduction 

In smart grid, Demand Response Management (DRM) plays an important role for both 

the utility companies and electricity users. For the utility companies, DRM reduces the 

power at the peak hour, and increases the power at the valley hour in general, which 

ensures small fluctuations for the generation capacity. For the customers (electricity 

users), generally DRM increases the electricity price at the peak hour and reduces the 

electricity price at the valley hour, which shifts the elastic load from the peak hour to the 

valley hour, which results into the cost reduction. 

The DRM mainly has two types: Incentive Based Programs (IBP) and Price Based 

Programs (PBP) [1-2]. In IBP, the capacity and load are managed by the utility companies, 

which will increase the capacity or reduce the load actively to balance the capacity and 

load. Besides, the load demands or capacities can be sold on the market, and the utility 

companies buy the demand load or capacities for its co-ordination of supply and demand. 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Smart Home 

Vol. 10, No. 11, (2016) 

 

 

80                                                                                                          Copyright ⓒ 2016 SERSC 

Although IBP performs well in coordinating the demand and supply, it rarely considers 

the electricity users’ benefits, which are an important consideration in the PBP. 

In PBP, the electricity price is not fixed all the time, and by adjusting price the 

electricity users are guided to use high-power equipment at the low price periods, and 

consume less electricity at the high price periods. The electricity users can save a lot of 

cost when the electricity price is varying. The main programs are [3]: Time of Use (TOU), 

Critical Peak Pricing (CPP), Extreme Day CPP (ED-CPP), Extreme Day Pricing (EDP) 

and Real Time Pricing (RTP), etc. Recent years, many research works have used the 

dynamic pricing mechanism as an effective way to schedule the demand load. The 

electricity price is the tie that links the utility company and electricity users. In general, 

every DRM program has two participation sides, and each participation side has its own 

utility function and cost function, based on which the DRM program model is built. The 

objective functions are various. 

I. Koutsopoulos et. al., in [4] have proposed a stochastic model and two online demand 

scheduling programs for the minimizing the long-term average power grid operational 

cost. The two programs are Threshold Postponement (TP) and Controlled Release (CR), 

and a queue model is adopted. The two programs can save the operational cost effectively, 

but the cost of electricity users is not considered. In [5], L. Zheng et. al., proposed a DRM 

program for the HVAC (heating ventilation and air-conditioning) loads scheduling. The 

control objective is to reduce the variation of nonrenewable power demand. Based on an 

extended Lyapunov optimization approach, a control algorithm is proposed to 

approximately solve the DRM model. In [6], A.-H.Mohsenian-Rad et. al., proposed a 

game theory based energy consumption scheduling strategy. The global optimal 

performance in terms of minimizing the energy costs is achieved at the Nash equilibrium 

of the formulated energy consumption scheduling game. The simulation results showed 

that the approach can reduce the peak-to-average ratio of the total energy demand, the 

total energy costs and each user’s daily charges. In [7], B. Liu et. al., presented a home 

energy management scheduling algorithm based on market DR program and household 

comfort constraints. The comfort constraints are the controlled temperature in the house 

staying in a suitable range to meet the human body's requirement. This work only 

considers the TOU pricing, and there is no interaction between the system operator and 

the electricity users. In [8], P. Yang et. al., propose a game-theoretic approach to optimize 

TOU pricing strategies (GT-TOU). User demand fluctuations are used to model the utility 

companies' cost, and the difference between the nominal demand and the actual 

consumption is modeled as the cost of user. The optimal TOU price is achieved at the 

Nash equilibrium. The simulation results showed that the method is effective in leveling 

the user demand, decreasing the costs for the utility companies, and increasing user 

benefits.  

As the electric vehicle (EV) increase, designing a DRM for the EV charging is an 

important issue. In [9], the authors pointed out that a more dynamic electricity price 

would allow the users save more money and manage their usage preferences more 

flexibly. In order to get a real-time pricing program, the authors proposed a differential 

equation model for the EV charging DRM, and after some iteration the electricity price 

and the demand converge to a stable optimal value. In [10], Z. Tan et al., proposed a 

DRM model which contains the renewable distributed generators for the EV charging. In 

this model, the price contains two parts: the base price which is fixed and the fluctuation 

cost. The EVs can sell back energy to the grid. Simulation results show that the DRM 

model has the ability to shift the demand and save money for electricity users. L. Gan et. 

al., in [11] have proposed a decentralized protocol ODC (Optimal Decentralized Charging) 

for the negotiating day-ahead EV charging scheduling, where the EVs select their own 

charging profiles for the following day according to the electricity price. The algorithm 

can shift the charging load to fill the overnight electricity demand valley. Although the 
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ODC is the EV charging algorithm, it also can schedule other electrical equipment for the 

DRM. 

Besides the description above, many other factors are also considered in the DRM. In 

[12-14], the DRM programs schedule all kinds of loads, and they include many kinds of 

energy, such as wind energy, solar energy, which are uncertain renewable energy 

resources. In [15-16], J. M. Guerrero et al studied the DRM for the microgrid, which 

generates the electricity independently by using the distributed generations, and can sell 

the redundant electricity to the power grid. In [17], C. Gouveia designed the DRM 

programs which adopted the energy storage system for the load scheduling. 

In [18], R. Deng et. al., reviewed the mathematical models and approaches for the 

DRM. The authors pointed out that the mathematical approaches are mainly convex 

optimization, game theory, dynamic programming, markov decision process, stochastic 

programming and particle swarm optimization. They also concluded that the 

mathematical models mainly contain two types of function: the utility function and the 

cost function.  

In this paper, we mainly focus on the designing a price learning based DRM program 

for the load distribution. Our program has two versions: the PLDS and PLRS, which have 

different cycle lengths. The programs consider the user's average electricity consumption 

habit, and their convergences are improved after adopting the price learning mechanism. 

Our contributions lie in accelerating the convergence by designing a price learning 

mechanism, and proposing two DRM programs PLDS and PLRS with different cycle 

lengths, and the peak shaving performance as well as total cost of PLRS is similar to that 

of ODC. 

This paper is organized as follows. In Section 2, we introduce the system model and 

the principles of PLDS. In Section 3, we further introduce the extended version PLRS. In 

Section 4, we present the simulation results, conclusion and the future work. 

 

2. Load Distribution Strategy PLDS 
 

2.1. Model Definition 

In order to introduce the PLDS more clearly, some mathematical variables are 

defined at first. Let N  denote the number of electricity users in the residential area. 

},,,,{ 24321 ppppP   is a vector containing the 24 hours calculated prices by the 

utility company. },,,,{ 24321 xxxxX   is a vector containing the 24 hours average 

electricity consumption demands for each user in this residential area, and the total 

demand vector for the 24 hours is NXX t  . },,,,{ 24321 bbbbB   is a vector 

containing the 24 hours user's average electricity consumption habit, which is also 

named average basic load. The total electricity consumption habit  is NBBt  . 

Assume every user's house has a smart meter with the same maximum power 

constraint, which is denoted by Z . We let },,,,{ 24321 zzzzZ  , and 

zzzzz  24321  , then every element in X  should be less than z . 

We assume there are only one utility company and one residential area. In this 

model, an intermediate organization Smart Power Service (SPS) between the utility 

company and the residential area electricity users is put forward. The SPS is 

responsible for the coordination between the utility company and residential users to 

optimize the electricity price and demand. The frame diagram of PLDS is shown in 

Figure 1. 
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Figure 1. The PLDS Frame Diagram 

In PLDS, we schedule the demand in a day, which is the cycle length and divided 

into 24 hours. In everyday, utility company updates the electricity price according to 

the average electricity consumption demand X . The SPS updates the average 

electricity consumption demand X  according to the updated price P  sent from the 

utility company. The progress is executed in iterative manner, and in order to 

accelerate the convergence, a price learning mechanism is proposed. After some 

iteration, the average electricity consumption demand X  and the price P  are stable, 

which means the optimization process is ended. The optimized X  and P  will be 

broadcasted to the residential users by SPS, who will make all the residential users 

obey the optimized average electricity consumption demand through a mechanism, 

which does not belong to the scope of this paper, and we assume all the users obey 

the optimized average electricity consumption demand.  

The PLDS is executed by SPS, and it contains Load Distribution Module, Price 

Learning Module and Habit Load Calculating Module. The Load Distribution 

Module is the core module and in charge of calculating out the optimized X for 

every electricity users. The Price Learning Module is designed for predicting an 

electricity price to improve the convergence, and the predicted electricity price is 

used by the Load Distribution Module. The Habit Load Calculating Module is in 

charge of calculating out the average electricity consumption habit or average basic 

load in this area. The average basic load reflects the average electricity usage habit 

of this residential area. 

 

2.2. Load Distribution Module 

In this module, we consider both the average electricity consumption cost and the 

average electricity consumption habit. The average electricity consumption habit is 

considered by using the mean square deviation between X  and B , which measures 

the difference between the optimized average electricity consumption demand and 

the average electricity consumption habit. The optimization problem is: 

11

2
2

||||||||

]24,,1[,0..

||||min

BX

izxts

BXcPX

i

T







                                                         (1) 

Where the parameter c  is adjustable, which belongs to ),0(  . If 0c , the 

problem is a cost minimization problem, and if c  is big enough, the problem 

becomes a difference between X  and B  minimization problem. The constraint 
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condition 11 |||||||| BX   means the sum of the optimized average electricity 

consumption demand should equals to that of the average electricity consumption 

habit, in other words, there is no demand reduction, and only demand shift exists in 

PLDS.  

The problem (1) is a convex problem, and it can be transformed into:  

11 ||||||||

]24,,1[,0..

)()(min

BX

izxts

BXBXcPX

i

TT







                                                          (2) 

By derivation, we obtain the first order derivative: 

)(2
)(

BXcP
dX

Xdf
                                                                    (3) 

The optimal value of X  without constraint condition is denoted by optX : 

P
c

BX opt
2

1
                                                                (4) 

If we consider the constraint condition for the optimal value of X , (1) should be 

transformed into a Lagrange function: 

)||||||(||

)()()(),,,(

1132

1321

BXX

ZXBXBXcPXxL TT








                          (5) 

Where 321 ,,   are the Lagrange multipliers. 1 and 2  are non-negative vector, 

and 3  is a scalar.  

Because the vector X  and B  are both non-negative, the constraint condition 

11
BX   is converted into:  

0)(  TIBX                                                                       (6) 

Where }1,,1,1,1{ I  is a unit vector with the size as 24. By replacing (5) with (6), 

we get:  

T

TT

IBXX

ZXBXBXcPXxL





)(

)()()(),,,(

32

1321




                                            (7) 

Then we obtain the first order deviation of (7), and the optimized X  with the 

constraint condition: 

0)(2
),,,(

321
321 




IBXcP

X

xL



                                    (8) 

Because the problem (2) is convex, and there is only one global optimization 

point optX . In order to make the optimized X  meet the constraint conditions, we 

construct the Lagrange Function (7) and get the optimized value c
optX . The optimized 

c
optX  is located at the neighborhood of optX . In this paper, we use an iterative 

manner to search a feasible solution c
optX  which is closest to optX . The steps are 

shown in follows: 

Step1: initialize 
optXX  ; Set the step size 1 , 2 , 3  and the precision  . 

Step2: calculate the Lagrange multipliers 21,  and 3  according to: 
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}0,max{11 ZX   ; 

}0,max{22 X  ; 
TIBX )(33   . 

Step3: update )(
2

1
321

}{ I
c

XX new    . 

Step4: If  |||| }{ XX new , the optimized average demand is obtained and the 

optimization is ended; else }{newXX  and go to Step2. 

In order to get the optimal value X , we also need the price P  and average basic 

load B , which is acquired from the Price Learning Module and Habit Load 

Calculating Module respectively. 

 

2.3. Habit Load Calculating Module 

In order to get the average electricity consumption habit in this residential area, 

we use the latest H  days' average total load demand curves of this residential area. 

After being divided by the electricity user number N , we further obtain the average 

single user’s load demand curve in this residential area of the latest H days. We 

formulate the following equation to calculate the average electricity consumption 

habit or the average basic load B for each electricity user: 

Tj
H

j

j

B

XBXBBf )()()(minarg }{

1

}{ 


                                                  (9) 

Equation (9) can be solved by setting the first order derivative as zero, and we get 

the average basic load as:  

H

X

B

H

j

j




1

}{

                                                                      (10) 

2.4. Price Learning Module 

In order to accelerate the convergence, we use a learned price as a signal to 

schedule the average electricity consumption demand X . The price learning module 

always receives the electricity price from the utility company, and puts it into a 

training set with the size as M . According to the (11), a price prediction function 

)(lP  is put forward by the Least Square method:  

Tl
M

l

l

lP

PlPPlP ))(())((minarg }{

1

}{

)(




                                                 (11) 

If we put 1M  into )(lP , then we can get the predicted price: )1(  lPPlearn . 

When learnP  and B  are all calculated out, the SPS lets learnPP  , and put P and B  into 

(8) to adjust the vector X . The updated X  will be sent to the utility company for 

the price updating. If the utility company has updated a new price according to X , 

the new price will be sent to the price learning module as a training sample data and 

then get a newly learned price learnP . The process is repeated until P and X are stable.  

 

3. Extended Load Distribution Strategy PLRS 

In the model PLDS, the price P  and average electricity consumption demand X  are 

optimized at the beginning of a day, and there is no optimization process executed in 

other time period of this cycle. In order to make the cycle length more flexible, we 
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propose an extended load distribution strategy PLRS, which optimizes the electricity price 

and average electricity consumption demand in every hour. 

Assume the current time is the thk  hour. Let ]}1,,2,1[|{1  kixX iR  , and 

]}24,,1,[|{2  kkixX iR , then 
21 RRR XXX  . The 1RX  is the optimized and fixed 

average electricity consumption demand vector for the past k hours and 2RX  is the not 

optimized average electricity consumption demand vector for the future 24-k hours. The 

similar definition is also suitable for the electricity price. Let ]}1,,2,1[|{1  kipP iR  , 

and ]}24,,1,[|{2  kkipP iR , then 
21 RRR PPP  .  

In the PLRS model, we define a varied average electricity consumption habit 

21 SXS R  , and ]}24,,1,[|{2  kkjsS j . S  can be optimized by the following 

optimization problem:  

2

2

1 1

min || ||

. . ,1 1i i

S B

s t s x i k

S B



   



                                                                     (12) 

By solving (12), we obtain the optimized vector ]}24,,1,[|{ **
2  kkjsS j . Then we 

get three vectors with the same size 124  k :  

]}24,,1,[|{ **
2  kkjsS j    

]}24,,1,[|{2  kkjxX jR    

]}24,,1,[|{2  kkjpP jR    

If we let *
2SB  , *

2RXX  , *
2RPP  , ]}24,,1,[|{  kkjzZ j  and put them into (1), 

e.g., calling PLDS, after a few iterations, we can get the optimized *
2RX  and *

2RP  

respectively:  

]}24,,1,[|{ **
2  kkjxX jR    

]}24,,1,[|{ **
2  kkjpP jR    

Then we get the optimized average electricity consumption demand *
kx  and price *

kp  

at the thk  hour, and put them into the optimized vector 1RX  and 1RP  respectively:  

]}1,,2,1[|{1  kixX iR     

]}1,,2,1[|{1  kipP iR     

Where kx  in 1RX  equals to *
kx  in 2RX , and kp  in 1RP  equals to *

kp  in 2RP . 

Meanwhile, the vector 2RX , 2RP  and 2S  also changed:  

]}24,,2,1[|{2  kkjsS j    

]}24,,2,1[|{2  kkjxX jR   

]}24,,2,1[|{2  kkjpP jR   
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The process is repeated in every hour until one day is ended, and finally we obtain the 

optimized average electricity consumption demand vector }24,,2,1[|{1  ixX iR  as 

well as the optimized price }24,,2,1[|{1  ipP iR . The average electricity consumption 

cost is T
RR XP 11  . 

 

4. Simulation 
 

4.1. Data and Parameters Setting 

We chose the PJM market data from March 16 to 20 in 2015, which are statistics 

hourly load demand and can be acquired from [19]. We assume there are 10000N  users 

in this residential area. After the PJM market data of these days are divided by N , the 

average electricity consumption data of these days belong to the interval [2.5kW, 3.3kW] 

for each user, which is roughly reasonable compared with that in real world. According to 

the average electricity consumption data of these H=5 days for each user, we calculate the 

average electricity consumption habit B  according to (10). We set 10z  for simplicity. 

The price function is 3.1043.0)( xxP  , where x  is the element of the optimized 

average electricity consumption demand X  for each user. All the related parameters’ 

values are listed in the Table 1: 

Table 1. Parameters Settings 

Name 1 2 3 σ N H 

Value -0.01 -0.01 1/24 0.001 10000 5 

In the following subsections, we simulate the convergence performance of PLDS, and 

we compare the convergence of PLDS with that of ODC in [11]. We will further simulate 

the peak shaving performance of PLDS, PLRS and ODC. At last, the electricity 

consumption costs of these strategies are given. 

 

4.2. Convergence Performance 

In order to evaluate the convergence, we compare the PLDS with the ODC in [11]. 

Because the PLRS calls the PLDS in every hour, the convergence of PLDS is suitable for 

PLRS, and there is no need to evaluate PLRS's convergence. We set the parameter 1c . 

The total electricity consumption demand is NX . The convergence performance 

simulation results are shown in Figure 2. 
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(a) The demand convergence performance of ODC 
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(b) The demand convergence performance of PLDS 

Figure 2. The Total Electricity Consumption Demand Convergence 

From the Figure 2, we find that the PLDS converges to a demand curve with small 

peak load, and the peak-valley difference is decreased rapidly. We also find that the 

ODC's convergence performance is worse than that of PLDS, and the total electricity 

consumption demand curve of PLDS is more flat than that of ODC when the iteration 

number is 7.  

As the simulation iteration increases, the learned price also converges to the price 

calculated by the utility company, which is shown in Figure 3. We let PPlearn   denote 

the difference between the learned price and the real price (calculated by utility company 

in each iteration), and let the Euclidean distance measure the difference between them. 

 

(a) The price convergence 
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(b) The Euclidean distance converges to zero 

Figure 3. The Convergence Performance of Price 

In Figure 3(a), the difference between the learned price and the real price gradually 

converges to a Zero vector. In Figure 3(b), the distance of the two prices gradually 

converges to zero, which means that after some iteration, the learned price equals to the 

real price.  

 

4.3. Peak Shaving Performance 

In this subsection, we will simulate the total optimized electricity consumption demand 

curve to illustrate the peak shaving efficiency of PLDS, PLRS and ODC. The parameter 

c  is set as 0.4. In order to describe the peak shaving performance better, we set three 

circumstances, which have different cycle length and starting point. The circumstances 

parameters are set in Table 2. 

Table 2. Circumstances Parameters Settings 

Para. Name Cycle Length Starting Point Ending Point 

Circumstances One 24 hours 1:00 AM 12:00 PM next day 

Circumstances Two 72 hours 1:00 AM 12:00 PM after three days 

Circumstances Three 72 hours 8:00 AM 8:00 AM after three days 

In Circumstances One, the PLDS only executes the optimization strategy at the 1:00 

AM, and calculates out the following 24 hours optimization demand vector X. In the 

Circumstances Two and Circumstances Three, the PLDS also only executes the 

optimization strategy at the first time period. The PLRS will execute the optimization 

strategy at every hour in all the circumstances. The total electricity consumption demand 

curves are shown in the Figure 4. 
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(a) The total electricity consumption demand curves in Circumstances One 
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(b) The total electricity consumption demand curves in Circumstances Two 
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(c) The total electricity consumption demand curves in Circumstances Three 

Figure 4. The Total Electricity Consumption Demand Curves 

In Figure 4(a), we find that the optimized total electricity consumption demand curve 

of PLRS has better performance in peak shaving compared with PLDS. But both PLDS 

and PLRS have poor performance compared with ODC, and we think the main reason for 

this phenomenon is that PLDS only executes once at the starting point of the cycle, and 

PLRS executes at each hour to adjust the optimization demand for the future hours. 

Because PLRS calls PLDS at each hour, the peak shaving performance will be similar 

with that of PLDS in the first few hours. 

As time goes on, we find that PLRS has the smaller load fluctuations compared with 

that of ODC, which illustrates that PLRS has better peak shaving performance in the long 

term shown in Figure 4(b), and Figure 4(c).  

Because PLDS only executes the optimization process only once, its peak shaving 

performance is the worst among these three strategies. 

 

4.4. Electricity Consumption Cost 

In order to evaluate the total electricity consumption costs of PLDS, PLRS, and ODC 

we compare them with the strategy Without Load Distribution (WLD). The total 

electricity consumption cost of WLD is calculated as 


24

1

)(
i

ii bbPN , and that of PLDS and 

PLRS are TNPX  and 
T

RR XNP 11  respectively. 

In order to evaluate the electricity consumption cost, we select a cycle which starts 

from the 8:00 AM and ends at 8:00 AM in the next day. The simulation parameters are 

the same with that in subsection 4.3. Simulation results are shown in the Figure 5.  
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Figure 5. The Total Electricity Consumption Cost 

According to Figure 5, we find that the total cost of ODC is the minimum, and the total 

cost of PLRS is very close to that of ODC. The reason for this result is that the cycle 

length is 24 hours, which is too short for PLRS, and the peaking shaving of PLRS is 

worse than that of ODC. The PLDS has the highest total cost among these three strategies 

PLDS, PLRS and ODC. The WLD has the worst cost saving performance. 

 

5. Conclusion and Future Work 

In this paper, we propose a price learning based load distribution strategy PLDS and an 

extended strategy PLRS. In PLDS, the cycle length is 24 hours, and that of PLRS is 1 

hour. The PLDS executes the optimization process only once at the starting point of the 

cycle, and PLRS executes the optimization process at each hour of the cycle. The PLRS 

calls the PLDS at each hour. Simulation results show that the PLDS has better 

convergence compared to ODC. PLRS has a better peak shaving compared to that of 

ODC in the long term. In terms of the total cost, the cost of PLRS is very close to that of 

ODC. 

Although the SPS has optimized the average electricity consumption demand, users 

may not be so consistent in real life. Then how to design a mechanism making all the 

users obey the optimized average electricity consumption demand in maximum degree is 

our future work.  
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