
International Journal of Smart Home 

Vol. 10, No. 11, (2016), pp. 69-78 

http://dx.doi.org/10.14257/ijsh.2016.10.11.07 

 

 

ISSN: 1975-4094 IJSH  

Copyright ⓒ 2016 SERSC 

A Resource-Efficient System Architecture for Processing Various 

Sensor Data in Smart home Environment 
 

 

Changmin Lee
1
, Changhyun Byun

2
 and Hyeonjeong Shin

3
 

1
Center of Research & Development, Fasoo.com, Inc.,396 World Cup Buk-ro 

Mapo-gu, Seoul 121-795, Republic of Korea 
2
Center of Research & Development, Fasoo.com, Inc.,396 World Cup Buk-ro 

Mapo-gu, Seoul 121-795, Republic of Korea 
3
Department of Computer Science, Shinhan University,30,beolmadeul-ro 40beon-

gil, Dongducheon-si, Gyeonggi-do 483-777,Republic of Korea 
1
cmlee@fasoo.com,

2
cbyun@fasoo.com,

3
hjshin@shinhan.ac.kr 

Abstract 

The Internet of Things (IoT) technology is gaining vast popularity and it is expected to 

become ubiquitous in the near future. It envisions the idea of a fully connected network of 

smart objects, enabling cooperative and intelligent distributed functionalities. Especially, 

smart homes provide innovative, automated and interactive services for residential 

customers through distributed and collaborative operations. In this paper the challenge of 

processing large amounts of sensor data at network gateways with limited memory and 

computing power is described. A resource-efficient system to process various 

heterogeneous data is introduced. 

 

Keywords: internet of things, smart home, data processing, resource efficiency 

 

1. Introduction 

Internet of Things (IoT) technology is receiving growing attention from research, 

industry and government organizations [1-2]. The IoT paradigm consists in fully 

connected smart objects (such as sensors, smartphones, embedded systems), providing 

integrated services. The number of connected smart objects is growing impressively, 

expecting to exceed 26 billion by 2020. Thus, smart objects will soon generate large 

amounts of data traffic requiring appropriate management [3]. 

Two main approaches exist to handle potential large amount of sensor data generated 

by the different smart objects. In current IoT approaches, time-series sensor data 

generated from smart objects are transmitted to cloud servers which process the received 

data and make decisions for appropriate actions. However, as more and smarter objects 

are developed and possibly generate data for each and every event, transmitting the entire 

data to outside servers may not be practical. Furthermore, some of the actions may need to 

be confined within the corresponding IoT environment, such as a smart home. As an 

alternative, various sensor data can be locally processed at the network gateways and only 

the relevant information for the target application is transmitted to the outside server. The 

latter approach mandates a fast and limited-memory processing algorithm. 

Additionally, the processing at gateway level of sensor data coming from multiple 

sources is further challenged by the following issues: (1) resource constraints of 

gateways: As can be seen in Figure 1, due to the self-organizing nature of IoT networks, 

gateway functionalities could be assigned to devices with very limited memory and 

computing power capabilities, therefore incapable of performing standard data 

                                                           

Corresponding Author 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Smart Home 

Vol. 10, No. 11, (2016) 

 

 

70                                                                                                          Copyright ⓒ 2016 SERSC 

processing; (2) heterogeneity of data types: the smart home environment relies on a vast 

and heterogeneous set of objects, each possibly generating different data types; (3) 

variability of sensor data inter-arrival times: due to the different functionalities 

implemented, some smart objects may generate data with regular intervals, as opposite to 

devices generating data on event basis. 

With the objective of overcoming the above identified challenges, in this paper we 

propose a fast and memory-efficient system for processing various heterogeneous data, 

indispensable for resource-constrained devices. 

 

Figure 1. Smart Home Device Capabilities [3] 

2. Related Work 
 

2.1. Smart Home 

A smart home comprises of a multitude of connected devices belonging to 

different application areas. These devices are characterized by heterogeneous 

hardware and software resources, and they support different communication 

technologies. By coexisting, interacting, and cooperating among each others, these  

devices form a distributed heterogeneous network. As an example, Figure 1  shows a 

typical smart home scenario, consisting of many connected devices belonging to 

different applications, communicating among each other using different 

technologies and connected to few gateways/routers which provide connectivity to 

outside networks such as Internet. 

 

2.1.1. Smart Home Applications: The smart home concept encloses multiple 

applications belonging to the different areas, interacting with each other.  

 Lighting control: Intelligent home lighting systems provide automated 

lighting control through LED lights and controllers detecting ambient 

conditions such as the presence of users or sunlight. The system automates the 

actions of turning on and off the lights and controlling their brightness 

according to the user’s preferences and activities or energy savings rules.  

 Appliance control: Home appliances such as refrigerators, ovens, and 

washing machines contain embedded devices for the control of their 

functioning. In the past, these embedded devices constituted stand-alone 

systems, each providing dedicated control only for a single appliance. The 

significant dropping in prices of the transceiver chips, with the consequent 

inclusion of communication functionalities into these embedded devices, have 

created unlimited possibilities for cooperative and automated appliance 

control. In example, high-energy consuming appliances such as washing 

machines and ovens could schedule operations during off-peak energy rates. 

Also, washing and drying machines can share laundry setting information. 

 Entertainment: A typical house has one or more entertainment center(s) 

consisting of different devices (e.g., Digital TV, DVD player, satellite 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Smart Home 

Vol. 10, No. 11, (2016) 

 

 

Copyright ⓒ 2016 SERSC  71 

decoder, digital multimedia receiver) together with multiple media players 

such as tablet PCs, smartphones, MP3 players. Entertainment systems in smart 

homes provide connectivity, access to shared resources and distribution of 

content according to users’ preferences. 

 Safety system: A safety system of a smart home consists of smoke detectors, 

zone intrusion detectors, burglar alarms, surveillance cameras, interconnected 

and integrated with the communication infrastructure and the information 

systems. Alarms are properly and timely reported to the intended receiver(s) 

which could be the residents or a police station. Climate control: Heating, 

ventilation and air conditioning (HVAC) can be integrated and controlled 

jointly in an automated way, with the ultimate goal of providing customized 

climate control while saving energy. Room temperatures can be regulated 

based on human presence, in example providing at nighttime higher 

temperatures in the bedrooms, or lowering the climate control when the house 

is empty and activating it just before the residents come back home. 

 Assisted living: In a smart home assisted leaving and telecare can be provided 

for elder people to assist and monitor them, with the ultimate goal of 

permitting them to live longer in their houses. Sensors can recognize the 

activity of a person and assistance can be provided accordingly. In example, 

detecting a person waking up should automatically turn on the lights  also 

unexpected behaviors such as a person falling on the floor, shall be detected 

and reported to the emergency units promptly. 

 

2.1.2. Devices: Several types of devices can coexist in a smart home. Possibilities 

for new smart devices are endless, since any residential device with the addition of 

intelligent computational capabilities can become part of a smart home. Here the 

main devices currently available are listed, grouped by target application.  

 Lighting control: Light bulbs, light strips. 

 Appliance control: laundry machines, refrigerators, ovens. Safety system: 

smoke detectors, intrusion detection devices, security cameras, smart door-

locks. 

 Entertainment: Smart-TVs, set top-boxes, media players, laptops, wireless 

speakers. 

 Health and assisted living: smart wristbands, portable ECGs, pulse oximeters. 

 Network devices: gateways, routers, network storage devices, mobile phones, 

printers. 

 

2.1.3. Operating Systems: Due to the size, energy, computation and storage 

limitations typical of the embedded systems implemented in the majority of the 

devices in a smart home, their operating systems (OSs) must be extremely 

lightweight, while supporting the rich set of application, communication and 

security features needed. There exist a few operating systems for IoT devices that 

can currently be adopted for research and development purposes. Many researchers 

and developers are working for applying their innovative solutions into to these OSs, 

with the ultimate goal of testing them for production. Following, the main OSs 

applicable for smart home devices are presented. 

 Contiki [5]: this open source OS for IoT applications, which provide 

connectivity and applications’ support for low-cost, low-power micro-

controllers. Contiki represents the most adopted solutions for developing IoT 

solutions, It is written in C language and it has been ported to a number of 

microcontroller architectures, including the Texas Instruments MSP430, 

Atmel AVR, and the ESB platform [5]. Probably influenced by its popularity, 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Smart Home 

Vol. 10, No. 11, (2016) 

 

 

72                                                                                                          Copyright ⓒ 2016 SERSC 

there have been numerous studies of the protocol implementation 

vulnerabilities of Contiki [6]. 

 Tiny OS [7]: this free and open-source tool consists of a component-based OS 

and a development platform targeting wireless sensor network (WSN) 

applications. TinyOS is implemented using nesC programming language as a 

set of cooperating tasks and processes. Started as a collaboration between the 

University of California, Berkeley in co-operation with Intel Research and 

Crossbow Technology, it has since grown to be an international consortium, 

the TinyOS Alliance.  

 RIOT OS [8]: it is a microkernel-based OS which match the specific software 

requirements of typical IoT devices. Thanks to its modular implementation, 

RIOT OS guarantees minimum memory usage and permits ad-hoc 

customizations and configurations to meet the specific application 

requirements. Because of the minimized kernel size, RIOT OS requires only 

few hundreds bytes of RAM and storage. Although RIOT OS is still in 

development, it has the potential to become the preferred OS for IoT devices, 

due to its lightness and customization ability. 

In addition to the solutions listed above, the IoT devices currently on the market 

implement proprietary OSs. Although developed mainly for research purposes and 

supported by voluntary contributors, the open source OSs listed above represent 

mature and valid software solutions possibly ready to be customized to match the 

specific security requirements of smart devices to be developed. 

 

2.1.4. Communication Protocols: The heterogeneity of the hardware and software 

components in a smart home also reflects in the communication protocols available. 

Different solutions are used to transport information between devices, depending on 

traffic characteristics, device capabilities, and surrounding environment. The main 

communication protocols used in a smart home are briefly described next, grouped 

according to the OSI model classification. 

 

2.1.4.1. Physical and Data Link Layers 

 IEEE 802.15.1 Standard [9]: it defines the wireless Medium Access Control 

(MAC) and Physical Layer (PHY) specifications for Wireless Personal Area 

Networks (WPANs) targeting high- speed data transfers and multimedia 

distribution for home entertainment over short distances around 10 meters. It 

operates using frequency hopping spread spectrum (FHSS) to combat 

interference and jamming, achieving a maximum data rate of 1Mb/s over 

1MHz channels in the unlicensed industrial, scientific and medical (ISM) band 

at 2.4 GHz. The Bluetooth and Bluetooth LE (Low-Energy) protocol 

architectures build on top of the IEEE 802.15.1 PHY and MAC layers. The 

IEEE 802.15.1 Standard addresses the network security aspects of 

authentication (through a challenge-response 128-bit private key scheme) and 

encryption (through variable size up to 128 bits private key), without 

addressing message integrity issues. IEEE 802.15.4 Standard: it specifies 

MAC and PHY protocols for low-rate WPANs, targeting at networks 

characterized by devices such as sensors and embedded devices with limited 

traffic, low energy available and constrained memory and processing 

capabilities. The standard achieves a maximum data rate of 250 Kb/s 

transmitting on 5MHz channels in the 2.4 GHz ISM band using Carrier Sense 

Multiple Access with Collision Avoidance (CSMA/CA). The ZigBee high 

level communication protocol suite is based on the underneath IEEE 802.15.4 

physical and data link layers. Eight different suites provide security 

guarantees for the applications, ranging from adopting encryption only (AES-

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Smart Home 

Vol. 10, No. 11, (2016) 

 

 

Copyright ⓒ 2016 SERSC  73 

CTR), authentication only (AES-CBC-MAC), or encryption and 

authentication (AES- CCM). 

 

 IEEE 802.15.4 Standard [10]: IEEE 802.15.4 specifies MAC and PHY 

protocols for low-rate WPANs, targeting at networks characterized by devices 

such as sensors and embedded devices with limited traffic, low energy 

availability, and constrained memory and processing capabilities. The 

standard achieves a maximum data rate of 250 Kb/s transmitting on 5MHz 

channels in the 2.4 GHz ISM band using Carrier Sense Multiple Access with 

Collision Avoidance (CSMA/CA). 

 IEEE 802.11 Standard [11]: this technology provides MAC and PHY 

specifications for high-rate communications in Wireless Local Area Networks 

(WLANs) with ranges from 20 to 250 meters. In its 802.11a and 802.11g 

specifications it achieves 54 Mb/s data transmissions using CSMA/CA on 20 

MHz channels, through the use of Orthogonal Frequency Division Multiplex 

(OFDM) modulation. The latest developments of 802.11n and 802.11ac 

significantly increase the data rates, setting the theoretical upper bounds to 

150 and 866.7 Mb/s respectively. These improvements are reached through 

the use of larger bandwidths through channel aggregation up to 40 MHz for 

802.11n and 160 MHz for 802.11ac in the 2.4, 3.6, 5 GHz frequency bands 

and by adding multiple-input multiple-output (MIMO) antenna functionalities. 

In its first inception, IEEE 802.11 Standard used the Wired Equivalent 

Privacy (WEP) method to encrypt data, which was shown to be severely weak. 

In later implementations, robust solutions such as Wired Equivalent Privacy 

(WPA) and 801.11i emerged. 

 

2.1.4.2. Network and Transport Layers: Network layer protocols for smart home 

applications can either belong to custom designed solutions to address the specific 

application requirements (such as Zigbee or Bluetooth network layer protocols) or 

implement IP-based networking functionalities using the underneath physical and 

data layer solutions described above. In this context, the latter case has gained 

increasing interest due to the advantage of supporting IPv6 functionalities such as 

large address space, stateless and stateful address configuration, needed by the IoT 

applications. Protocols such as IPv6 over Low power Wireless Personal Area 

Networks (6loWPAN) [12], Routing Protocol for Low power and Lossy Networks 

(RPL) [13], and Multicast Protocol for Low power and Lossy Networks (MPL) [14] 

are examples of future adaptation and networking protocols tailored for IoT 

applications, including smart homes. 

Regarding the transport layer, UDP is preferred for resource-constrained devices, 

since it saves power by going to sleep after transmitting a packet, oppositely to TCP, 

which enforces to stay awake to process acknowledgments. At the same time, UDP 

lacks in reliability, which may be required at different levels, depending on the 

specific application considered. The reliability requirements of the transport 

protocol depend on the target application. For example, different mechanisms could 

be implemented for packet-based applications (which require all packets be received 

reliably at the destination) versus event-based applications (which require events, 

and not necessarily all individual packets, be reliably reported to the des tination). 

An event-based application might call for less complex transport mechanisms. 

 

2.1.4.3. Application Layer: The main application protocols for IoT and smart home 

environments are summarized below. 

 eXtensible Messaging and Presence Protocol (XMPP)  [15]: this open-

standard protocol implements a message-oriented middleware based on XML 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Smart Home 

Vol. 10, No. 11, (2016) 

 

 

74                                                                                                          Copyright ⓒ 2016 SERSC 

and it is widely tested and adopted for IoT applications such as smart grids 

and remote monitoring. 

 Constrained Application Protocol (CoAP) [16]: this software protocol is 

targeted for resource-constrained electronics devices that need to be 

controlled or supervised remotely, through Internet-based networks. CoAP is 

designed to minimize the complexity of mapping with HTTP, while also 

meeting specialized requirements such as multicast support, low overhead, 

and implementation simplicity. 

 MQ Telemetry Transport (MQTT) [17]: this connectivity protocol 

represents an extremely lightweight publish/subscribe messaging transport 

designed for low complexity, low power and low footprint implementations. It 

runs on connection-oriented transport layer protocols such as TCP or on non-

TCP/IP networks through its MQTT-S variant. 

 

2.2. Rule-Engine 

There are many kinds of rule engines available. Among the free rule-based and java-

based inference engines, Drools and Jess thoroughly studied and described in the 

following table. The table gives an exhaustive comparative chart for the selected inference 

engines measured on different performance metrics (See “Table 1.”). 

Table 1. Comparative Chart 

Rule Engine Drools Jess 

Algorithm RETE Algorithm RETE Algorithm 

OWL-DL Entailment No Yes 

Java Support Yes Yes 

Rule Support 
DRL 

(Own Rule Format) 
SWRL 

Version 6 7 

Licensing Free / Open source Academic use only 

 

2.2.1. Drools: Drools [18] is a java-based object-oriented rule engine, which is open-

source, so we can freely use and modify the code in java. It uses an optimized version of 

the RETE algorithm [4], called RETE-Object-Oriented algorithm to support high 

performance. It has its own writing rules, which is called DRL (Drools Resource 

Language) and is flexible enough to match the semantics of problem domain with DSLs 

(Domain Specific Languages), graphical editing tools, web based tools and developer 

productivity tools. It has useful features which include rule debugging and rule authoring 

tools like IDE plug-in. 

 

2.2.2. Jess: Jess [19] is also a java-based rule engine. It uses an enhanced version of the 

RETE algorithm to process. It can also directly manipulate and reason about Java objects. 

It is also a powerful Java scripting environment, from which you can create Java objects, 

call Java methods, and implement Java interfaces without compiling any Java code. It 

supports SWRL (Semantic Web Rule Language) [20] and the rules can be expressed in 

XML or Lisp languages. Although Jess is not open-source, it is available with no cost for 

academic use but we cannot get and modify the source code.  

 

3. A Resource-Efficient System Architecture 
 

3.1. Data Format in Smart Home Environment 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Smart Home 

Vol. 10, No. 11, (2016) 

 

 

Copyright ⓒ 2016 SERSC  75 

There exist many commercial smart home products such as NEST smoke detector, 

NEST smart thermostat, Bluetooth wrist bands, and etc. Each product has different data 

types; XML, JSON, and their own data structure to transfer information.  

3.2. Data Processing Gateway 

Our resource-efficient system utilizes the known RETE algorithm [4], a pattern-

matching solution developed for implementing production rule systems, constituting the 

core engine of most of the rule engine systems. Our system generates a set of memory 

nodes, called beta nodes, interconnected as an acyclic directed graph representing higher 

level rule sets for handling the data from the smart objects (See “Figure 2.”). Each 

memory node is set with a fixed size, based on the maximum number of stored data 

calculated based on the effective alive time of each sensor data.  

 

Figure 2. Example of RETE-Network 

3.3. Architecture of Data Processing in Gateway 

Gateway is performed by interaction of four sub modules. Figure 3, shows data flow, 

its directions, and an architecture of data processing. The system consists of four sub 

modules, Crawling module, Rule-based module, Storage module, and Visualization 

module. The first module is called Crawling Module, which receives data from various 

smart home objects and sends to main data controller called Backbone running on the 

system. Secondary, Rule-based Module, an inference engine also known as rule engine, 

has two main functionalities, which are data filtering and data analyzing. Filtering data is 

performed by filtering rule. Once the Rule-based Module receives data from smart 

devices through the Backbone, the module performs filtering process to leach unnecessary 

data by checking filtering rules defined and sends back results to the Backbone to save the 

filtered data into database. Another main functionality of the Rule-based Module is data 

analyzing. If there is already enough filtered and stored data in the database, the Rule-

based module starts to discover new knowledge by following rules. When any new 

knowledge is generated during analyzing process, the module sends the data to the 

Backbone to save the knowledge into database. The main role of the Storage module is 

receiving data from the Backbone and storing the data into the database. Finally, the 

Visualization module offers users to adjust rules for data processing and observe the 

statistics of data processing rates. 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Smart Home 

Vol. 10, No. 11, (2016) 

 

 

76                                                                                                          Copyright ⓒ 2016 SERSC 

 

 

Figure 3. Architecture of Data Processing in Gateway  

4. Testbed 

To test proposed system, Zolertia Z1 Sensor node and gateway devices are chosen as 

test devices. Figure 4, depicts our experimental environment containing multiple sensor 

motes and a gateway. Each of motes will send their sensing data using UDP 

communication. If any motes are too far from the gateway then they will send the data to 

nearby mote to forward to the gateway so that data can be guaranteed to be delivered to 

the gateway. There are two scenarios to test performance of our algorithm, uniform 

interval settings for all devices and different interval settings for each device.  

 

Figure 4. Testbed for Resource-Efficient Data Processing System 

5. Conclusion 

In this paper, we introduced architecture of data processing in gateway for smart 

home environment. We adopted rule based processing module to process 

heterogeneous data type from various smart home products. For this paper, we chose 

Zolertia Z1 as test sensor motes instead of actual commercial products. Zolertia 

products provides various features to test our system in smart home environment, 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Smart Home 

Vol. 10, No. 11, (2016) 

 

 

Copyright ⓒ 2016 SERSC  77 

and are developed in C language thus it`s easy to modify motes to be adopted to our 

resource-efficient system.   

 

6. Future Work 

There exist few challenges to improve our system; 1) operating with existing 

commercial products (such as NEST products), and utilizing different gateway 

devices other than Zolertia product. 2) It would be excellent to work with IEEE 

802.11 network and IEEE 802.15.4 together since we only utilize our system to  

work with IEEE 802.15.4 network only. 3) A quantitative performance analysis of 

information processing for our system need to be carried out for devices with 

different computational capabilities and using various synthesized and real data 

types. 

Another improvement to this research is to adapt a built-in data-mining module. 

Applying data-mining techniques to the IoT data can yield interesting perspectives 

to understanding individual and human behaviour, detecting group and community, 

or discovering new pattern. Therefore, a system that supports collecting and mining 

the IoT data in efficient ways is needed for researchers to be able to use this 

untapped resource.   

 

References 

[1] L. Atzori, A. Iera and G. Morabito, “The internet of things: A survey,” Computer networks, vol. 54, no. 

15, (2010), pp. 2787–2805. 

[2] J.  Gubbi, R. Buyya, S. Marusic and M. Palaniswami, "Internet of Things (IoT): A vision, architectural 

elements, and future directions”, Future Generation Computer Systems, vol. 29, no. 7, (2013), pp. 1645-

1660. 

[3] C. Lee, L. Zappaterra, K. Choi and H. A. Choi, “Securing smart home: Technologies, security 

challenges, and security requirements”, Proceedings of the Communications and Network Security, San 

Francisco, CA, USA, (2014) October 29-31, pp. 67-72. 

[4] Forgy, Charles L, “Rete: A fast algorithm for the many pattern/many object pattern match problem”, 

Artificial intelligence, vol 19, no. 1, (1982), pp. 17-37. 

[5] A. Dunkels, B. Gronvall and T. Voigt, “Contiki-a lightweight and flexible operating system for tiny 

networked sensors”, Proceedings of the 29th Annual IEEE International Conference in Local Computer 

Networks, (2004), pp. 455-462. 

[6] K. Chugh, A. Lasebae and J. Loo, “Case study of a blackhole attack on 6lowpan-rpl”, Proceedings of 

6th International Conference on Emerging Security Information in SECURWARE, (2012), pp. 157-162.  

[7] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E. 

Brewer and D. Culler, “Tinyos: An operating system for sensor networks”, In Ambient intelligence, 

Springer, (2005), pp. 115-148. 

[8] E. Baccelli, O. Hahm, M. W¨ahlisch, M. Gunes and T. Schmidt, “Riot: One os to rule them all in the iot”, 

(2012). 

[9] J. S. Lee, Y. W. Su and C. C. Shen, “A comparative study of wireless protocols: Bluetooth, UWB, 

ZigBee, and Wi-Fi”, Proceeding of 33rd Annual Conference of the IEEE in Industrial Electronics Society, 

IECON 2007, (2007). 

[10] P. Baronti, P. Pillai, V. W. C. Chook, S. Chessa, A. Gotta and Y. F. Hu. “Wireless sensor networks: A 

survey on the state of the art and the 802.15. 4 and ZigBee standards”, Computer communications, vol. 

30, no. 7, (2007), pp.1655-1695. 

[11] B. P. Crow, I. Widjaja, L. G. Kim and P. T. Sakai, “IEEE 802.11 wireless local area networks”, IEEE 

Communications magazine, vol. 35, no. 9, (1997), pp. 116-126.  

[12] J. Hui, D. Culler and S. Chakrabarti, “6lowpan: Incorporating ieee 802.15. 4 into the ip architecture”, 

IPSO Alliance White Paper, (2009). 

[13] T. Winter, “Rpl: Ipv6 routing protocol for low-power and lossy networks”, (2012). 

[14] J. Hui and R. Kelsey, “Multicast protocol for low power and lossy networks (mpl)”, (2013). 

[15] P. Saint-Andre, “Extensible messaging and presence protocol (xmpp): Core”, (2011).  

[16] Z. Shelby, K. Hartke, C. Bormann and B. Frank, “Constrained appli- cation protocol (coap), draft-ietf-

core-coap-13”, Orlando: The Internet Engineering Task Force–IETF, (2012) December.  

[17] U. Hunkeler, H. L. Truong and A. S. Clark, “MQTT-S—A publish/subscribe protocol for Wireless 

Sensor Networks”, Proceeding of 3rd international conference in Communication systems software and 

middleware and workshops, COMSWARE 2008, IEEE, (2008). pp. 791-798. 

[18] P. Browne,  “JBoss Drools business rules”. Packt Publishing Ltd, (2009).  

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Smart Home 

Vol. 10, No. 11, (2016) 

 

 

78                                                                                                          Copyright ⓒ 2016 SERSC 

[19] E. Friedman, “Jess in action: rule-based systems in java”, Manning Publications Co., (2003). 

[20] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B.Grosof and M. Dean, “SWRL: A semantic web 

rule language combining OWL and RuleML”, W3C Member submission, vol. 21, (2004), pp. 79. 

 

Authors 
 

Changmin Lee, He received B.S. in computer science from 

National Institute for Lifelong Education in Seoul, South Korea, 

M.S. degree in computer science from Towson University, 

U.S.A. Ph.D. degree in computer science from George 

Washington University, U.S.A. Currently, he is a research 

engineer in development division at Fasoo.com, Inc. His research 

interests include internet of things security, network security, 

processing algorithm, machine learning, data mining, and digital 

rights management. 

 

Changhyun Byun, He received B.S. in computer science from 

National Institute for Lifelong Education in Seoul, South Korea, 

M.S. and D.Sc. degrees in computer science from Towson 

University, U.S.A. Currently, he is a research engineer in 

development division at Fasoo.com, Inc. His research interests 

include internet of things security, processing algorithm, 

machine learning, data mining, and digital rights management. 

 

Hyeonjeong Shin, He is currently a professor in School of 

Convergence Engineering/Computer Science & Engineering at 

ShinHan University. His research interests include internet of 

things security, machine learning, and data mining. 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.




