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Abstract .

To evaluate short-term power load properly and efficiently, this paper p a
modified DWT-QDE-LSSVM (Discrete wavelet transform (DWT) and guares
support vector machine (LSSVM) optimized by quantum differential ioff (QDE))
model combined with input selected. The load data sermﬁhe pre\@ays are first
decomposed into an approximation component and a mp ent.When LSSVM is
built to model the approximation component and or| is ied to overcome
the problems faced by LSSVM in selecting par s. In D%« raise forecasting
accuracy, this paper proposes the refinement=gf related f ors? The empirical results

show that the proposed DWT-QDE-LSSV del is fea\ nd can satisfy the short-
term load forecasting requirements in Ch

Keywords: Short-term load f @% differential evolution; Wavelet
transform; Least squares SUQ mac inement
1. Introduction

During the Twelft year Plan |0d with large-scale pilots in smart grid and
deepening refor ectr|C|t ket, the smart grid faces lots of unprecedented
challenges and nltles herefore, improving short-term load forecasting
method an rrespon f ecastlng accuracy is very important for power demand
analysis, s powe atchmg [3], unit commitment [4], operation and trading
activities of market p nts [5] and so on.

Currently, the
statistical meth

s in load forecasting are divided into classical mathematical
artificial intelligence models. Most of these methods, including
vector autoregréessive (VAR) model [6] and ARMA model [7-8] are based on time series
analysis. N%gs S. S. et. al., [7] employed ARMA model to predict the short-term load.
Time s@ smoothness prediction methods are criticized by researchers for their
wea f non-linear fitting capability. With the development of the electricity market
i orld, high self-learning ability prediction methods are presented for load

sting, such as neural network prediction technology [9] and support vector machine
(SVM) [10-11]. Among them, the application of artificial neural network is the most
extensive, Beccali et. al., [9] came up with a combined approach based on unsupervised
and supervised neural networks and confirmed its validity to forecast the electric energy
demand of a suburban area with a prediction time of 24h. Although load forecasting is the
most suitable areas of ANN applications in power system, the errors between input data
and actual value lead to defects in ANN prediction accuracy [10]. According to the
characteristics of different regions, various parameters and ANN structure should be
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selected according to its own variation of load and weather. This increases the difficulty
of model promotion [11].

Unlike ANN which uses the empirical risk minimization principle to minimize the
generalization errors, SVM exploits the structural risk minimization principle to convert
the solution process into a convex quadratic programming problem. This overcomes some
shortcomings in neural network and achieves a good performance in the practical load
forecasting [12]. In paper [13], Sousa et al. successfully proposed SVM which was
optimized by simulated annealing to forecast the short-term load. However, the problem
of hyperplane parameter selection in SVM leads to a large solving scale [14]. In order to
solve this, J.A.K. Suykens and J. Vandewalle proposed LSSVM as a classifier in 1999.
Unlike the inequality constraints which were introduced by SVM, LSSVM proposes
equality constrains in formulation. Shayeghi, H et. al., [15] proved that the LSSVM based
model has good potential for simultaneous forecasting of electricity price and load.
However, the selection of regularization parameters and kernel parameters greatlyeffects
the performance of LSSVM. Differential evolution (DE) algorithm [16], parti

optimization (PSO) [17] and other optimization models are used in o select
appropriate parameters for power load forecasting. Aiming at solving h@ ems of
local optimum and low efficiency faced by the above Qptirqization 7 this paper
comes up with QDE to improve global optimization cap

When using models for short-term load forecas r|g| al usually directly
used in prediction models. However, due to the ’c natu ort-term load data,
describing the movement trend of short-term load™ data and urately predicting it
become difficult. In order to solve this pro%‘\ the ap ion of wavelet transform
(WT) in eliminating the irregular fluctuati Ioad date, fias achieved much attention

in recently years [18]. Bahrami et. aI veI velet transform to eliminate the
high frequency components of th s da Ix ta. Literature survey shows that
the combination of WT and ot tgent algysﬁq s achieves good results.

In this paper, a hybrid rr% pose he DWT and QDE-LSSVM is proposed
for short-term load forecasting=In thj , hot only the highest temperature, the
lowest temperature, the relatlvei@ﬂy, the mean value of the wind speed and the
load data of the previ s but al e refinement of day type are considered as the
inputs for QD d the wavelet transform is used to eliminate the
high frequency @ ents o@) ious days load data. In addition, this paper comes
up with QR orith elect and automatically adjust appropriate parameters of
LSSVM a Final proposed model is employed to forecast the load of
Yangquan city in Chi

This paper is d as follows: Section 2 shows the brief description of DWT,
LSSVM and Q ction 3 presents the frame work of the proposed technique; Section
4 analyzes an e ment study, while Section 5 concludes this paper.

2. Met@ﬁ)gy

@lscrete Wavelet Transform

s an effective method for signal processing, wavelet transform can be divided into
two classifications: DWT and continuous wavelet transform (CWT). Compared with other
WTs, DWT, as a kind of WT, whose wavelets are discretely sampled, can capture both
frequency and location information in temporal resolution. Thus, DWT has a key
advantage over Fourier transforms. In this paper, DWT is used in data filtering stage.
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This paper uses a three-level DWT to decompose t ’sﬁl o@e-senes into
approximation and detail components as Figure 1, sh tionMapplied for the

DWT of a discrete time signal x(k) is listed as fo \\/

Figure 1. Multi-Resolution Decomposition for Two-L
I

ZX )W (K @
where D and v, (k) are the d \@oe nd function at location n and
scale m. y/mn( ) with m,n=0 |% |Ied slated form of the mother wavelet

w(k)=w,,(k). Scaling fu% @IVGI‘] by:
P (K) = [ j (2 k@ )

where ¢(k allng Amth m,n=0.
The app@ coeffi at scale m and location n is:
P é} ®)

The approxi An and detail D; of the signal at scales m and j are calculated

3

,n(pm,n (4)

An —
Dt f D i, ®)

For a DWT with M-level decomposition, the sum of the approximation and details up
to scale M provides the original signal x as

X=A, +iDJ’ (6)

The approximate and detailed coefficients at any arbitrary scale m are used to calculate
the corresponding coefficients at the next scale m+1 by:
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A$1+1,n :ZIiA(';,Zn-v-i :Zli—ZHA'(r:Li (7
m+1n Zh 2n+i :Zhi—ZHA:;,i (8)

where |, and h, are the coefficients of the approximation and detail components used
for the wavelet decomposition.

2.2. Least Squares Support Vector Machine

LSSVM is a novel SVM method which puts up with by Suykens J.A.K to solve the
problems of model decomposition and function estimation. LSSVM adopts least squares
linear system as a loss function which replaces quadratic programming in SVM. This
method simplifies the computational complexity and improves the running speed. Similar,
to ANN and other intelligent algorithms, the performance of LSSVM seriousl ebgys
on the input and the parameters. >§~

2.3. Quantum Differential Evolution

The detailed working steps of QDE are presented as @

1)  Population initialization

|0) and |1) are used to represent two basic stat |crosc%\ ticle. The quantum
bit represents as: Q 6
o)=alo)+ A1} N ®

among it, «, S are the probabili %)Iltud correspond to the quantum bits,
and |af +|A[ =1. Thus, the m blts ca expressed as [cos(9),sin(6)] .

The quantum bit Q, ; isd as:

cos(6 l)cos(& @) \? 10
Q= sin(@,,) si -sin(@.. (10)
where e[, ie{l,2,...,N}, je{l,2,...,D}. D represents the

dimension probleb presents the population size.
i population Q, this paper supposes P, and C as mutation

After generating %
probability and @ on factor, respectively.

2)  The sohlutien space transformation and fitness calculation

The qu@w chromosomes variables should be mapped from the unit space | =[—1,1]
to the ation problem solution space, so that each quantum chromosome variables
to each optimization variables of optimization problems. Suppose the
n-domain of X; ;, the solution space variable of optimization problem is [a;,b;].
fS the corresponding solution space variables are shown as follows:

Xy _1|1+cos(g,;) 1-cos(@,;) by 1)
Xij| 2|1+sin(g,;) 1-sin(g,;) | &

Each quantum chromosome Q corresponds to a solution X of optimization problems,
and the fitness function f(X) can be calculated and updated based on the greed principle

for global optimal solution.
3) The rotation angle adjustments of quantum own position:
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For each chromosome of the population, calculate the rotation angle of quantum own
position according to the following formulas:

AQI? :emin + flt(emax mln)rand exp( ) (12)
axgen
fit ... — fit
fit=—2 (13)
flthest
in which, @ 6 . are the min 0.00lr and max 0.05z of the interval A@ ,

min ! max

respectively; fitg,, represents the fitness value of the global optimum individual; fit; is

the fitness value of current individual; gen represents the former iterations of the
population while maxgen represents the maximum times of iterations which are limited

by population. \/
4)  Quantum mutation
The update of quantum chromosome in QDE algorithm draws Iesson he DE
algorithm [19]. The quantum chromosome is randomly selected quantum
population, and qubit phase is proposed as basis vector@wo dlf@ubl hases
used as differential vectors.
vig+l 7%

& 2.1~ O) OQ (14)

among it, r,r,,r,e{L,2,...,N}, and ¢|0 The 3@19 factor C is a random
number between [0, 1].

5)  Quantum crossover @
In order to generate new individ &uant@ dual variation is combined with

pre-determined parent individuals ertain

Lo {v,gfl,lf(rand <C,, = nd)

+C*rand * (0°

(15)

" IJ,othe

in which, Je &ﬁwensmn of the problem, j,., represents a integer
randomly 1 2,. ﬁw crossover probability C, €[0,1].

se
6) Q Iect'
To make™bEtter f|t

algorithm is used to g€e

nd|V|duaIs into the next generation, one to one greedy

udtif <f@"
ot It ERICD)) (16)
o5, otherW|se

0% AGY, 17

@ere f represents the fitness function.
fter updating, new qubits can be expressed as:
g _[COS(BE™)-++ cos(65") )
" cos(65)-+- sin(8%h)

7) The comparison of results
If the algorithm reaches iterations or meets the convergence criteria, the best result can
be recorded, otherwise returns to Step 2.
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3. Approaches of DWT-QDE-LSSVM

In this section, the short-term load forecasting model incorporating DWT, QDE and

LSSVM is constructed as Figure 2, shows.

Initiation
|
[ '
Short-term
Related data load data
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v I Y
°
Bt D1 Al V
+ — X
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Input Q >V
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End
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Figure 2. Flowchart of DWT-QDE-LSSVM Algorithm

The modeling flowchart contains three parts. Prior to constructing the model, the short-
term load data S are decomposed into an approximation signal A and a detail signal D by
DWT. Researchers select the day type, the highest temperature, the lowest temperature,
the mean relative humidity and the mean value of the wind speed as related factors.
According to the load curve, this paper carries on a more careful classification to day
types based on different holidays, the specific classification is described later.
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After two-layer DWT decomposition and the selection of input, the original short-term
load data are divided into the training set and the test set.

In the second part, LSSVM is proposed to model the sub-series in the first part, so that
the tendencies of the sub-series can be predicted. The fitness function of QDE is defined
as:

f(r.o")=— Z(y, i) 19)

S't'ye[yminvymax 12 E[O- min’o-zmax:l

where y is the j-th input value of known samples, y, is the j-th output value

predicted by corresponding model, N is the total number of samples while y and &
represent regularization parameters and kernel parameters, respectively. S

In the final part, LSSVM with optimal parameters which obtain by QDE i M
forecast the short-term load data. w

Our approach is elaborately presented in Algorithm 1.

Algorithm 1 The proposed DWT-QDE-LSSVM forecasti ahgontiuﬂ',

Assumption: Y =Y (linear part)+Y "

(nonlme
Inputs: The training dataset Y, yl,yNt 0@4 of the testing

dataset

Outputs: The combined forecast vectorG%yN a In, @ yN"+N
Steps:
. ApplyDWTto Y, to deco s%as foﬁ%\ A,D]=DWT (Y,," filter")

1

2. Initialize populatlon N utatlo F =0.05; crossover rate C=0.5

3. Setgeneration G = random e the populations

4.  Set quantum co on input rmula (10)

5. Do transform ers asF a(11)

6. Usethep p sin LS to forecast A, get the load forecasting results and

get fltness func e f()\Q
7. enerat ber
8. ion op Formula (14)

9. Do Crossover, ion Formula (15)

10. Selection ton in order to generate offspring, set G=G+1
11. Return
12. Elseif

13. Eh@e QDE-LSSVM operation
End

@)
%Qumenc Example and Results

4.1. Data Preprocessing

The 24h short-term load forecasting has been made on the power system of Yangquan
city in China from March 1, 2013 to June 10, 2013. Figure 3, shows the power load of
2280 samples, ranging from around 650 MW to 950 MW. From Figure 3, none apparent
regularity of power load can be obtained.
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Figure 3. The Original Short-Term Load Data fro 79% h 1, June 10,
2013 of Yangquan
Through the two-level decomposition by D\/@we pow curve after noise

reduction is shown in Figure 4. By contrastFwith Flgu the power load signal is
changed into smooth one which has smaII rrand ha r connectedness after the
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Qure 4. The Short-Term Load Data After DWT Decomposition

election of Input

Currently, the input variable selection is one of the most important parts of every
forecasting method. Therefore, this paper presents the refinement of the argument by
detailing the classification and selection of the input to improve the accuracy of the
forecasting.

Nowadays, the common used classification of day types, which is set as {0,0.8,1}, is

based on weekdays, weekends and holidays. As is shown in Figure 5, the time series of
load displays a clear daily and weekly seasonality. The weekly seasonality effects of the
days of the week and holidays. Most papers claim that Monday, Tuesdays, Wednesdays,
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Thursdays and Fridays can be modeled as a single type of day. After the study of the
short-term load in Yangquan, researchers find that, in this region, each daily load has its
own unique characteristics. Figure 5, shows Yangquan weekly load curve, from it we can
know that the evening load in Friday and Saturday is higher than other days in the same
period. Since the large amount of data we have, researchers prefer to model each day as a
dummy variable. Dummies for holidays and days around holidays are also considered.
Table 1, gives a summary of the variables used, and the {0,0.8,1} day type classification

is compared with the proposed classification later.

Table 1. Types of Days Used in the DWT-QDE-LSSVM Model

Sunday

Monday
Tuesday
Wednesday
Thursday
Friday

Saturday
Holiday (official
Worklng day bef

ol N

Load data(MW)
o0 o0
o =
o
T

760 |- @
A 1 I | ! 1 1 I I 1 1 | |

Q‘?A 36 48 60 72 8 96 108 120 132 144 156 168
Time(hour)

Figure 5. Weekly Load Values in Yangquan

@Qs region, grid load is greatly influenced by weather and seasonal temperature
ences. Thus, the related factors in this paper include: days type; daily temperature
(including daily highest temperature and daily lowest temperature); daily precipitation
and daily wind velocity. 2160 data are selected as training samples from May 1, 2013 to
June 5, 2013, and the data from June 6, 2013 to June 10, 2013 are selected as test samples.
Meanwhile, in order to reflect the different load conditions, 24 hours test results are
obtained.

4.3. Statistic Measure to Determine the Accuracy of the Forecast
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This paper assesses the prediction model accurately by using appropriate indicators.
The paper applies mean absolute percent error MAPE, mean absolute error MAE and
daily peak error DPE to measure the feasibility of the model. These measures are defined
as follows:

MAPE = %zﬂy‘ B yi|%*100% (20)
1Ny
MAE =3 [ - ¥ (21)
DPE =max,;_,, (|yi - | Yi J (@)
in which, y, and y, denote output value and the actual value of the te :
respectively. 0
4.4, DWT-QDE-LSSVM Results Analysis \%
As discussed previously, the performance of L efing Its parameters.

QDE is developed to tune regularization para
LSSVM by minimizing errors generated in the trainifg set and test Set. The regularization
parameter » and kernel parameter o of opti y QDE are 152.173 and
0.046, respectively. The main parameter§ E and @ are listed in Table 2.

&%rs ofé

Table 2. Par and BPNN

Population idden layer 2
Mutation facto (.05 Maximum number of convergence 1000
Crossover Q 0.5 ;.Sarning rate 0.5
ror 0.004
The aut Qﬂon andspartial correlation of the forecasting residual series by DWT -
QDE-LSS@e cons @0 exam the power load forecasting. The results are shown
in Figure 6.

is obvi find that there are no significant auto correlation and partial
correlation of the fgéasting residual series. Accordingly, we can draw the following
0

conclusions tha rmation contained in power load is mined well by LSSVM whose

e
parameters ire &y QDE.
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4.5. Comparative Analysis O

To demonstrate the advanced nature of t roposed deI his paper uses DWT-
QDE-LSSVM, QDE-LSSVM, LSSVM, B@ ARM orecast the 24h short-term
load from June 6, 2013 to June 10, 2013 T- SVM with and without day
type refinement and other forecastin @ wit D@Qe refinement from June 6, 2013
to June 10, 2013 are shown in Fig

Error (%)

60 80 100 120
Time (h)

QDE-LSSVM LSSVM BP

Actual —— DWT-QDE-LSSVM DWT-QDE-LSSVM No Refinement ARMAI

& [

orecasting Results of Different Models from June 6, 2013 to June

Fig
@lé 10, 2013
igure 7, shows that: (a) the accuracy of DWT-QDE-LSSVM is improved after day
type refinement, the highest error reduces from 3.083 to 2.891 which proves that the day
type refinement can enhance the prediction performance of the model; (b) DWT-QDE-
LSSVM shows the best fitting degree to the actual data while ARMA gives the worst one,
[-4.48% 4.38%], [-3.32% 3.80%] and [-6.38% 8.17%] are the error range of QDE-
LSSVM, LSSVM and BPNN, respectively which means that the fitting degree of QDE-
LSSVM is better than LSSVM and BPNN; (c) because the optimal selection of the
parameters by QDE, the prediction accuracy of LSSVM has been significantly improved.
QDE algorithm uses quantum coding scheme to break the local mechanism trap. Thus, it
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can increase the ability to traverse the solution space during the short-term load
forecasting. In the individual updating, the general quantum rotation gate strategy is
applied to accelerate convergence; (d) the method based on LSSVM is better than BPNN
in short-term load forecasting. As an optimization method for local search, BPNN is very
sensitive to the initial network weights which may converge to different local minima.
Aiming at the problems of over-fitting and generalization of BPNN, LSSVM has optimal
combination of approximation precision and generalization ability; (e) compared with
QDE-LSSVM, the results of DWT-QDE-LSSVM show that estimates are in good
agreement with true values. It is mainly because DWT processing filters out the non-
significant information of the original time series which eliminates the impact of non-
significant information on forecasting results.

This paper uses MAPE, MAE and DPE to measure the performance of the three
forecasting models, which are shown in Table 3.

<
Table 3. MAPE, MAE and DPE of DWT-QDE-LSSVM, DWT-QDE-L
without Day Type Refinement, QDE-LSSVM, LSSVM, BPNN a

Models
DWT-QDE-
DWT-QDE- LSSVM withou<3 LSS VM | BPNN | ARM
LSSVM . A
day type refinement
1.320 1.350 Q 1.429 1.496 | 1.937 |2.369
o 2
11.286 11.977 \ R ]@7 12.655 | 16.281 | 19.745
2.890 3.08 %&09 4.089 8.179 |7.631

Table 4, shows the MAPE nd the E of the prediction methods. From Table
4, it can be concluded that: e day t nement decreases the MAPE, MAE and
DPE of DWT-QDE-LSS by 0. OB@MW and 0.193%, respectively; (b) DWT-
QDE-LSSVM has the MAPE AE in most days and ARMA has the highest
ones. The MAP QM«E of T-QDE-LSSVM are up to 1.049% and 8.459MW
lower than the his stS)that, compared with ARMA, DWT-QDE-LSSVM
has a S|g vanta e mall sample set regression for LSSVM meets the
structural r n|m|z io nC|pIe (b) the DPE of LSSVM is up to 1.199% higher than
DWT- QDE .280% higher than QDE-LSSVM, which indicates that the
prediction eff|C|enc T-QDE-LSSVM and QDE-LSSVM are superior to LSSVM;

(c) the DPE of DE-LSSVM is 2.890% while the BPNN is 8.179%, which means
the prediction ¥estits of BPNN cannot meet the stability principle of the of short-term

load forem g requirements.

sions
QEQ idering the historical power load data, date types, and meteorological factors, this
r uses DWT-QDE-LSSVM model to forecast the short-term load. Based on different
forecasting models in this paper, it can be concluded that: (a) the day type refinement can
highly improve the forecast precision; (b) using DWT-QDE-LSSVM model to forecast
the short-term load can achieve higher prediction accuracy compared with QDE-LSSVM
model, LSSVM model, BPNN model and ARMA model; (c) DWT increases the stability
of short-term load data, thus it can improve the accuracy of the proposed model; (d)
through parameters selection by QDE, the prediction accuracy of LSSVM has been
significantly improved; (e) as a hybrid heuristic algorithm, the algorithm in this paper is
able to provide a basis for smart grid when it establishes scientific and rational power
generation plan.
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Although DWT-QDE-LSSVM has obvious advantages, the application in short-term
load fore-casting is worth improving, for example, the computation time is too long. The
future research emphasis in this field will include not only the optimization of the
proposed method but also the reduction of the computation time in order to further
improve the model practicality.
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