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Abstract 

To evaluate short-term power load properly and efficiently, this paper proposes a 

modified DWT-QDE-LSSVM (Discrete wavelet transform (DWT) and least squares 

support vector machine (LSSVM) optimized by quantum differential evolution (QDE)) 

model combined with input selected. The load data series of the previous days are first 

decomposed into an approximation component and a detail component. Then LSSVM is 

built to model the approximation component and QDE algorithm is applied to overcome 

the problems faced by LSSVM in selecting parameters. In order to raise forecasting 

accuracy, this paper proposes the refinement of related factors. The empirical results 

show that the proposed DWT-QDE-LSSVM model is feasible and can satisfy the short-

term load forecasting requirements in China.  

 

Keywords: Short-term load forecasting; Quantum differential evolution; Wavelet 

transform; Least squares support vector machine; Refinement 

 

1. Introduction 

During the Twelfth Five-year Plan period, with large-scale pilots in smart grid and 

deepening reform in electricity market, the smart grid faces lots of unprecedented 

challenges and opportunities [1-2]. Therefore, improving short-term load forecasting 

method and the corresponding forecasting accuracy is very important for power demand 

analysis, such as power  dispatching [3], unit commitment [4], operation and trading 

activities of market participants [5] and so on. 

Currently, the methods in load forecasting are divided into classical mathematical 

statistical methods and artificial intelligence models. Most of these methods, including 

vector autoregressive (VAR) model [6] and ARMA model [7-8] are based on time series 

analysis. Pappas. S. S. et. al., [7] employed ARMA model to predict the short-term load. 

Time series smoothness prediction methods are criticized by researchers for their 

weakness of non-linear fitting capability. With the development of the electricity market 

in the world, high self-learning ability prediction methods are presented for load 

forecasting, such as neural network prediction technology [9] and support vector machine 

(SVM) [10-11]. Among them, the application of artificial neural network is the most 

extensive, Beccali et. al., [9] came up with a combined approach based on unsupervised 

and supervised neural networks and confirmed its validity to forecast the electric energy 

demand of a suburban area with a prediction time of 24h. Although load forecasting is the 

most suitable areas of ANN applications in power system, the errors between input data 

and actual value lead to defects in ANN prediction accuracy [10]. According to the  

characteristics of different regions, various parameters and ANN structure should be 
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selected according to its own variation of load and weather. This increases the difficulty 

of model promotion [11]. 

Unlike ANN which uses the empirical risk minimization principle to minimize the 

generalization errors, SVM exploits the structural risk minimization principle to convert 

the solution process into a convex quadratic programming problem. This overcomes some 

shortcomings in neural network and achieves a good performance in the practical load 

forecasting [12]. In paper [13], Sousa et al. successfully proposed SVM which was 

optimized by simulated annealing to forecast the short-term load. However, the problem 

of hyperplane parameter selection in SVM leads to a large solving scale [14]. In order to 

solve this, J.A.K. Suykens and J. Vandewalle proposed LSSVM as a classifier in 1999. 

Unlike the inequality constraints which were introduced by SVM, LSSVM proposes 

equality constrains in formulation. Shayeghi, H et. al., [15] proved that the LSSVM based 

model has good potential for simultaneous forecasting of electricity price and load. 

However, the selection of regularization parameters and kernel parameters greatly affects 

the performance of LSSVM. Differential evolution (DE) algorithm [16], particle swarm 

optimization (PSO) [17] and other optimization models are used in order to select 

appropriate parameters for power load forecasting. Aiming at solving the problems of 

local optimum and low efficiency faced by the above optimization models, this paper 

comes up with QDE to improve global optimization capability.  

When using models for short-term load forecasting, the original data is usually directly 

used in prediction models. However, due to the chaotic nature of short-term load data, 

describing the movement trend of short-term load data and accurately predicting it 

become difficult. In order to solve this problem, the application of wavelet transform 

(WT) in eliminating the irregular fluctuation of the load data has achieved much attention 

in recently years [18]. Bahrami et. al., [18] developed wavelet transform to eliminate the 

high frequency components of the previous days load data. Literature survey shows that 

the combination of WT and other intelligent algorithms achieves good results. 

In this paper, a hybrid method composed of the DWT and QDE-LSSVM is proposed 

for short-term load forecasting. In this method, not only the highest temperature, the 

lowest temperature, the mean relative humidity, the mean value of the wind speed and the 

load data of the previous days, but also the refinement of day type are considered as the 

inputs for QDE-LSSVM. In this regard, the wavelet transform is used to eliminate the 

high frequency components of the previous days load data. In addition, this paper comes 

up with QDE algorithm to select and automatically adjust appropriate parameters of 

LSSVM model. Finally, the proposed model is employed to forecast the load of 

Yangquan city in China.  

This paper is organized as follows: Section 2 shows the brief description of DWT, 

LSSVM and QDE; Section 3 presents the frame work of the proposed technique; Section 

4 analyzes an experiment study, while Section 5 concludes this paper. 

 

2. Methodology 
 

2.1. Discrete Wavelet Transform 

As an effective method for signal processing, wavelet transform can be divided into 

two classifications: DWT and continuous wavelet transform (CWT). Compared with other 

WTs, DWT, as a kind of WT, whose wavelets are discretely sampled, can capture both 

frequency and location information in temporal resolution. Thus, DWT has a key 

advantage over Fourier transforms. In this paper, DWT is used in data filtering stage. 
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Figure 1. Multi-Resolution Decomposition for Two-Level DWT 

This paper uses a three-level DWT to decompose the original load time-series into 

approximation and detail components as Figure 1, shows. The equation applied for the 

DWT of a discrete time signal  x k  is listed as follows: 

   , ,

c

m n m n

k

D x k k                                                                                                       (1) 

where ,

c

m nD  and  ,m n k  are the detailed coefficient and function at location n  and 

scale m .  ,m n k  with , 0m n   is the detailed and translated form of the mother wavelet 

   0,0k k  . Scaling functions for DWT are given by: 

   2
, 2 2

m

m

m n k k n 



 

  
 

                                                                                            (2) 

where  k  is the scaling function with , 0m n  . 

The approximate coefficient at scale m  and location n  is: 

   , ,

c

m n m n

k

A x k k                                                                                                        (3) 

The approximation mA  and detail jD  of the signal at scales m  and j  are calculated 

by: 

, ,

n
c

m m n m n

n

A A 




                                                                                                                 (4) 

, ,

n
c

j j n j n

n

D D 




                                                                                                                 (5) 

For a DWT with M-level decomposition, the sum of the approximation and details up 

to scale M provides the original signal x  as 

1

M

M j

j

x A D


                                                                                                                    (6) 

The approximate and detailed coefficients at any arbitrary scale m are used to calculate 

the corresponding coefficients at the next scale m+1 by: 
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1, ,2 2 ,

c c c

m n i m n i i n m i

i i

A l A l A                                                                                              (7) 

1, ,2 2 ,

c c c

m n i m n i i n m i

i i

D h A h A                                                                                           (8) 

where il  and ih  are the coefficients of the approximation and detail components used 

for the wavelet decomposition. 

 

2.2. Least Squares Support Vector Machine 

LSSVM is a novel SVM method which puts up with by Suykens J.A.K to solve the 

problems of model decomposition and function estimation. LSSVM adopts least squares 

linear system as a loss function which replaces quadratic programming in SVM. This 

method simplifies the computational complexity and improves the running speed. Similar 

to ANN and other intelligent algorithms, the performance of LSSVM seriously depends 

on the input and the parameters. 

 

2.3. Quantum Differential Evolution 

The detailed working steps of QDE are presented as follows: 

1) Population initialization 

0  and 1  are used to represent two basic states of microscopic particle. The quantum 

bit represents as: 

0 1                                                                                                                    (9) 

among it,  ,   are the probability amplitudes which correspond to the quantum bits, 

and 
2 2

1   . Thus, the quantum bits can also be expressed as  cos( ),sin( )
T

  . 

The quantum bit ,i jQ  is defined as: 

, j,1 ,2

,

, j,1 ,1

cos( )cos( )cos( )

sin( )sin( ) sin( )

ii i

i j

ii i

Q
 

 

 
  
 

                                                                                (10) 

where 2 rand  , [0,1]rand , {1,2, ,N}i , {1,2, , }j D . D represents the 

dimension of the problem, N represents the population size. 

After generating initial population Q, this paper supposes mP  and C as mutation 

probability and contraction factor, respectively. 

2) The solution space transformation and fitness calculation 

The quantum chromosomes variables should be mapped from the unit space  1,1I    

to the optimization problem solution space, so that each quantum chromosome variables 

correspond to each optimization variables of optimization problems. Suppose the 

definition-domain of ,i jX , the solution space variable of optimization problem is [ ,b ]j ja . 

Thus the corresponding solution space variables are shown as follows: 

0

, , ,

1

, , ,

1 cos( ) 1 cos( )1

1 sin( ) 1 sin( )2

ji j i j i j

ii j i j i j

bX

aX

 

 

      
     

         

                                                                      (11) 

Each quantum chromosome Q corresponds to a solution X of optimization problems, 

and the fitness function (X)f  can be calculated and updated based on the greed principle 

for global optimal solution. 

3) The rotation angle adjustments of quantum own position: 
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For each chromosome of the population, calculate the rotation angle of quantum own 

position according to the following formulas: 

min max min( ) exp( )
max

g

ij j

gen
Q fit rand

gen
                                                                 (12) 

gBest i

gBest

fit fit
fit

fit


                                                                                                             (13) 

in which, min , max  are the min 0.001  and max 0.05  of the interval  , 

respectively; gBestfit  represents the fitness value of the global optimum individual; ifit  is 

the fitness value of current individual; gen represents the former iterations of the 

population while maxgen represents the maximum times of iterations which are limited 

by population. 

4) Quantum mutation 

The update of quantum chromosome in QDE algorithm draws lessons from the DE 

algorithm [19]. The quantum chromosome is randomly selected from the quantum 

population, and qubit phase is proposed as basis vector with two different qubit phases 

used as differential vectors.  

1

, 1, 2, 3,( )g g g g

i j r j r j r jv C rand                                                                                       (14) 

among it, 1 2 3, , {1,2, ,N}r r r  , and 1 2 3r r r  . The scaling factor C is a random 

number between [0, 1]. 

5) Quantum crossover 

In order to generate new individuals, quantum individual variation is combined with 

pre-determined parent individuals by a certain principle.  

1

,1

,

,

, ( , )

,

g

i j j r randg

i j g

i j

v if rand C j j
u

x otherwise




  

 


                                                                              (15) 

in which, {1,2, , }j D . D  is dimension of the problem, randj  represents a integer 

randomly selected in {1,2, , }D , and crossover probability [0,1]rC  . 

6) Quantum selection 

To make better fitness individuals into the next generation, one to one greedy 

algorithm is used to select the operator. 

1 1 1

, , ,1

,

,

, ( ( ) ( ))

,

g g g

i j i j i jg

i j gt

i j

u if f u f

otherwise






  


 

 


                                                                                  (16) 

, , ,

gt g g

i j i j i j                                                                                                                    (17) 

where f  represents the fitness function. 

After updating, new qubits can be expressed as: 

1 1

,1 ,D1

, 1 1

,1 ,D

cos( ) cos( )

cos( ) sin( )

g g

i ig

i j g g

i i

 


 

 



 

 
  
  

                                                                                     (18) 

7) The comparison of results 

If the algorithm reaches iterations or meets the convergence criteria, the best result can 

be recorded, otherwise returns to Step 2. 
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3. Approaches of DWT-QDE-LSSVM 

In this section, the short-term load forecasting model incorporating DWT, QDE and 

LSSVM is constructed as Figure 2, shows. 

 
 

Figure 2. Flowchart of DWT-QDE-LSSVM Algorithm 

The modeling flowchart contains three parts. Prior to constructing the model, the short-

term load data S are decomposed into an approximation signal A and a detail signal D by 

DWT. Researchers select the day type, the highest temperature, the lowest temperature, 

the mean relative humidity and the mean value of the wind speed as related factors. 

According to the load curve, this paper carries on a more careful classification to day 

types based on different holidays, the specific classification is described later. 
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After two-layer DWT decomposition and the selection of input, the original short-term 

load data are divided into the training set and the test set. 

In the second part, LSSVM is proposed to model the sub-series in the first part, so that 

the tendencies of the sub-series can be predicted. The fitness function of QDE is defined 

as: 

 

2 '

1

2 2 2

min max min max

1
( , ) ( )

. . , , ,

N

i i
i

f y y
N

s t

 

     




 


    


                                                                           (19) 

where 
iy  is the -i th  input value of known samples, '

iy  is the -i th  output value 

predicted by corresponding model, N is the total number of samples while   and 2  

represent regularization parameters and kernel parameters, respectively. 

In the final part, LSSVM with optimal parameters which obtain by QDE is used to 

forecast the short-term load data. 

Our approach is elaborately presented in Algorithm 1. 

Algorithm 1 The proposed DWT-QDE-LSSVM forecasting algorithm 

Assumption: Y =
 Lin

Y (linear part)+
 NLin

Y (nonlinear part) 

Inputs: The training dataset 1 2, , ,
tr

T

tr NY y y y     and size trN  of the testing 

dataset 

Outputs: The combined forecast vector 1 2
ˆ ˆ ˆ ˆ, , ,

tr tr tr

T

N N N NY y y y  
     

Steps:  

1. Apply DWT to trY  to decompose it as follows:    , , ' 'trA D DWT Y filter  

2. Initialize population 10N  ; mutation factor 0.05F  ; crossover rate 0.5C   

3. Set generation 0G   and random generate the populations 

4. Set quantum coding on input data as Formula (10) 

5. Do transform parameters as Formula (11) 

6. Use the populations in LSSVM to forecast A , get the load forecasting results and 

get fitness function value  f X  

7. If G <max generation number 

8. Do mutation operation Formula (14) 

9. Do crossover operation Formula (15) 

10. Selection operation in order to generate offspring, set 1G G   

11. Return to Step 6 

12. Else if  

13. End the QDE-LSSVM operation 

End 

 

4. A Numeric Example and Results 
 

4.1. Data Preprocessing 

The 24h short-term load forecasting has been made on the power system of Yangquan 

city in China from March 1, 2013 to June 10, 2013. Figure 3, shows the power load of 

2280 samples, ranging from around 650 MW to 950 MW. From Figure 3, none apparent 

regularity of power load can be obtained. 
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Figure 3. The Original Short-Term Load Data from March 1, 2013 to June 10, 
2013 of Yangquan City 

Through the two-level decomposition by DWT, the power load curve after noise 

reduction is shown in Figure 4. By contrast with Figure 3, the power load signal is 

changed into smooth one which has smaller burr and has better connectedness after the 

DWT process.  

 

Figure 4. The Short-Term Load Data After DWT Decomposition 

4.2. Selection of Input 

Currently, the input variable selection is one of the most important parts of every 

forecasting method. Therefore, this paper presents the refinement of the argument by 

detailing the classification and selection of the input to improve the accuracy of the 

forecasting.  

Nowadays, the common used classification of day types, which is set as  0,0.8,1 , is 

based on weekdays, weekends and holidays. As is shown in Figure 5，the time series of 

load displays a clear daily and weekly seasonality. The weekly seasonality effects of the 

days of the week and holidays. Most papers claim that Monday, Tuesdays, Wednesdays, 
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Thursdays and Fridays can be modeled as a single type of day. After the study of the 

short-term load in Yangquan, researchers find that, in this region, each daily load has its 

own unique characteristics. Figure 5, shows Yangquan weekly load curve, from it we can 

know that the evening load in Friday and Saturday is higher than other days in the same 

period. Since the large amount of data we have, researchers prefer to model each day as a 

dummy variable. Dummies for holidays and days around holidays are also considered. 

Table 1, gives a summary of the variables used，and the  0,0.8,1  day type classification 

is compared with the proposed classification later.  

Table 1. Types of Days Used in the DWT-QDE-LSSVM Model 

Code Description 

1 Sunday 

2 Monday 

3 Tuesday 

4 Wednesday 

5 Thursday 

6 Friday 

7 Saturday 

8 Holiday (official or religious) 

9 Working day before a holiday 

10 Working day after a holiday 

 

Figure 5. Weekly Load Values in Yangquan 

In this region, grid load is greatly influenced by weather and seasonal temperature 

differences. Thus, the related factors in this paper include: days type; daily temperature 

(including daily highest temperature and daily lowest temperature); daily precipitation 

and daily wind velocity. 2160 data are selected as training samples from May 1, 2013 to 

June 5, 2013, and the data from June 6, 2013 to June 10, 2013 are selected as test samples. 

Meanwhile, in order to reflect the different load conditions, 24 hours test results are 

obtained. 

 

4.3. Statistic Measure to Determine the Accuracy of the Forecast 
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This paper assesses the prediction model accurately by using appropriate indicators. 

The paper applies mean absolute percent error MAPE, mean absolute error MAE and 

daily peak error DPE to measure the feasibility of the model. These measures are defined 

as follows: 

'

1

1
*100%

N i i

i
i

y y
MAPE

yN 


                                                                                   (20) 

'

1

1 N

i ii
MAE y y

N 
                                                                                                      (21) 

'

1 24max
i i

i
i

y y
DPE

y 

 
  

 
 

                                                                                         (22) 

in which, 
'

iy  and iy  denote output value and the actual value of the test sample, 

respectively.  

 

4.4. DWT-QDE-LSSVM Results Analysis 

As discussed previously, the performance of LSSVM modeling lies on its parameters. 

QDE is developed to tune regularization parameter   and kernel parameter 2  of 

LSSVM by minimizing errors generated in the training set and test set. The regularization 

parameter   and kernel parameter 2  of LSSVM optimized by QDE are 152.173 and 

0.046, respectively. The main parameters of QDE and BPNN are listed in Table 2. 

Table 2. Parameters of QDE and BPNN 

QDE  

Parameters 

Value BPNN 

Parameters 

Value 

Population 10 Node in hidden layer 2 

Mutation factor 0.05 Maximum number of convergence 1000 

Crossover factor 0.5 Learning rate 0.5 

  Error 0.004 

The auto correlation and partial correlation of the forecasting residual series by DWT-

QDE-LSSVM are considered to exam the power load forecasting. The results are shown 

in Figure 6. It is obvious to find that there are no significant auto correlation and partial 

correlation of the forecasting residual series. Accordingly, we can draw the following 

conclusions that the information contained in power load is mined well by LSSVM whose 

parameters are tuned by QDE. 
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Figure 6. Auto Correlation and Partial Correlation of the Residual Series by 
DWT-QDE-LSSVM 

4.5. Comparative Analysis 

To demonstrate the advanced nature of the proposed model, this paper uses DWT-

QDE-LSSVM, QDE-LSSVM, LSSVM, BPNN and ARMA to forecast the 24h short-term 

load from June 6, 2013 to June 10, 2013. The DWT-QDE-LSSVM with and without day 

type refinement and other forecasting results with day type refinement from June 6, 2013 

to June 10, 2013 are shown in Figure 7. 

 

Figure 7. Forecasting Results of Different Models from June 6, 2013 to June 
10, 2013 

Figure 7, shows that: (a) the accuracy of DWT-QDE-LSSVM is improved after day 

type refinement, the highest error reduces from 3.083 to 2.891 which proves that the day 

type refinement can enhance the prediction performance of the model; (b) DWT-QDE-

LSSVM shows the best fitting degree to the actual data while ARMA gives the worst one, 

[-4.48% 4.38%], [-3.32% 3.80%] and [-6.38% 8.17%] are the error range of QDE-

LSSVM, LSSVM and BPNN, respectively which means that the fitting degree of QDE-

LSSVM is better than LSSVM and BPNN; (c) because the optimal selection of the 

parameters by QDE, the prediction accuracy of LSSVM has been significantly improved. 

QDE algorithm uses quantum coding scheme to break the local mechanism trap. Thus, it 
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can increase the ability to traverse the solution space during the short-term load 

forecasting. In the individual updating, the general quantum rotation gate strategy is 

applied to accelerate convergence; (d) the method based on LSSVM is better than BPNN 

in short-term load forecasting. As an optimization method for local search, BPNN is very 

sensitive to the initial network weights which may converge to different local minima. 

Aiming at the problems of over-fitting and generalization of BPNN, LSSVM has optimal 

combination of approximation precision and generalization ability; (e) compared with 

QDE-LSSVM, the results of DWT-QDE-LSSVM show that estimates are in good 

agreement with true values. It is mainly because DWT processing filters out the non-

significant information of the original time series which eliminates the impact of non-

significant information on forecasting results. 

This paper uses MAPE, MAE and DPE to measure the performance of the three 

forecasting models, which are shown in Table 3.  

Table 3. MAPE, MAE and DPE of DWT-QDE-LSSVM, DWT-QDE-LSSVM 
without Day Type Refinement, QDE-LSSVM, LSSVM, BPNN and ARMA 

Models 

Forecasting 

error 

Different models for short-term load forecasting 

DWT-QDE-

LSSVM 

DWT-QDE-

LSSVM without 

day type refinement 

QDE-LSSVM LSSVM BPNN 
ARM

A 

MAPE 

(%) 
1.320 1.350 1.429 1.496 1.937 2.369 

MAE 

(MW) 
11.286 11.977 11.327 12.655 16.281 19.745 

DPE (%) 2.890 3.083 3.809 4.089 8.179 7.631 

Table 4, shows the MAPE, MAP and the DPE of the prediction methods. From Table 

4, it can be concluded that: (a) the day type refinement decreases the MAPE, MAE and 

DPE of DWT-QDE-LSSVM by 0.03%, 0.691MW and 0.193%, respectively; (b) DWT-

QDE-LSSVM has the lowest MAPE and MAE in most days and ARMA has the highest 

ones. The MAPE and MAE of DWT-QDE-LSSVM are up to 1.049% and 8.459MW 

lower than the ARMA. This suggests that, compared with ARMA, DWT-QDE-LSSVM 

has a significant advantage on small sample set regression for LSSVM meets the 

structural risk minimization principle; (b) the DPE of LSSVM is up to 1.199% higher than 

DWT-QDE-LSSVM while 0.280% higher than QDE-LSSVM, which indicates that the 

prediction efficiency of DWT-QDE-LSSVM and QDE-LSSVM are superior to LSSVM; 

(c) the DPE of DWT-QDE-LSSVM is 2.890% while the BPNN is 8.179%, which means 

the prediction results of BPNN cannot meet the stability principle of the of short-term 

load forecasting requirements. 

 

5. Conclusions 

Considering the historical power load data, date types, and meteorological factors, this 

paper uses DWT-QDE-LSSVM model to forecast the short-term load. Based on different 

forecasting models in this paper, it can be concluded that: (a) the day type refinement can 

highly improve the forecast precision; (b) using DWT-QDE-LSSVM model to forecast 

the short-term load can achieve higher prediction accuracy compared with QDE-LSSVM 

model, LSSVM model, BPNN model and ARMA model; (c) DWT increases the stability 

of short-term load data, thus it can improve the accuracy of the proposed model; (d) 

through parameters selection by QDE, the prediction accuracy of LSSVM has been 

significantly improved; (e) as a hybrid heuristic algorithm, the algorithm in this paper is 

able to provide a basis for smart grid when it establishes scientific and rational power 

generation plan. 
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Although DWT-QDE-LSSVM has obvious advantages, the application in short-term 

load fore-casting is worth improving, for example, the computation time is too long. The 

future research emphasis in this field will include not only the optimization of the 

proposed method but also the reduction of the computation time in order to further 

improve the model practicality. 
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