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Abstract

To meet the demand for the early location of fire in large-span space ftildings, an
accurate fire location method is proposed based on maghine visio ®ogy. A
nonlinear implicit camera calibration method is propoﬂ’comb@n improved
particle swarm optimization (PSO) method with least res support\éctor machine
(LS-SVM) to solve the problem that it is diffic g ‘establish ac e mathematical
models for traditional nonlinear explicit caalibra?'.xyhe matched pixel
coordinates of images collected by cameras argused as input, anththe output is the world
coordinates. The IPSO is used to search t %ﬁal p&%rs of LS-SVM regression
model to increase the convergence spee @ Improve thesgeneralization ability of LS-
SVM. The spatial location of fire is é&ed b)/‘@imensional reconstruction. The
proposed method is applied to fire catioﬁxe
ct

experimental results show tha&@ d is effe
L 2

Keywords: high and large-spam spa \e calibration, fire location, particle swarm
optimization (PSO), least so@s suppor@achine (LS-SVM)

1. Introduc_tion’\\

With the highsspeed development of Chinese economy, there are more and more high
and large-sp pace buil , such as stadiums, cinemas, shopping malls, etc. At the
same time of*pfovidin e with convenience, these buildings bring challenges to fire
safety of them ™. E% e detection and fighting is an effective way of reducing losses
of fires. Thus re n early fire detection and automatic location and extinguishing for
high and Iargeﬂ@space buildings is very significant. Currently, temperature sensing

sensing type and compound type fire detectors are mainly adopted in
e detection and extinguishing systems. However due to detecting distance,
er reasons, these devices can only alarm but fail to locate the fire. With the
r‘ ent of machine vision technology, using surveillance cameras to detect and
fire becomes feasible and has more advantages 3. Compared with traditional
detéction methods, the video surveillance based detection methods are not only fast, but
also their monitoring and detection range are wider. Presently, binocular vision systems
have been well applied to three-dimensional (3D) measurement and robot vision .
However there are few studies on fire source detection based on binocular vision. In this
paper, an accurate fire source location method for high and large-span space buildings is
proposed based on binocular vision.

Camera calibration is an important topic in computer vision and is an unavoidable
problem in stereo vision. The purpose of camera calibration is to establish the mapping
relation between two-dimensional (2D) image coordinates and 3D world coordinates. The

igh and large buildings, and
, fast and accurate.
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imaging process of cameras is affected by many factors, such as optical media, lens
distortion, etc., which makes the mapping between 2D image coordinates and 3D world
coordinates complex and nonlinear. How to accurately approximate this kind of nonlinear
mapping determines the accuracy of camera calibration, and thereby affects the overall
measurement accuracy of the vision system. In [7], traditional neural networks (NN) were
used to calibrate the stereo cameras. However back propagation (BP) NN is a kind of
heuristic method based on experience, and the empirical risk minimization principle is
used in training process. Therefore in cases with small sample sets, it is very likely to get
over learning and low generalization ability. In [8], an improved genetic algorithm (GA)
was used to calibrate stereo cameras. However the performance of GAs will deteriorate
when they are used for high dimensional searching, and with the increase of searching
space dimension, the performance deterioration is accelerated. In [9], LS-SVM was used
to calibrate cameras. The SVM is a kind of new learning method based on statistical
learning theory. It is special for small sample sets, and it adopts the structu i
minimization principle. It has strong generalization ability, and overcomes the
of NNs, such as over-fitting, slow convergence, easy to get trapped in Ioc
However, the parameters of SVMs are difficult to choose, which affects lication.
In [10], the PSO algorithm was used to search the optm&a‘meter@ VM, and
increased the speed and improved the generalization abi ession.

In this study, an improved PSO (IPSO) meth‘ to bett jUSt the balance

e the

between local and global searching ability; thent r y and o° of LS-

SVM. Experimental results show that the ca calibratign- methiod based on the IPSO
and LS-SVM is accurate with fast conver peed a’n@ng generalization ability,
and it is suitable for accurate fire source1 n for high and large-span space buildings.
2. Basic Theories G&

2.1 Camera Imaging Mode \%

2.1.1 Monocular Ca alibration del As is shown in Figure 1, CX_.Y.Z, is the
camera coordlna WX Y, is the world coordinate. Let the homogeneous
coordinates of in t p e in world coordinate be [x,,y,,z,,1" . C is the
optical ce nd Z, axis is the optical axis of the camera. O/ XY is the
image coordimdte of th era Image center O, is the intersection of the optical axis Z,
and image plane o camera. X and Y axes are parallel to the X, and Y, axes of
camera coordin spectively. Ouv is the image pixel coordinates of the camera. The

form of mbers. (u,v) is the image coordinates of spatial point Q under the ideal
mode hole imaging,

%

coordinate :lnit e captured images saved in the frame buffers of computers is in the

272 Copyright © 2016 SERSC



International Journal of Smart Home
Vol.10, No.10 (2016)

s >W ézw

>
/k 70, Main axis 7
c

Camera center
Image plane

Figure 1. Camera Modle ?“
. QO
which has the following relation with world coordina@\, ,zw{/

X, X,
m, m, m; my, Q 23
» Yo \6 "

Z,|v|=M =My My My My, || @

1 ]\.N My My My My, .&\\Q

2.1.2 Binocular Camera Calib Mode%

The two images of th(@e source ’i\@ace captured by the left and right cameras

are shown in Figure 2.
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Figure 2. Binocular Stereo Vision Modle

The coordinates of the fire source for the two cameras are expressed by (u,,v,) and
(u,,v,), respectively. The 3D position (x,, Y.z, ) is uniquely determined. Assume the

projection matrices of the two cameras are M, and M, , respectively, which can be
obtained by calibration. Then we have:
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where:
Z, , Z,--- scale factors;

(u.v.1) , (u,,v,,1) --- the image homogeneous coordinates of g, and g, in the left

and right images, respectively; \/’

(X Yu» 2w 1) - the homogeneous coordinates of Q in the world coordinate; ?\

M, , M, ---the projection matrices of the left and right cameras, respectifely’

According to (3) and (4), we can solve the world coor 'rw%ﬁthe spdti tQ.

The linear camera model assumes there is no dis f cameral#™! However,
actually, there is more or less distortion of cam es. To,obt igh accuracy of
calibration, a number of nonlinear camera mod@nsiderih&e distortion effects

i s mean more complicated

have been proposed™®?. However more nonlinear parameter
mathematical models, which complicates cafera calibratiGa?yand reduces the real-time

degree of algorithms. LS-SVM has veryrst onlinear ping ability, and it can well
fit the nonlinear relationship between qbj andi a@esyThe complex process of solving
the parameter or the projection matriQ e avq& using LS-SVM.

2.2 Improving PSO AQ . %

The PSO algorithm s initially\u to graphically model the elegant yet
unpredictable movem @f birds®* 4 Mn PSO, a swarm of random particles are
initialized, then h\e al solutlon is obtained by iterations”™. In each iteration,
particles update % Ves g two extrema. The one is the optimum found by
the individ rticles, whichNs$ called individual optimum pbest; the other is the

the ¥ population, which is the global optimum gbest. When the
d opti are found, particles update their speed and new positions

Vit = ovg + qq@a = X )"‘ C,l, (gbeStiE — % ) 5)
Xil:jﬂ _ Xilfi Y (6)

where:
¢, ,C -@\Stant acceleration which are in the range of [0,4], and in general we use

1

%2 ---two random variables evenly distributed in [0,1] ;

 --- a non-negative constant, which is called inertia factor.

The position and speed of each particle are initialized randomly. Then the speed of a
particle approaches the direction of global optimum and local optimum. o« is a key
parameter of PSO, which balances the global and local searching ability of the algorithm.
At the initial stage of evolution, we hope the particles have relatively good searching
ability. With the increase of iteration number, we hope the particles have relatively good
developing ability at the late stage. Therefore the inertia weight should be dynamically
adjusted in the evolutionary process, so that particles move in the n-dimensional space at
a certain speed. The particles continuously change their speeds and positions under the
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effect of themselves and the optimal individual of the population. Finally, the particles fly
to the object which is the population center.
The update equation for the speeds and positions of the IPSO:

it = oy viy + o (pbestly — i ) +c,r, (gbestl — )

(7)
+ry(pavgg — X
k
o = (1_ K )(a)max _a)min)+a)min (8)
Xk+1 de +a)k+l Ejﬂ (9)
Where

vt --- the speed of the i -th particle after the (k +1)-th iteration;
x, --- the current position of the i -th particle in the d -th dimension after the k -th
iteration;

¢, , ¢, ---acceleration constants, which are normally within [0,4]. We use q?‘y

r, r,, r, - random variables evenly distributed in [0,1]; Q
pbest!, --- the d -th dimensional component of the opti osition f t

after the k -th iteration;
gbest® ---the d -th dimensional component of t a po |on e particle

swarm after the k -th iteration;
and o,;, --- the inertia weight, th@xmuml tia |ght, and the

particle

ﬁ

o, O,

max 1

minimum inertia welght of the k -th |ter@t|
K, -—-the largest iteration number

2.3 LS-SVM Theory @ s&

The basic idea of SVM iNg&ap the dm@nput space to a high-dimensional feature
space by a nonlinear mapping, so t al problem is converted into a quadratic
programming problem @an ineq%onstraintmm. LS-SVM s the extension of
SVM, which replaee nequality\constraint by equality constraint. It uses the squared
error loss functioN1 e empipi ss of the training set, thereby converting the real

i i atrix so problem. The detailed theory is as follows:

problem into a l@‘
Given I setéxi@ml, where x represents the input vectors and x, eR"; v,

represents the corres g outputs and y, eR . m is the number of the samples. A

nonlinear functio @aps the samples into a high-dimensional space. Then linear

regression is p@d with the regression function given by:

f(x)= W\%&b (10)
wherQ the weight vector; b is the bias. The optimization objective function of

re r@ sing LS- SVM is:
%(W &)= W W= CZ§

s.ty; = wg(x )+b+§i,|:1,2,---, (11)
where C is the error penalty function; & is a relaxation variable. The constructed
Lagrange function L is:

L(W,b,r;,a):%ww+ Cz.f Za1{w¢ (x)+b+& - y.} (12)

where a, is the Lagrange multiplier. According to the Karush-Kuhn-Tucker (KKT)
conditions, we have:

*
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&%‘—0:W=iai¢(x)

j=1
oL (13)
&= —0=4a=C¢
0;

&2—;—0:>W $(x)+b+& -y, =0

Eliminating w and &, we have:

[g KSCI}BJZ[\(()} (14)

T T *
where Q=[1,--,1]"; A=[a,8,,,a,] ;Y =[ ¥, Voo, Y] - According to Mercer M
the kernel function can be determined:

K(x0x)=0(x)"#(x,) O (15)
The LS-SVM function estimation can be obtained: %
f(x)= > : X )+b VV

D aK Q (16)
In this study, the radial basis function is used as the el fun
K (x, xi):exp{—"x—xi ||2/202} 17
L . \
where o is the width of the kernel f
From the LS-SVM regression th e k ts main parameters include the

kernel function parameter o and nalty fa , which have major impact on the
learning and generalization abil S-SV this study, we use an IPSO algorithm to

choose these two parameters ucin \ dness of empirically choosing them to

some extent.
2.4 IPSO for LS-§ ramet&Stlmlzatlon
Qptimize L model parameters can effectively avoid the time

Using IPSO {0
consumpti blindpe normal cross validation. The flowchart of the process is
shown in Figuce’3. The d steps are as follows:
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Sample data and
preprocessing

v

Initialize particle positions and speeds of PSO,
and define relative parameters of LS-SVM.

v

Load sample data, and compute fitness
values

v

Update the speeds and positions of
particles

v .
Iteratively update and optimize according V
to particle speeds and positions 0

V4
Figure 3. Flow Chart of &1 &\Pdrameters of LSSVM based on IPSO

Stepl Initialize Ih&et th n’lﬁhb r of total particles m=40, D=2, K, =800,

¢=2,c¢c=18, \§\ 9, =0.4. Set the range of y, o° to [0,1000] and
[0.001,10], rg a@e y.
Step2 Ce the fi alues of each particle:

F(c?,7) = RMSE |-

t)’ (18)

where | ist mber of samples; y is the output value of known samples; t is the

model pr&%j,gn value of LS-SVM.
ate the flying speed and position of the particles; compare the current fitness

h particle with the fitness value of the particle itself in its optimal position and
s value of the population in optimal position. If the current particle is fitter, set
rrent position of this particle as the optimal position of this particle.
tep4 Check whether the stopping criterion is satisfied. If not, go to Step5, and go on
computing; if satisfied, compute and output the result.

Step5 k=k+1, go to Step2.

Step6 Output pbest(t) , and map pbest(t) to the normalized parameters y and o°.

2.5 LS-SVM Prediction Model based on IPSO

The LS-SVM model based on IPSO is used to predict the internal and external
parameters of cameras. The direct calculation of internal and external parameters of
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cameras is avoided. The LS-SVM is used as the loss function, which is robust. The
calculation speed of the LS-SVM prediction model optimized by the IPSO is significantly
increased.

To perform camera calibration, the training of LS-SVM model should be finished at
first. The four-input and three-output form is used to realize this kind of mapping relation.
As shown in Figure 4, the pixel coordinates(u,,v,) , (u,,v,) obtained by stereo mapping

are used as inputs, and the world coordinate (x,,y,.z,) is the output, so that the given
input-output relation is modeled.

| The first step

! Obtain training samples IPSO-LSSVM
I (U|,V|) ‘(uravr)‘ (Xw’yw’zw)

Obtain the IPSO-LSSVM relation model ||

|  The second step

Image pixels obtained by
stereo matching

(u,v) - (ur,v,)

Figure 4. I{%A Calj

3. Experimental Analé$ \0\6

3.1 Calibration Exp

In this experipag o h| ﬁlon network cameras of the same specification are
used. The beaseline |stanc m Each black square of the checkerboard is 27x27
mm. There @ x8 int Ie points in total. Monitoring fire equipments are installed
in high placeS of high arge-span space buildings. Therefore, the origin of the world
coordinate is define e center of the left and right cameras. Z-axis positive direction
is downward pa the height direction of calibration board. X-axis positive direction
is rightward p | to the width direction of the calibration board. Y-axis positive
direction 4s backward parallel to the vertical direction of calibration board. Translate the
calibratj ard for 11 positions in the negative direction of Y-axis with each distance
betw, positions being 30mm. The world coordinate which is closes to the cameras
i Omm, then y,, =330mm. There are 11 positions with each position providing a

data. A data set of 48x11=528 samples is obtained. Use 458 samples in the data set
as training data, and the other 70 are test data. The camera calibration model is shown in
Figure 5.
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\/‘
Figure 5. Original Collected Image& C’ame!%E

The optimal model parameters for the IPSO- re y=>51. d 0=0.34. Use
the LS-SVM calibration model obtained by the parah%Mo validate the test
samples. A part of calibration results of the tegtsamples as well as the mean square root

errors of all points are shown in Table 1. Thehea ureme?\ rsin X, Y, Z directions of
camera calibration using BPNN, LS-SVJ \ PBO-LS-SYM"and IPSO-LS-SVM methods
are shown in Table 2. It is clear tha%p alibrats uracy of BPNN and LS-SVM

computational complexity i he tion accuracy and the training speed of

algorithms is relatively low, and th utati a\ mplexity of the two algorithms is
high. The calibration accurac -LSSYM ¥s improved to some extent, and the
w?§c T éa

IPSO-LSSVM method are relati

ly hi

ion"Results of Partial Test Points

% IPSO-LSSVM output
Q emse
XW @ ZW XW yW ZW

1 -37 16.932 -30.191 -36.896 0.131

-0 71 60.101 -59.996 -71.359 0.215

1 -90 52 99.957 -90.129 -52.369 0.227

0 -120 -107 130.523 -120.852 -106.527 0.638

130 -150 -40 130.212 -150.687 -40.514 0.510

70 -180 -87 69.886 -180.265 -86.815 0.198

% 110 -210 -90 110.135 -209.523 -89.389 0.454
O 50 -300 -110 50.146 -300.282 -109.727 0.242
90  -330 -110 89.901 -330.058 -110.197 0.132

%Ie 2. Comparison Results of Partial Test Points with Different Methods

Methods MSE/mm Time/s
BP 0.356 0.812 0.513 13.53
LSSVM 0.269 0.682 0.419 15.27
PSO-LSSVM 0.131 0.412 0.301 6.25
IPSO-LSSVM 0.085 0.312 0.200 3.57
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3.2 Calculation of 3D Position of Fire Source

To calculate the position of binocular spatial fire sources, we need the spatial
coordinates of fire restored by using the information obtained from the two cameras.
Moreover, we need recognize fire in images. The stereo matching of fire images is
beyond the scope of this study.

In real applications, the system is composed of two cameras, a calibration board, a
burning plate, a fire water cannon and a computer. Choose two test images which are
obtained in different spaces to experiment. The fire image matching results are shown in
Figure 6.

igure 6. Matching Results of Flame Pictures

@@' (b) The second team matching pictures
i

To idate the accuracy of the proposed fire location method, we carry out 8
expep for each of the traditional Zhengyou Zhang’s calibration algorithm and the
implicit calibration method under the same matching conditions. The
%arison of average error is shown in Table 3. It is clear that the proposed method
achieves higher accuracy and the established camera calibration model is more practical.
The error in Y-direction is larger than that in X-direction and Z-direction. This error
comes from real measurement, because the world coordinate is at the center of the two
cameras. The location accuracy of the proposed method is higher than that of Zhengyou
Zhang’s calibration algorithm, which meet the demand for high and large-span space
buildings.

280 Copyright © 2016 SERSC



International Journal of Smart Home

Vol.10, No.10 (2016)

Table 3. Comparison Positioning Results of Flames in High and Large-
Span Space Buildings

Location by Location by
Zhengyou the proposed
Group Error type Zhang’s method
calibration
Distance error in X- 45 19
direction /mm
Distance error in Y- 76 41
The first direction /mm
group of Distance error in Z- 58 26
fire direction /mm
Horizontal angle error 0.25 0.08
1)
Vertical angle error /(°) 0.32 0.12
Distance error in X- 35 12
direction /mm V’
Distance error in Y- 48 31
The direction /mm v
second Distance error in Z- 37 22
group of direction /mm N &
fire Horizontal angle error 0.19
1)
Vertical angle error /(°) 0.2

5. Conclusions

From the above-mentioned content, an a
high and large-span space building is
improving PSO-LSSVM model a
increased. This study can be applie {

te blnocalxr ion location technology in

d. Th a calibration is realized by
Iocat d, accuracy and stability are
flgh Jects of high and large-span space
buildings. It takes less than 20 he fire he fire water cannon finish locating
the fire, making unattendedﬂ%\smtormg\h utomatic fire location and extinguishing
possible. However, there are dr bac% e proposed method. That is, although the
implicit calibration of H@LSSVM atively accurate and robust, accurate training

samples are dlfflcukt ain. *
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