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Abstract

The deployment of a fingerprint positioning method consists of an offline phase and a
real-time phase. During the offline phase, a fingerprint database is built. This process is
tedious and time consuming. Even so, the majority of WiFi-based indoor positigni
methods implemented in practical indoor location—based service (ILBS) syste
fingerprint method, because this method is accurate enough, whereas oth i
indoor positioning methods are too inaccurate. Duringy the realst
fingerprint method obtains a test fingerprint (a set of N\ signal Iscted at that
moment). Then, for each fingerprint, f;, in the flnger pares f; with

the test fingerprint in order to find the most sw’ w troduces a novel
method of comparing two fingerprints in order to impfove thex acy of the fingerprint
method. This method assigns weights to re@ed S|grzal%ength indications (RSSIs)
based on the variance of the RSSIs. " O

Keywords: Indoor Location—Ba&ervi ‘\&r Positioning Method, WiFi,
Fingerprint Positioning Methll@ ed Sign&ngth Indication
*
1. Introduction \6
When we consider outdoo vices, the location-based service industry
seems to be in theQenmg stage. However, the indoor location—based service

(ILBS) industry in its growing stage. As huge buildings and
enormous uI d nd shop centers are built day by day, the demand for indoor
d serV|

location-b I grow steadily. As a matter of fact, many indoor
location— b otype systems have been introduced in recent research
papers.

One of the aI techniques in developing ILBS systems is the indoor
positioning te@e. Among the many indoor positioning techniques, WiFi-based
positionigggtechhiques are the most attractive because WiFi is available in all huge
buildin hopping centers. Most of the WiFi-based indoor positioning methods
belo ither the signal propagation—model group or the fingerprint group.

though the implementation procedure of a signal propagation—model indoor
@oning method is simpler than that of the fingerprint method, the majority of WiFi-
baséd indoor positioning methods implemented in practical ILBS systems use the
fingerprint method because it is accurate enough, whereas the signal propagation model is
too inaccurate. Making use of the variance in received signal strength indication (RSSI),
this paper proposes a novel method to improve the accuracy of the fingerprint method.
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2. Related Research

As man-made constructions get bigger and bigger, demand for ILBSs is
increasing. Examples of ILBSs include museum tour guides and boarding reminders
for air passengers who are far from their gate, to name only two [1].

Yang et al. [2] presented an iBeacon-based hospital guide system. The
architecture of the system is three-layered: the perception layer, the network layer,
and the application layer, as shown in Figure 1. A beacon is attached to every point
of interest, including rooms, offices, and amenities in the hospital. Mobile devices
like smartphones, personal digital assistants (PDASs), and tablets read beacon signals
via Bluetooth. Mobile devices are connected to the server through WiFi.

The application layer provides a message push service and a navigation service to
users. An example message is: “You are in the neural department of internal
medicine. At present, three patients are waiting for service.” The navigation sgrvice,
shows the shortest path from the user’s current position to the destinatj V

neural department, for example) on a floor map. 0

EZIPNY

Application Layer MM 9
* O
O]

Perception@& m

*
Figure 1. The Architect& the@%u-based Hospital Guide System [2]
If the mobile te.rr&ceives si,gsnls from at least three different access points
(APs) of the Wire{% cal areg'n%jork (WLAN), then triangulation can be applied
owd

to estimate th ition of bile terminal after converting the RSSIs into

distances. ud and hury [3] suggested that the RSSI from a cellular
network ( ould when the mobile terminal reads only two AP signals.
The proposed algori depicted in Figure 2. The algorithm finds the coordinates

of the APs and t tations from a database.
Gu et al. [4}deSeribed the principle of LANDMARC, which is a popular indoor

positioning systeni. LANDMARC places radio-frequency identification (RFID) tags
in the aréﬁ.lhe application (for example, exhibition rooms if the application is a
e), as shown in Figure 3. These tags are called reference tags. RFID

also installed in the application area. A moving object has an RFID tag,
tracking tag, attached to it. The LANDMARC system collects RFID tag
Is via the readers. Let the number of readers and reference tags be n (n=4 in
Figure 3) and m (m=20 in Figure 3), respectively. For each reference tag, we may
have n RSSIs read by the n readers. (If a reader is located too far from this reference
RFID, then that reader cannot read the RSSI of the reference tag. We may assume
the RSSI to be -MAXINT in this case.) Let #,= (7,7 ,,..R,,) represent an n
vector consisting of the RSSIs of the i-th RFID read by the n readers. The signal of
the tracking tag is also read by the readers. Let 7 = (7,,7,,..7,) be the RSSIs of

the tracking tag read by the readers.
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O : Figure 3. Configuration of a LANDMARC System [4]

<bw, suppose that / is very close to /A ,. What can we say about the current
location of the moving object? We can conclude that the current location of the
moving object is very close to the location of the i-th reference RFID in this case.
The LANDMARC system selects the k-nearest reference RFIDs and lets the average
of the coordinates of these k RFIDs be the current location of the moving object.

When the average is calculated, the similarity between / and 7, is considered. For

example, the inverse of the Euclidean distance between them can be used as the
weight of the coordinates of the i-th reference RFID.

Given the k nearest neighbors (reference RFIDs), we can find the most centered
one. Assuming this centered one is the tracking tag, we apply the positioning
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procedure. Then the difference between the resulting coordinates and the real
coordinates of the centered RFID can be considered the error of the positioning
procedure. Making use of this error, Gu et al. [4] proposed a new algorithm, called
an error self-correction algorithm.

Given the coordinates of the start point, we can calculate the coordinates of the
destination point if we know the direction and the distance from the start point to
the destination point. Yun et al. [5] attached an acceleration sensor and a
geomagnetic sensor to a laptop. With a sequence of the acceleration sensor values,
they counted the number of steps a pedestrian took from the start point to the
destination point and converted the number of steps into the distance. With a
geomagnetic sensor, they found out the direction from the start position to the
destination. They performed experiments to determine a pedestrian’s positions while
walking around carrying a laptop equipped with these two sensors. They claimed
that the average error of their positioning system is about 1.61 meters.

The positioning method used by Kim and Yim [1] is similar to the p
method introduced by Yun et al. [5]. However, Yun et al. impl@ their

r

algorithm on a laptop, whereas Kim and Yim implemented th thhm on a
év‘

—

smartphone. Laptops have neither a built-in ofneter T built-in
geomagnetic sensor. On the other hand, smartpho many -in sensors,
including an accelerometer and a compass. The the a M introduced by
Kim and Yim [1] can circulate easily. ‘K/

The fingerprint positioning method base Slis s s a common method
in indoor positioning systems; it stores %IOUS attern (a fingerprint) of
each reference point (RP) in a databas @ompare thatN\pattern with new, real-time

signals (test fingerprints). %
e obtdir

Ha et al. [6] found that the RS rom an access point (AP) that is

connected to a mobile ter significa different from the RSSI value
obtained from the same A%l |s d ected from a mobile terminal. Based
on this discovery, they claime hat sunes of fingerprints will improve the
accuracy of the fmger t mdoo onlng method. Then, they proposed the
procedure for dete,r positi cted in Figure 4. It collects test fingerprints
two times: one i isconpe tate and the other when connected.

Collects signals

» in the disconnected ,| Connect with

v

state the APs
Estimate similarity Collects signals
using two fingerprints '« in the connected
tables state

% 4. The Procedure for Determining Position Introduced by Ha et al. [6]

the WiFi-based fingerprint indoor positioning process, we have to estimate the
similarity between two fingerprints: a fingerprint from the fingerprint table and the
test fingerprint. Traditionally, the Euclidean and Manhattan distances have been
widely used in the measurement of signal similarity. The Euclidean distance from
fingerprint S, =(5,.S,,.S,,) from the fingerprint table to test fingerprint

X =X, X,,..x,) is defined by:

Ed,z\/( XY+ S, =X+ (S, —x F
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The Manhattan distance from S, = (S,,S,,.S,,) to test X = (x,,X,,.. %, ) is
defined by:

ma =S, —x1+1S,—x |+ +1S,—x, |

After closely analyzing the RSSI pattern, So et al. [7] proposed the following
expression to measure the distance from S, =(5,S5,,.S5,,) to

X =Wy, .. X )

dl,z\/0”2+0,22+...+6‘-2
C,=S,~x, IflS;,—x,I<D,, where D,, is a certain threshold

C/‘/’:Dm /1l S/'/_X/l >01/7 VV
RSSI-based indoor positioning methods can be cat orlzed o@groups
. . nting. : Q;e
. ; . 4 N

shows the
xed nodes to

a mobile terminal, we can estimate the location obil I [8]. However,
RSSI is not reliable due to multi-paths of the Wterference among
signals [6]. Consequently, inaccuracy is the=gost signi hortcoming of signal
propagation model-based approaches. rsely, t %gerprmtmg methods are
more accurate. However, this group® es a atabase of fingerprints. A
fingerprint is a set of RSSIs collec %tlon called a reference point.
Collecting fingerprints is a tedio ime cﬁx ing job.

WLAN-based signal propaga model_indo®r positioning is easy to implement.
However, its performancg&poor b of signal fluctuation. Li et al. [8]
proposed a hybrid positioning approa&ns method estimates a mobile terminal’s
position with the signal@sagation’%’ el when the strength of the signal is greater
than a certain thresto hen t;e strength of the signal is not greater than this

threshold, the prt&&e syst the fingerprinting method.

3TheP

In the flngerprlnt bse we store the standard deviation (SD) in addition to the
average of the as shown in Table 1. For each reference point, at least 30
fingerprints sh stored initially. This system allows users to voluntarily add more
fingerprints to atabase so it gets bigger and bigger as time goes by. We expect the
accuracy b%gsystem to improve as the database gets bigger.

(30 Table 1. The Structure of the Fingerprint Database

AN\

SQ AP1 AP2 APn
R -73 -85 -61
RP1 -78 -79 -68
Averages for RP1 | -76.9 -83.2 -63.9
SDs for RP1 3.2 3.7 3.9
RP2 -82 -72 -91
RPm -64 -88 -77
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Table 2. The Structure of the Lookup Table

AP1 AP2 AP3 AP4 ... APn
Averages for RP1 -76.9 -83.2 -38 -95.3 -63.9
SDs for RP1 3.2 3.7 1.0 10.5 3.9
Averages for RP2 -47 -89 -52 -79 -92
SDs for RP2 1.3 5.2 1.5 3.4 9.5
Averages for RP3 -44 -57 -91 -55 -54
SDs for RP3 0.9 1.7 9.0 1.6 1.6
Averages for RP4 -39 -81 -77 -42 -40
SDs for RP4 0.8 4.9 3.3 0.9 0.8
Averages for RPm -95 -82 -56 -73 -97
SDs for RPm 10.1 3.3 1.6 3.1 14.2

This paper proposes the algorithm in Figure 5. Given a test fi
X =(X.,X,,..x,), obtained by a mobile terminal at the moment, orlthm

m
estimates the current position of the mobile terminal. This algorithm negds up table
consisting of m (the number of reference points) ro “a%verage SDs in the

database, as shown in Table 2. RPstructure is a re Orsis point and a
dissimilarity. A point is a pair of real numbers rep the coordinates of a
reference point. RPstructure.dissimilarity is a rea - £ ber rep ng the dissimilarity

between RPstructure.point and the test fingerpsi
be saved in the KRPs array of RPstructure.
the variable largest. The functions dIS i
below.

, X. The %ar t reference points will
gest dis rity in the kKRPs is kept in
ity() Srtsb and average() are defined

CurrentPosition (LookupTable, ve o
1. Define RPstructure of & @ (X, Y coordinates) and a real number

(dissimilarity)
RPstructure KRPs[ k neares II be collected here

Initialize kRPs flarity to T, largest := MAXINT;
(for each \ upTabI
thls rity = |Ia ity (X, RP); // dissimilarity () is defined in Figure 6

Q thlSDIS?ImI y); /I if thisDissimilarity is smaller than largest, then insert

ok wn

~

8. Return avera ); // average() is defined below

Figuréb."The Algorithm to Determine the Current Position of a
Moving Object

Si@;&o the Manhattan distance function, our dissimilarity function calculates the
e between XJi] and RPJ[i]. However, there are two unique points in this

%thm. The first is that this algorithm assigns a weight, (7P [/] S0 )*, where ¢ is an

arbitrary number such as 0.5, 2, 3,..., to the difference. X[i] or RP[i].average could be
empty if the i-th access point is located too far from the mobile terminal or the reference
point. If either X[i] or RP[i].average is empty, while the other is greater than a certain
threshold, then X and RP cannot be similar. The second unique point is that this algorithm
returns MAXINT in this case.
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dissimilarity(X, RP) {

1. thisDissimilarity := 0;
2. for(i:=0; i<X.length; i++) {
3. if ((X[i] is empty and RP[i].average>th1) or (X[i]>th1l and RP[i].average is empty)
4. then return MAXINT;
5. thisDissimilarity += | L1~ RPlil.average |
(RP[i].SD)"
6. }
7. return thisDissimilarity;

Figure 6. The Algorithm to Calculate the Dissimilarity between Two
RSSI Vectors

The parameters passed to the insert() function are a reference point are, the”
dissimilarity between this reference point and the test fingerprint. If the dissi ity is

less than largest, then the insert() function inserts the reference point into th ] array
and updates largest, as shown in Figure 7. A R %

Vi
insert(RP, thisDissimilarity) { AN

if (thisDissimilarity < largest) {
for_ (i:=0; i<.k; ?+-|-){ _ O \VV

if(kRPs[i].dissimilarity == largest) {
kRPs[i].point := RP; ? 8 6
KRPs[i].dissimilarity :ﬂhisDjss@ y; \
break;

g

e &2 QY
e N ¢,
issimilari Q\

N R~wWNE

10. largest := kRPs[0].dissimilarity;
11. for(i:=1; i<k; i++) 5\7
12, if(kRPs[i]. flarity > largesty largest := kRPs[i].dissimilarity;

P\ \(\

-
O\ E re 7 Our Insert () Function

Our average() fu eturns the average of the k reference points in KRPs[]. This

function uses the of the dissimilarity for the weight, as shown in Figure 8. In the
figure, the addi two points, pl and p2, returns (p1.X+p2.X, p1.Y+p2.Y).

o~
average()

1. @ rhinator, thisAverage := 0;
of i:=0; i<k; i++) {denominator += kRPs[i].dissimilarity™; }
for i:=0; i<k; i++) {thisAverage += kRPs[i].point * kRPs[l] dissimilarity™ / denominator;

4. return thisAverage;

Figure 8. The Average() Function returns the Weighted Average of the
Reference Points

Numerical Example 1: Suppose we have the LookupTable shown in Table 2, where n

and m are all 5. Suppose further that we have X=(-60, -85, -44, -90, -87) and t is 2. Then,
dissimilarity(X, RP1) is:
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| -60--76.9| |-85--83.2| |-44--38| |-90--953| |-87--639

dissimilarity(X, RP1) =
v ) 3.22 3.72 12 10.5% 3.92

=90.348

Manhattan distance (X, RP1) = |-60 - -76.9| + |-85- -83.2| + |-44- -38| + |-90 - -95.3| + |-
87--63.9|=53.1

Dissimilarity(X, RP2) = 12.4
Manhattan distance(X, RP2) = 41

Considering the Manhattan distance, we can conclude that RP2 is closer to X than RP1.
However, the dissimilarity shows that RP1 is closer to X than RP2. Since the SD of AP3 ]
RSSIs received at reference point 1 is very small (1.0), the difference between X

RP1[3] dominates the dissimilarity. ?\
If we set u=0.5, then we obtain 0

Dissimilarity(X, RP1) = 29.7 @
Dissimilarity(X, RP2) = 27.27 \/
This result shows that RP2 is closer to X t P1 F example, we can

conclude that we have to find the optimal 7 h expen
Numerical Example 2: Let X=(-50, . ), th1=-82, and let the
LookupTable be Table 3. Note that X[5 pty, 1[3] of LookupTable is also

empty. The dissimilarity(X, RP1) is M T, bQC\ [3], which is -80, is greater than
thl, and RP1[3] is empty.

Notice that dissimilarity( Il put
in X[5] because X[5] is emq% ile RP
RP2[5].average is very small,

because we replaced emp@ements \h&

*
aissimilart Xy )= -3 > ! |+ | _&Z _22_89 |+ | _5(1 ;2_52 |

| -80 —gz?)ol—fSO 41
+
34

@%ble 3. The Structure of Lookup Table
N

ignated small number, such as -500,
's not greater than thl. Notice also that
.SD is very big. We have these numbers

AP1 AP2 AP3 AP4 AP5
Averages NEE [ -76.9 -83.2 -95.3 -63.9
SDs for RP4, 3.2 3.7 10.5 3.9
Aver@&JRPZ -47 -89 -52 -79 -241

P2 1.3 5.2 15 3.4 195

%ges forRP2__ | -44 57 -1 55 . 54
Averages for RPm -95 -82 -56 -73 -97
SDs for RPm 10.1 3.3 1.6 3.1 14.2

Numerical Example 3: Let kRPs[] be [ ((300, 300), 30), ((400, 200), 20), ((500, 100),
20) ], and let u be 2. The denominator and thisAverage will be:

aeno min ator = 1 + 1 + 232 =0.006111

30%  20°
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_2 )
AverageX = (300 )% L + (400 )* L
deno min ator adeno min ator

2072
deno min ator

AverageY = (300 )x [SOZJ +(200 ) * (202]

+(500)*( j:422 7

deno min ator deno min ator

+ (100 )*(20_2} =177

deno min ator

207°
adeno min ator

\/’

-2

+ (500 100 )*( &y J: (422 7,177) ?*
deno min ator 0

2
I\ﬁan t&erence point
A\
*

4. Conclusions Q 6

After reviewing existing location-B @service stems and indoor positioning

307
deno min ator

thisAverage = (300 300 )* [ J + (400 200 )* (

As the dissimilarity of reference point (500, 100).i
(300, 300), the average should be closer to (500,1

techniques, this paper introduced a rith rmine the current position of a
moving object. The algorithm is - asedg‘\ rint indoor positioning algorithm
that uses the standard deviatio t% Is from an“access point as the weight of the AP.
The algorithm is a kind of hﬂ%est neigh gorithm, because it selects the k-nearest
reference points. This algorithm usei@ssimilarity between the fingerprint of the
reference point and the t@ngerprin& e weight when it calculates the average of the
k-nearest referencespaints Given a Sest fingerprint, X, and the fingerprint of a reference
point, RP, this algoW retur INT if X[i] is greater than a certain threshold while
ng use O roposed algorithm, we are developing a practical

RP[i] is empty:
Iocation—b ile ag@on.
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