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Abstract 

The failures data of tractors operating in field conditions were collected by failure 

tracking tests. A mathematical model is established with non-homogenous Poisson 

process to get the tractor failure intensity function. Bootstrap method is presented for 

constructing confidence regions for the failure intensity of a repairable system. Combined 

with fault data in tracking experiment, the early period failure intensity curves are drawn, 

revealing the failure regular in the initial stages of tractors. A confidence interval can be 

estimated by standard likelihood asymptotic theory in the parametric estimation, however 

in the non-parametric case it can be obtained by using the bootstrap. Comprising the 

MSE of cumulative intensity and cumulative number of failures between the two 

estimations, it is seen that the curve which was estimated by non-parameter estimation 

method is more realistic to the actual experiment process. Results provide the reference to 

improve tractor reliability, maintainability and maintenance strategy. 

 
Key words: failure intensity; bootstrap; reliability; non-homogeneous Poisson process; 

non-parameter estimation 

 

1. Introduction 

Agricultural machinery is a sort of special product, which is operated by peasants with 

various abilities under different agricultural conditions. The reliability of machinery has 

an adverse effect on the annual agricultural earnings and a severe economic losses can be 

caused if the farm work can not be properly in the right season. At present agricultural 

machinery made in China in use have many problems in common such as more failures, 

more poor reliability and shorter service life compared to those made in developed 

countries. Some problems are inferior not only in performance but also in reliability in 

particular[1,2]. 

In the field of Agricultural machinery, most models for the research on the reliability 

are based on exponential distributions or Weibull distributions, and many methods used 

for parameter estimation of model are based on graphics or statistical analyses[3].In fact, 

the tractor failure process is a stochastic process. Non-homogeneous Poisson process as a 

branch of the stochastic process is widely used in the software reliability[4-6], and much 

work has been done on modeling the failure data of a repairable system and parameter 

estimation [7,8]. But not much work has been done on the reliability of agricultural 

machinery using the non-homogeneous Poisson process so far. In agriculture machinery 

reliability experiment, limited by the time and cost, the necessary and sufficient failure 

data can’t be obtained in many cases. The reliability estimation results based on the little 

amount of data reflecting the actual reliability level is objective and can’t be ignored. In 

this case, it needs to use approximate method and complex solution process in order to get 

model parameters and reliability interval estimation. As a result, it is difficult to get a 
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effective estimation for the reliability of machinery[9]. Based on the current research a 

parametric estimate of the failure and a non-parametric estimate of the failure intensity of 

tractor are presented. In the parametric case a confidence interval can be obtained by 

standard likelihood asymptotic theory and in the non-parametric case a confidence region 

can be obtained by use of the bootstrap. 

 

2. The Process of Tractor Failure 

 

2.1. The Poisson Process[10][11]
 

Definition 1 A stochastic process  0),( ttN  is mentioned to be a counting process. If 

( )N t  represents the total numbers of “event” that have occurred up to time t , a counting 

process ( )N t  must satisfy: 

  (Ⅰ) 0)( tN . 
  (Ⅱ) ( )N t is an integer value.  
  (Ⅲ) If ,ts  then )()( tNsN   
  (Ⅳ) If ,ts  then )()( sNtN  equals to the number of events that have occurred in the 
interval ),( ts . 

A counting process is mentioned to posses of independent increments if the numbers of 

events that occur in disjoint time intervals are independent, which means that the numbers 

of events that have occurred by time t  (that is, ( )N t ) must be independent the numbers 

of events occurring between times t  and st   (that is, )()( tNstN  ). 

A counting process is said to possess of stationary increments if the distribution of 

numbers of events that occur in any interval of time only depends on the length of the 

time interval. In the other words, the process has stationary increments if the numbers of 

event in the interval  stst 
21

, (that is, )()(
12

stNstN   has the same distribution as the 

numbers of events in the interval  
21

, tt  (that is )()(
12

tNtN  ) for all 
21

tt   and 

0s . 

The Poisson process is one of the most important types of counting processes, which is 

defined as follows: 

Definition 2 The counting process  0),( ttN  is mentioned to be a Poisson process 

if it has the parametric  , 0 , and 

  (Ⅰ) 0)0( N . 

  (Ⅱ)The process has independent increments. 

(Ⅲ)The numbers of events occurred in any interval of length t  are Poisson distributed 

with the mean value t . That is, for all 0, ts , 

[ ( ) ( )]
{ ( ) ( ) } ex p ( ( ( ) ( )) ,

!

n
m t s m t

p N t s N t n m t s m t
n

 
        

         
(  )

{ ( ) ( ) }   ,     0 ,1,
!

n

t t
p N t s N s n e n

n

 
      (1) 

According to condition (Ⅲ), a Poisson process has stationary increments and also that  

ttNE  )]([   (2) 

Equation(2) explains why   is called the rate or the intensity of the process,that is , 

the mean number of events in unit interval. 

An alternative definition of a Poisson process is given as the following.    

Definition 3 The counting process  0),( ttN  is said to be a Poisson process if it 

has a parametric  , 0 , and 

(Ⅰ) 0)0( N . 

  (Ⅱ)The process has stationary and independent increments. 
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  (Ⅲ) )( )1)(( hohhNp   . 

  (Ⅳ) )()2)(( hohNp  . 

Definition 2 and 3 are equivalent. 

Considered a Poisson process, and let 
1

x  denote the time of the first failure 

occurrence. For 1n , let 
n

x  denote the time between )1( n -th and n-th failure 

occurrence. The sequence  1, nx
n

 is called the sequence of interval times, and 
n

x (n=1, 

2, … n) is proved to be an exponential random variable whose mean value of independent 

identical distribution is


1  . 

Definition 4 The counting process  0),( ttN  is said to be a non-stationary or 

non-homogeneous Poisson process if it has the intensity function )(t , where 0t , and 

  (Ⅰ) 0)0( N . 

  (Ⅱ) 0),( ttN  has independent increments. 

  (Ⅲ) )(}2)()({ hotNhtNp  . 

(Ⅳ) )()(}1)()({ hohttNhtNp   . 

  If  

0

( ) ( )
t

m t s d s   (3) 

  it can be shown that 

        
[ ( ) ( )] [ ( ) ( ) ]

{ ( ) ( ) } 0
!

n

m t s m t m t s m t
p N t s N t n e n

n

   
    

＋
，  (4) 

that is, )()( tNstN   is a Poisson distribution with the mean value 

)()( tmstm  . When the intensity function )(t is a constant, the non-homogeneous 

Poisson process can be thought as a homogeneous Poisson process. 

When the intensity function is 
1

)( 





 tt  (5) 

This Poisson process is proved to be a Weibull process. Here, 0  、 ,   is a 

shape parameter and   is an intensity parameter. 

For non-homogeneous Poisson process (NHPP), the sequence of the interval between 

failures is proved to be neither mutually independent nor identically distributive. That is, 

they are neither an exponential distribution nor independent samples from an identical 

distribution. Therefore any technique based on an independent identical distribution can 

not be used in a non-homogeneous Poisson process. But as a Poisson process, a 

non-homogeneous Poisson process also has independent increments. 
 

2.2. Tractor Failure Process 

Since the appearance of tractor failure at the instantaneous time ),,2,1( nit
i

  is 

stochastic, it can be taken as a random point along the time axis. Thus the failure process 

of a repairable system can be described by a stochastic point process. Suppose that the 

reliability of a tractor after repaired be the same as before repaired, we refer to the 

non-homogeneous Poisson process as the model of tractor failure process[1,2].  

 

3. The Principle of Bootstrap Method 
 

3.1. The Kernel Estimation Method 

If there is no parametric form assumed for the intensity,a non-parametric estimation 

method is required. One such method is the kernel estimation method. It was assumed that 
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the system is observed for the time ),0(
n

t ,where ),,,(
21 n

ttt  is the time of the tractor 

fault ,which is a Poisson point process. 

  A kernel estimate of the varying intensity )( t  is given by 






n

i

uK
h

t

1

)(
1

)(  

  Where  

h

tt
u

i
)( 

  

and K  is a kernel function 

22
)1(

16

15
)( uuK    for −1≤u≤1 

  h  denotes the bandwidth. This guarantees that )(ˆ x is non-negative, an essential 

property of an estimate of the intensity
[12]

. 

 

3.2. The Bootstrap and Resampling Method  

  The bootstrap was introduced in 1979 by Efron as a computer-based method for 

estimating standard errors[13]. Bootstrap methods depend on the notion of a bootstrap 

sample: the bootstrap data points ),,,(
**

2

*

1

*

*
n

tttT  are a random sample of size 
*

n ,drawn with replacement from the population of n objects ),,,(
21 n

tttT  . The 

method is motivated by nn 
*

 in general[14].  

  The interval estimation method based on bootstrap repeated sampling from the sample 

data which have been obtained from the population, and calculate the value of 
i

z in every 

sample .The quaitiles of z were estimated according to the sorted
i

z with the given 

confidence level, then the confidence interval was estimated. 

  It is assumed that ),,,(
21 n

tttT  is the observations .The algorithm is as follows: 

  (1)Calculate 




n

i

uK
h 1

)(
1

̂ ,
h

tt
u

i
)( 

  by ),,,(
21 n

tttT  ; 

  (2)Draw the sub sample ),,,(
**

2

*

1

*

nB
tttT   from ),,,(

21 n
tttT   with the 

bootstrap,then 




n

i

B uK
h 1

*
)(

1
̂ ,

h

tt
u

i
)(

*


 ; 

  (3)Estimate Bes
*

ˆ  ,the standard error of B
*

̂ ,as following: 

  Get the sub sample with bootstrap  from ),,,(
**

2

*

1

*

nB
tttT  of step (2) once 

again,then calculate 




n

i

B uK
h 1

1
*

)(
1

̂ ,
h

tt
u

i
)(

**


 ; 

  repeat  1B times,then get )1(ˆ,),2(ˆ),1(ˆ
1

*
1

*
1

*
BBBB   ; 
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  Calculate 

21
1

1

1
*

1
*

*

11

]ˆ)(ˆ[

ˆ




































B

i

es

B

i

BB

B



,where 
1

)(ˆ

ˆ

1

1

1
*

1
*

B

i

B

i

B

B








 ; 

  (4)Repeat (2) and (3) B times,then get 

)(ˆ,),2(ˆ),1(ˆ ***
BBBB   and )(ˆ,),2(ˆ),1(ˆ

***

Beseses
BBB

 ; 

  (5)Calculate 




































1

)ˆ)(ˆ(

ˆ 1

2**

B

i

es

B

i

BB 

,the standard error of ̂ ,where 

B

i

B

i

B

B





1

*

*

)(ˆ

ˆ



 ,and 
)(ˆ

ˆ)(ˆ

)(
*

*

ies

i
iz

B

B  
 , ),,2,1( Bi  . 

  (6) )(,),2(),1( Bzzz  were ordered )()2()1( Bzzz   ,take 
][ 


B

z and 

)]1([ 

B

z  as the quantile,where ][ B and )]1([ B mean round numbers. 

  (7)Get 
B

i

B

i

B

B





1

*

*

)(ˆ

ˆ



 ,the point estimation of  .The  interval for   is given by 

)ˆˆ,ˆˆ(
)]1([

*

][

*
eszesz

B
B

B
B 




  with 95% confidence. 

4. Research on Regularity of Tractor Failures 
 
4.1. The Failure Data of Tractors 

The failure times used for illustration are the times of 113 failures for 10 tractors from 
a farm in Heilongjiang province, which are given in Table 1.  

Table 1. Fault Data of 10 Tractors from a Farm in Heilongjiang Province 
(Unit: Working Hours) 

 
175 186 191 227 241 323 343 389 410 466 

470 561 608 643 669 683 699 733 786 799 

801 817 825 844 884 889 939 986 993 993 

1007 1011 1021 1028 1051 1068 1072 1103 1107 1113 

1121 1123 1124 1134 1143 1146 1159 1162 1172 1177 

1181 1185 1384 1389 1461 1514 1536 1550 1574 1682 

1727 1745 1745 1760 1766 1895 1955 1977 1996 2251 

2268 2271 2317 2341 2387 2433 2551 2561 2575 2583 

2599 2626 2660 2683 2772 2816 2839 2899 2927 2927 
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2949 2992 3049 3105 3109 3169 3218 3239 3249 3262 

3326 3429 3448 3473 3538 3565 3594 3715 3835 3872 

3894 3975 4083        

 

4.2 Parametric Estimation of the Failure Intensity 

 

4.2.1 Point Estimation  

  A model for a repairable system is the NHPP with intensity function given by 
1

)(





 tt  

  The MLE (maximum likelihood estimator) of )( t  is given by 
 

      1ˆˆˆ)(ˆ 



 tt  （6） 

  where ̂  and ̂  are the MLE  of  and   . The log-likelihood for a repairable 

system observed for the time interval ),0(
n

t  with failures at 
n

ttt ,,,
21
 was given by 

Crow
[15]

 ,and then the estimation value can be obtained : 

              





n

i i

n

t

t

n

1

ln

̂  

(7) 

              



ˆ

)(

ˆ

n
t

n
  (8) 

  To the observed information,it is possible to calculate 9555.0,0401.0   ,so 
001747.0

0303.0)(


 tt . 

  The point estimation can be plotted for each value of t  in ],0[
n

t ,and the plot is given 

in Figure 1.From this plot it is seen that the intensity function is estimated to be a 

decreasing function which decreases from more than 0.0305 to about 0.0265, so tractors 

in early failure period. 

0 1000 2000 3000 4000 5000
0.026

0.0265

0.027

0.0275

0.028

0.0285

0.029

0.0295

0.03

0.0305

working hours t

                      fig.1  Point estimation of failure intensity curve of tractors
                                                                           based on parameter estimation                                                                 

failure
     intensity   

λ(t)

 

Figure 1. Point Estimation of Failure Intensity Curve of Tractors based on 
Parameter Estimation 

  The tractor failure process is NHPP and Weibull,then the cumulative failure intensity function is 

given by  

         
1

)(





 ttm    (9) 

  For 9555.0,0401.0   ,then 
0455.0

0401.0)(


 ttm . 
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  The curve of )( tm and the scatter diagram of cumulative failure times which is the 

accumulation of fault times in tracking experiment on tractors are given in figure 2. 

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

working hours t

      cumulative 
         failure           

       intensity      
     function     

            m(t)              

                                                                                                                  
Fig.2  Cumulative failure intensity curve and cumulative failure of tractors                                      

　 　 　 　 　 　 　 　 　 based on parameter estimation                                                                            

cumulative failure intensity

cumulative failure times

 

Figure 2. Cumulative Failure Intensity Curve and Cumulative Failure of 
Tractors based on Parameter Estimation  

  From this figure, it is seen that the trends between the curve of cumulative failure 

intensity and the scatter diagram of cumulative failure times in practice are consistent in 

],0[
n

t ,however the deviation  exists.  Calculate the mean square error between the 

cumulative failure intensity and the cumulative failure times, then it is calculated that 

8 .2 6 0 1M S E  . 

 

4.2.2 Interval Estimation 

  The intensity function for each value of t in ],0[
n

t  is Estimated and hence  a 95% 

confidence interval for )( t is calculated, which is given by  

)0389.0,0235.0(

)ˆˆ,ˆˆ(

001747.0001747.0

))lnˆ1(1
96.1

(

1ˆ
))lnˆ1(1

96.1
(

1ˆ

22











 tt

etet
nn

t

t

nt

t

n







  

  The limits of these individual confidence intervals can then be plotted in figure 3. 

0 1000 2000 3000 4000 5000
0.02

0.025

0.03

0.035
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0.045

0.05

working hours t

failure
      intensity   

              λ(t)              

fig.3  Interval estimation curve offailure intensity of tractors                             
              based on parameter estimation                                  

confident interval upper

confident interval lower

point estimation

 

Figure 3.  Interval Estimation Curve of Failure Intensity of Tractors base on 
Parameter Estimation 

  The black curve in figure 3 is the point estimation value of tractors fault intensity, same 

with figure 1; the red and blue curves are the upper and lower limit of confident interval of 

tractor failure intensity. 
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4.3 Non-parametric Estimation of the Failure Intensity 

  If no parametric form is assumed for the intensity, a non-parametric estimation method 

is required [9,10].Hence a non-parametric method will be subscribed for )( t . 

  By the non-parametric estimation algorithm from 3.2, tractors fault intensity curve can 

be plotted in figure 4,where 20,400
1
 BB  . 

0 1000 2000 3000 4000 5000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

working hours t

failure
     intensity   

             λ(t)             

　 　 　 　 　 fig.4  Point estimation of failure intensity curve of tractors           
　 　 　 　 　 　 　 　 　 　                based on non-parameter estimation                                   

 

Figure 4. Point Estimation of Failure Intensity Curve of Tractors based 
on Non-parameter Estimation 

  From this plot it is seen that the non-parameter estimation describes the overall tractors 

failure intensity trend, comparing with the parameter estimation,the details of the failure 

intensity such as the little fluctuation of failure intensity ascending and decreasing are 

exhibited obviously. 

  In the parameter estimation, )( t is decreasing from 0.0265 to 0.0305 over time for 

assuming that the failure process is Weibull process.While in the non-parameter,the curve 

being obtained by kernel estimation reveals that the values of )( t between 0.0068 and 

0.0630 is not monotone decreasing in [0,4083] ,in fact it ascends in [0,1000].Therefor it 

should be paid attention to the failure process and record the failure component in early 

period from 0 to 1000 hour of tractor in using, to  provide guidelines for improving the 

reliability of tractors. 

  The figure 5 is given,where )( tm is the value of estimation,and cumulative failure 

times is the accumulation of the actual failure times in tractors test. 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

20

40

60

80

100

120

working hours t

cumulative 
failure    
intensity  
function   
m(t)       

　 　 　 　 　 fig.5  Cumulative failure intensity curve and cumulative failure of tractors         
　 　 　 　 　 　 　 　 　 based on non-parameter estimation                                                

cumulative failure intensity

cumulative failure times

 

Figure 5. Cumulative Failure Intensity Curve and Cumulative Failure of 
Tractors based on Non-parameter Estimation 
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  From figure 5,the curve tend of cumulative failure intensity by non-parameter 

estimation is fitting well to the scatter diagram of cumulative failure times in 

practice.Then the MSE between the values of cumulative failure intensity and cumulative 

failure times can be calculated: 

2 .3 1 9 7M S E  . 

  The 2 .3 1 9 7M S E  in non-parameter estimation is obviously less than the 8 .2 6 0 1M S E   

in parameter estimation .Therefore the failure intensity curve in non-parameter estimation 

is more close to the actual test process. 

  By the non-parametric estimation algorithm from 3.2,Using the resampling method, it 

is possible to produce a confidence region for the tractors data in Figure 6. 

0 1000 2000 3000 4000 5000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

working hours t

failure           
intensity   
λ(t)              

fig.6   Interval estimation curve of failure intensity of tractors                                                       
                                                     based on non-parameter estimation                                                                                                 

confident interval upper

confident interval lower

point estimation

 

Figure 6. Interval Estimation Curve of Failure Intensity of Tractors based 
on Non-parameter Estimation 

  The black curve in figure 6 is the tractors fault intensity point estimation, similar to 

figure 4; The red and blue curves are the interval upper and lower limits of tractor failure 

intensity with 95% confident based on bootstrap. 

 

5. Results 

  1. According to theoretical analyses and statistical testing, the tractor failure process is a 

non-homogeneous Poisson process; The failure intensity curves in working hours give a 

complete description of the regular of tractors failures in early period by the parameter 

estimation, further more the non-parameter estimation is given by bootstrap. 

  2. it is seen that the failure intensity function is estimated to be a decreasing function 

with time in parameter estimation, and the bathtub curve is the early period of mechanics 

in using .Wherever in non-parameter estimation, it is found that the failure intensity of the 

tractors is increasing during 0 to 1000 hour, therefore the process of design and 

manufacture of tractor need to be further improved. 

  3. Comparing cumulative failure intensity and actual cumulative failure times of the 

mean square error between the estimation of parameter and non-parameter, it is found that 

the MSE is much smaller in non-parametric estimation. Thus it is validated that the 

non-parametric estimation of tractor failure intensity is much closer to the actual test 

process.   
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