
International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018), pp.39-50

http://dx.doi.org/10.21742/ijseia.2018.12.3.04

ISSN: 1738-9984 IJSEIA

Copyright ⓒ 2018 SERSC

Evaluating the Role of Software Visualization Techniques as

Assistant Tools in Software Reverse Engineering
1

Abdullah O. Al-Zaghameem

Department of Computer Science, Tafila Technical University

Postal: 66110, P.O. Box: 179, Tafila, Jordan

aoz@ttu.edu.jo

Abstract

Software reverse engineering is an important process for software maintenance and

upgrading. The process includes analyzing existing software to identify its structural

components and the relationships between them. Presenting software components,

relationships, and data to the reverse engineer visually is considered as essential and

vital technique. This paper explores and evaluates the role of software visualization

techniques in software reverse engineering process. An evaluation model is constructed,

which consists of quantitative and qualitative measurement sets. The evaluation model is

applied on six software visualization tools that are used to reclaim the structural design

of object oriented software. The results reveal a real need to enhance software

visualization tools to play a better role in software reverse engineering.

Keywords: Software Visualization, Reverse Engineering, UML Diagrams, Software

Redesign, OOM

1. Introduction

Software visualization (SV) is concerned mainly with the static and dynamic

visualization of software components such as executable programs and source code [1, 2].

It can range from simple SV techniques that visualize system components textually to

advanced SV models that exploit more advanced visualization mechanisms such as 3D

Modeling [3-5]. In practice, SV techniques are used to reduce the complexity of systems

for better understanding and being used more efficiently. Since the invention of Graphical

User Interfaces (GUI) in the early 1980s [6], SV techniques have been widely used in

several vital areas such as teaching, presentation, and designing of complex systems. In

addition, SV techniques have been exploited in many software domains such as reverse

engineering, reengineering, and maintenance, where a huge amount of complex data

needs to be understood [7, 8].

Reverse engineering, on the other hand, is the process of analyzing existing software to

identify its main components and the relationships between them in order to provide high

abstraction levels for the system. It can be seen as going backwards through the cycle of

software development from implementation (source code or binary code) to the analysis.

Reverse engineering plays a major role in software reuse and maintenance. Practically

speaking, the main goal of reverse engineering is to represent the subject system in an

abstract representation in order to be more understandable by the engineer. The process of

reverse engineering is a two-step process: (1) the extraction of system information

through system analysis and (2) abstraction of system components by creating views and

documents [7, 9].

However, reverse engineering is a very challenging process [10, 11]. From one side, it

may take weeks or months to obtain a mental model of the subject system. From the other

Received (July 8, 2018), Review Result (September 17, 2018), Accepted (October 4, 2018)

mailto:aoz@ttu.edu.jo

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

40 Copyright ⓒ 2018 SERSC

side, software engineer may spend a lot of time in reading and understanding software in

hand [12]. For example, understanding the object-oriented source code of a system is

more difficult than understanding other programming types because of the difficulties that

may result from the technical aspects of object oriented model such as polymorphism and

inheritance. The situation becomes worse in the case of legacy software that their source

code is unavailable or missing.

Since reverse engineering is usually done under time pressure, reading and

understanding the source code is not viable [11] especially for complex systems;

therefore, presenting data to the reverse engineer in a suitable manner, which speeds up

the reengineering process, is an important issue. For this purpose, the research community

of software engineering and re-engineering has proposed a lot of solutions to solve this

problem or reduce its consequences. One of the promising proposals that have been

presented is the SV technique, which is considered as a comprehensive aid.

This paper figures out some key features of SV techniques and emphasizes their role in

software reverse engineering. An evaluation model is constructed to evaluate this role and

applied on a case study. The paper is organized as follows: Section 2 gives a background

on SV. Section 3 explains the motivation and goals of this research. Section 4 discusses

the methodology on which the research is conducted, and presents the evaluation model

with which SV role is evaluated. In Section 5, an empirical study is conducted to apply

the evaluation model on a set of SV tools and discusses the results in detail. Related

works are presented in Section 6, and Section 7 concludes the work and presents some

future works.

2. What is Software Visualization?

Visualization is defined by Gershon as “the process of transforming information into a

visual form, enabling users to observe the information” [1]. This technology of

information representation has been heavily used in mechanical engineering, chemistry,

physics, and medicine [2]. Stephan Diehl [2] defines Software Visualization (SV) as “the

visualization of artifacts related to software and its development process”. These artifacts

may include program codes, design models, requirements documentation, etc.

At the structural level of software, it is important to emphasize software components

and the inter-relationships that “gluing” them altogether. In this context, SV techniques

are expected to play a primary role. For example, modeling languages like Unified

Modeling Language (UML) offer variant sets of structure, behavior and component

modeling diagrams [13]. In addition to the familiar structure visualization using UML,

other SV techniques provide different methods of representation. In [2], Stephan had

presented a short description of some taxonomies and surveys that classify SV techniques.

This issue, however, is beyond the scope of this paper.

3. Motivation and Research Objectives

The main objective of this paper is to investigate and evaluate the role of exploiting SV

techniques in software reverse engineering process. The research is motivated by

inspecting the importance of SV in presenting information more precisely and more

clearly than, for example, traditional textual way. In the scope of software reverse

engineering, SV tools will shorten the distance between reverse engineers and the better

understanding of structure and functionality of software systems. In addition, SV tools

can speed up the process of software redesign, refactoring, and maintenance; especially

with the employment of model-based software generators.

Few researches have discussed or considered evaluating the role of SV tools in reverse

engineering in a systematic way. The research aims to add a contribution in this direction.

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

Copyright ⓒ 2018 SERSC 41

4. Research Methodology Plan

To emphasize the role of SV tools in reverse engineering of software, this paper studies

the capabilities of several relative SV tools. To achieve this goal, the research stands

mainly on conducting a kind of diagnostic comparison between these tools to evaluate

their assistance in reverse engineering. Figure (1.a) illustrates the research methodology

plan, which consists of two main phases. The first phase is titled reverse engineering

process, in which SV tools are used to reclaim the design of a specific system from its

existing source/binary code. In the second phase, which called analysis and assessment

process, a detailed analysis will be made to study the resulted designs and evaluating the

tested SV tools according to two sets of measurement criteria; as shown in Figure (1.b).

Figure 1. (a) Research Methodology Plan, and (b) Measurement Sets of the
Evaluation Model

4.1. Reverse Engineering using Visualization Techniques

The reverse engineering of software using SV tools addresses mainly the structure of

that software. In this research, the UML Diagrams have been selected to represent

software structures visually. UML is the de facto of software modeling and brings

significant benefits to software engineering and system maintenance [14]. Consequently,

the selected SV tools are required to produce a UML class diagram of a specific system

from the delivered source/binary code. In the context of reverse engineering, an efficient

SV tool should successfully reclaim the design of system structures with an accepted level

of details that can help software engineers. Moreover, the SV tool should present the

system in a way that building units and the inter-connection links of its structures are

discovered and represented clearly.

4.2. Evaluation Strategy

In order to inspect and evaluate the role of SV tools in software reverse engineering, an

evaluation model has been constructed. It consists of two measurement sets; the

quantitative measurement set and the qualitative measurement set (see Figure (1.b)). For

Reverse

Engineering

Process

SV Tool

Software Source Code/Binary Code

Design Recovery

Visual Design

Evaluation Model

Criteria

Results

Analysis and

Assessment

 Process

Evaluation Model

QtMS QvMS

 Inclusiveness
 Descriptiveness
 Connectivity
 Cardinality

 Expressivity
 Usability
 Correctness

a b

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

42 Copyright ⓒ 2018 SERSC

each of these sets, a group of criteria has been formulated as the minimal criteria set

required to perform the included measurements.

For SV tools, the evaluation process concerns mainly with the tasks of reverse

engineering regarding the conformance of reclaimed designs with the structure objectives

and system requirements of software. The evaluation model targets those software

systems that have been developed using the Object-oriented Model (OOM).

Quantitative Measurement Set (QtMS)

The following paragraphs discuss the criteria included in this set and present the

objective(s) of each of them.

1. Inclusiveness. This criterion is primary, and determines whether the design that is

regenerated by the SV tool includes all the structural units and modules of the

system or not. It inspects the capability of SV tool to reclaim all structural units of

the system and distinguishes their types (e.g., Java programming language

supports class, interface, and enumeration modules). To measure this criterion,

the percentage of reclaimed units out of the total system units is recorded.

2. Descriptiveness. This criterion inspects if the regenerated design involves system

components along with all their attributes and specifications represented in an

official manner, in this research, according to the UML formal symbolization. In

this context, extraction of the actual names of components and structural units is

very important as it helps in detecting and describing the relationships between

system units and their semantics. In addition, it can improve the understanding of

the essence and functionalities implied in each component. Furthermore, it assists

engineers in performing other processes in reverse engineering like system

profiling.

3. Connectivity. Object-oriented programming model comprises different types of

relationships that can connect system components altogether. Some of these

relationships are structural like composition and aggregation, while others are

functional like association. It is important for system reverse engineering to

accurately detect all components interrelationships, recognize their types, and

identify their multiplicity. This criterion determines if the SV tool infers all the

relationships between system components?

4. Cardinality. For the sake of completeness, the regenerated design should include

the same exact methods (functionalities) and attributes (specifications) of each

structural unit in the system as it was originally developed. In this concern, SV

tools and reverse engineers may manipulate this issue differently. For instance,

some methods and attributes might be inherited from parent modules; therefore,

these methods may appear in the design two times or more, or none at all

depending on the SV tool strategy. This may preclude a better understanding of

system structure and functionality, and causes structure ambiguity to

programmers and reverse engineers. In this paper, two quantities will be

measured to evaluate this criterion for each structural unit; the number of methods

(NOM) and number of attributes (NOA) it implements or defines.

Qualitative Measurement Set (QvMS)

It is important to evaluate qualitatively the role of SV tools in software reverse

engineering. Accordingly, this paper discusses and evaluates the following qualitative

criteria:

1. Expressivity which points here to the qualitative measurement of SV tool against

the clarity of system structure representation; which includes the context in which

each system component is put in and the name each component is given. For each

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

Copyright ⓒ 2018 SERSC 43

component in the system, the full-qualified name should be reclaimed by the SV

tool, and the context in which this component is resided (for example, namespace,

package, etc.,) should be determined. To evaluate SV tools against this criteria,

one of the following values is assigned:

a. Excellent: means all reclaimed system components are expressed accurately.

b. Very Good: if the majority of reclaimed components and structures have been

expressed correctly.

c. Good: if most components and structures are put in their contexts and have

accurate names.

d. Satisfied: if it is helpful to understand the structure of the reclaimed system

design even though not all its components have been expressed precisely.

e. Poor: if it is hard to understand the reclaimed system structure because of

“bad” naming or missed or incorrect contexts.

2. Usability. the usability is used here to refer to the capability of SV tool to help

reverse engineers to reclaim the system structure in shorter time and less efforts

than white-box approaches, for instance. Although measuring usability is a

controversial issue because it is “user experience” dependent, the assessment of

usability in this paper is conducted in terms of assessing some generic features of

SV tools. Such features include: import source/binary code, save/open diagrams,

customization tools, etc.

Another qualitative usability measurement is the number of steps needed to

perform design regeneration. In this regard, the minimum number of steps the SV

tool performs the best in usability. The measurement scale used in the previous

criterion will be used to evaluate usability.

3. Correctness. This criterion measures the accuracy degree of SV tool. In addition

to reclaiming all system components and putting each of them in its accurate

context, it is very important to connect them precisely. The precision here means

extracting the actual number and type of relationships, as well as assuring that

each relationship connects the accurate components. The measurement scale of

this criterion is the same as the previous two.

5. Case Study: Reverse Engineering an Object-oriented System

In this section, an experiment is conducted to apply the evaluation model presented

previously on a selected system. The experiment targets systems developed in the object

oriented approach.

5.1. The “Toy-shop” System

The methodology and evaluation model are applied on a system called “Toy-shop”2.

The system is programmed using Java™ and structured as shown in Figure 2. It is a

simple system that organizes the process of toys shopping at an arbitrary toy store. It

contains (19) different Java classes and interfaces. The system structural units are “glued”

together using different relationships like inheritance, association, containment and

aggregation. Among the 19 classes, there are four enumeration classes and two interfaces.

One class is implemented as inner-class (inside another class) in purpose of testing

reverse engineering the containment relationship.

2 The source code is available for free at

https://www.dropbox.com/s/a8a47vt1zb64tzh/ToyShop.rar?dl=0

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

44 Copyright ⓒ 2018 SERSC

5.2. The Target SV Tools

A set of six different SV tools have been tested to reclaim the UML Class Diagram of

the “Toy-shop” system. According to their developers, all tools can generate UML

diagrams from Java code. The selected SV tools are “Code 2 UML” v0.6.1 [15],

ObjectAid UML Explorer v1.2 [16], StarUML v4.8 [17], Class Visualizer v1.8 [18],

Visual Paradigm v14.2 [19], and Papyrus Oxygen v3.0 [20]. There are, however, other SV

software and tools that could be tested.

Figure 2. “Toy-Shop” System Structure Diagram

In the sake of achieving realistic results, all SV tools are executed on the same

machine. A personal computer is used with Intel Core 2 Duo 2.1GHz CPU, and 4 GB

DDR2 RAM. The computer operates by Microsoft Windows 7 Professional 32-bit. To

verify experiment results, each SV tool has been tested twice.

5.3. Experiment, Results, and Discussion

The SV tools have been evaluated according to the evaluation model. All tools are

tested according to the default settings of each one; unless it is very necessary to pre-

configure some settings. First, the QtMS criteria on each recovered design have been

measured for each tool and organized as shown in Table 1. As the table illustrates, all SV

tools have successfully reclaimed all the (19) “Toy-Shop” classes as expected. Therefore,

they all satisfy the Inclusiveness criterion.

Table 1. Evaluation Results of QtMS Critera

 Code 2 UML
ObjectAid

UML
StarUML

Class

Visualizer

Visual

Paradigm
Papyrus

Inclusiveness – (19 Class) 100% 100% 100% 100% 100% 100%

Descriptiveness 83% 94% 81% 55% 93% 80%

Connectivity 62% 92% 67% 90% 91% 90%

Cardinality

NOM

(91 Method)
78 (85.7%) 97 (106.6%) 70 (76.9%) 48 (52.8%) 48 (52.8%) 132 (145%)

NOA

(65 Attribute)
63 (96.9%) 65 (100%) 62 (95.4%) 98 (150.8%) 79 (121.5%) 65 (100%)

The results vary with respect to the Descriptiveness criterion. Although none of the SV

tools reaches the100% score, some tools records good percentages. The reasons behind

edu.ToyShop

ApplicationProgram

ToyShop

utilities

Cart

Invoice

structures

divisions

Section

ToyEntry

persons

Person
IPerson

Employee Customer

Manager

toys

Toy IToy

Doll ElectronicToy

ToyColor
<<Enum>>

ToyMaterial
<<Enum>>

ToySizeScale
<<Enum>>

BatteryModel
<<Enum>>

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

Copyright ⓒ 2018 SERSC 45

that none of the SV tools scores 100% percentage include: (1) most of the tested SV tools

does not obey the UML standard notations partially, or does not use them at all. For

example, “Code 2 UML”, StarUML, “Class Visualizer”, and “Papyrus” do not enclose

system classes within UML package notations. In addition, most of tested SV tools show

no difference between aggregation and composition relationships; it uses the same UML

link notation as in “StarUML” which uses the aggregation symbol (the famous outlined

diamond) for all types of associations. Moreover, “Code 2 UML” and “ObjectAid UML”

use the UML class notation for both classes and interfaces.

Another reason is that (2) some SV tools represent some system modules, surprisingly,

incorrect. For example, “Class Visualizer” represented the methods declared in “IToy”

and “IPerson” interfaces as attribute (field) declarations. If a decision to be made here,

with these bad percentages for descriptiveness, software reverse engineers can go

mistakenly in further steps when, for example, addition structural units to be added.

For Connectivity evaluation, the SV tools are tested using two main measures:

1. The relationship type. A relationship type points to the category to which the

links between system structures is belong. For Java-based systems, the following

relationships are considered:

a. Association (including aggregation and composition).

b. Inheritance.

c. Implementation (i.e., interface implementation).

d. Confinement (e.g., inner classes).

2. The number of relationships. For each tested SV tool, the count of relationships

among structure units is recorded.

The results of connectivity evaluation are recorded and organized in Table (2). All

tested tools have successfully reclaimed all inheritance and implementation relationships

(as expected); because these relationships are clear, vital, and easy to recognize. In the

case of confinement relationship, most of the tested tools mark it in some or the other

way. For example, “ObjectAid UML” and “Visual Paradigm” use the famous circled plus

sign () to mark confinement relationship. Others like “Papyrus” represent the inner class

as part of the parent. Two of the tested tools are unable to reclaim, or point out to, this

relationship.

As for the association links, the results are strangely vary from one tool to another.

Among the (22) associations in the original design, “StarUML” has reclaimed only (5),

recording the worst percentage among the other tools. Not in a better rank than “Papyrus”;

which reclaimed only (6) associations. With these percentages, software reverse engineers

can make, with almost high probability, wrong decisions in the forward steps.

Table 2. Results of Connectivity Evaluation - Relationship Detection and
Identification

Code 2

UML

ObjectAid

UML
StarUML

Class

Visualizer

Visual

Paradigm
Papyrus

Association + Aggregation (22) 11 (50%) 22 (100%) 5 (22.7%) 16 (72.2%) 14 (63.6%) 6 (27.3%)

Inheritance – (5) 5 (100%) 5 (100%) 5 (100%) 5 (100%) 5 (100%) 5 (100%)

Implement – (2 Interfaces) 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%)

Confinement – (1 Inner Class) No Yes No Yes Yes Yes

The last evaluated criterion is the Cardinality of system structures. The term cardinality

is employed in this research to point out the number of methods and attributes

implemented in the system structural units i.e., Java classes. This criterion is of a great

benefit to software reverse engineers to understand the context and functionality of each

unit and objects behavior. As Table 1 shows, the cardinality is measured in terms of two

factors:

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

46 Copyright ⓒ 2018 SERSC

1. Number of Methods (NOM): the research uses the term “methods” to point all

implemented class methods including: member methods, class constructors, and

fields’ getters and setters. Generally speaking, the NOM is the total number of all

methods in all classes. As seen in Table 1, none of the tested SV tools have

reclaimed exactly the (91) methods which is expected for those tools that

reclaimed more methods than this number. Firstly, the Java compiler injects an

empty constructor method in those Java classes that have not yet implemented the

empty constructor. Some SV tools take care of this issue; therefore score results

that have exceeded the actual NOM value like “ObjectAid UML”. Secondly, due

to inheritance relationships, child classes obtain all its parent’s methods. Only

“Papyrus” represents this “obtaining” explicitly; therefore, it scores a wrong high

value with (132) methods. The remaining tools exhibit various behaviors. Some

of them like “Code 2 UML” hide all class constructors. “Visual Paradigm” and

“Class Visualizer” did not reclaim all methods; in fact, some methods have been

reclaimed as attributes! Finally, “StarUML” represents interfaces as closed circles

(the formal UML notation of interface) with no description about the declared

methods.

2. Number of Attributes (NOA): in the original system, there were (65) attributes

defined in all system classes in total. The NOA refers to this value. Most of the

tested SV tools reclaimed all defined attributes. However, only “Class Visualizer”

and “Visual Paradigm” reclaim more attributes than expected because both tools

explicitly represent the inherited attributes in child classes. In addition, the first

tool has unexpectedly represented some methods as attributes!

The second part of the evaluation model is the QvMS. The criteria involved in this part

target the performance and productivity of software reverse engineers when using SV

tools. According to the observations of three software engineers who have used the tested

SV tools, the evaluation results of QvMS criteria come out as illustrated in Table 3. The

results listed in the table are the average of three evaluation values for each criterion.

As the table shows, none of the tested tools was perfect in total. Some tools have

graded excellent in one or two criteria but scored less in other criteria. All in all, all tested

tools exhibits good usability, but varies at the correctness criterion; again because not all

tested SV tools obey the formal notations of UML. As could be noticed from the table,

“Class Visualizer” and “StarUML” are “Poor” with respect to the Correctness criterion

because they incorrectly reclaimed some member methods of classes as attributes.

Moreover, many associations among classes are missed or represented incorrectly in the

reclaimed designs.

Table 3. Results of Qualitative Evaluation

 Code 2 UML ObjectAid UML StarUML Class Visualizer Visual Paradigm Papyrus

Expressivity Good Very Good Good Satisfied Excellent Good

Usability Good Excellent Good Good Very Good Very Good

Correctness Satisfied Excellent Poor Poor Excellent Very Good

To sum up, and from software reverse engineering perspective, using SV tools can save

a huge amount of effort and time. Nevertheless, as concluded from the previous results,

they put extra efforts on reverse engineers to peer inspect the reclaimed designs, and may

compel the use of more than one tool to get better results. This does not disaffirm that SV

tools play an important role in reverse engineering process.

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

Copyright ⓒ 2018 SERSC 47

6. Related Works

6.1. SV Role in Reverse Engineering and Software Comprehension

It is important to shed a light first on the use of SV tools in reverse engineering and

software comprehension in research. The following paragraphs present some of research

papers which are relevant to the main goal of this paper.

MJ Pacione et. al. [21] argued that the current SV techniques address only specific

aspects of reverse engineering context, and fail to solve the difficulties that inherent from

the object oriented languages nature. The authors conducted an evaluation experiments to

evaluate the dynamic performance of visualization tools. Several tools were evaluated by

assessing their performance in a number of visualization tasks. The evaluation model in

this research focuses on the static structure of software and measures the qualitative

features of SV tools to judge their role in reverse engineering in general. The results of

this research and those concluded in [21] have agreed that more attention needs to be paid

to SV tools development in order to improve their role in software reverse engineering.

Richard Wettel and Michele Lanza [22] proposed a 3D software visualization system

based on the city metaphor. The city metaphor is useful in the field of reverse engineering

and program comprehension. The authors argued that a good visualization technique can

help in reverse engineering tasks by supporting habitability. Habitability is the source

code characteristic that makes it easy to understand by individuals rather than developers.

The proposed technique supports the habitability and locality concepts using city

metaphors. The technique views the subject system as a city with classes as buildings and

packages as the districts of that city. The technique is applied on two large systems called

ArgoUML and Azures. ArgoUml is a java project used to generate and draw UML

diagrams, and Azures is a peer-to-peer java application. The experiment approved

scalability, interactivity and completeness of the proposed technique. Another research by

Fittkau et. al. [23] proposed a technique called ExplorViz in which authors have claimed

that it enhances application visualization for better software comprehension.

Mendelzon and Sametinger [24] used a general visualization tool called Hy+ to

visualize information about object-oriented software systems. Hy+ is a tool used to

visualize objects and relationships between them. The tool provides a user interface and

supports a query language called Graphlog. The authors argued that using general purpose

SV system is more flexible than using reverse engineering tools.

Rainer Koschke [25] conducted a survey on 82 researchers in SV in software

maintenance, reverse engineering and reengineering. The survey answered several

questions include: To what degree researchers are involved in SV? What to visualize and

how? Is animation frequently used in SV? Do researchers believe that visualization is

useful at all? Which automatic graph layouts are used? Do the layout algorithms have

deficiencies? And finally, where should future researches directed? The survey showed

that among visualization techniques, graphs are used in 52% of the researches, 18% have

used UML Diagrams, and 18% used textual representation. The animation techniques are

rarely used.

Michael J. Pacione [26] provided an approach to improve the effectiveness of

visualization techniques by combining the structural and behavior perspectives of formal

model of abstractions, the facets that represent the important aspects of the system, and

the dynamic and static information that are extracted from the subject system. The paper

provided practical questions that considered as a basis for visualization tool evaluation.

Our research considers the work by Michael, according to the evaluation model results, as

a conclusion. That is, SV tools need to provided with techniques and information sources

so that visual representations become more helpful to reverse engineers. For example, this

research suggests the use of annotation technique to augment visualizations with

functionality modeling or execution flow controls.

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

48 Copyright ⓒ 2018 SERSC

6.2. Evaluating the SV Tools in Reverse Engineering and Software Comprehension

In research literature, few researches have directly presented taxonomy studies or

evaluation comparisons in the role of SV tools in reverse engineering. However, the

authors of [27] presented a survey on state-of-the-art information visualization techniques

(InfoVis). Taxonomy has been built based on four main categories on a detailed review of

the literature. These categories are empirical methodologies, interactions, frameworks,

and applications. The taxonomy has been augmented with the advantages and limitations

of the studied methods under each major category. A more dissemination search has been

made by Liam and Laramee [28], in which a survey of surveys (SoS) has been conducted

and presented as a road map that guides researchers in the field of information

visualization in general.

Anna-Liisa et. al. [29] conducted a study that presents a systematic literature review

spanning six years of software visualization literature (starting from the year 2010). The

result of their study shows that the most studied topics in the past six years are related to

software structure, behavior and evolution. At the same time, software process and usage

are addressed only in few studies.

Researchers in [30] have presented a systematic review to study the reverse

engineering techniques that focus on recovering program interactions and represent them

as sequence diagrams. Several approaches have been investigated and their features,

limitations, and operation have been demonstrated. Their research comes out with three

very important conclusions; one of them is that expressive and extended notations need to

be attached to UML sequence diagrams to allow adding more details.

7. Conclusion and Future Works

This research aims at investigating and evaluating the role of Software Visualization

(SV) tools in the software reverse engineering process. An evaluation model has been

constructed. The evaluation model consists of two group of measurement sets;

quantitative and qualitative sets. An experiment has been conducted to evaluate a set of

six different SV tools on reclaiming the UML Class Diagram of a specific object oriented

application programmed with (Java).

The evaluation results are so various among the tested SV tools. From the quantitative

measurements, we can conclude that SV tools play almost a good assistant role in

software reverse engineering. Nevertheless, there is a real need to augment these tools

with techniques and capabilities that allow for more details to appear on system designs.

For instance, the SV tool should distinguish between inherited and original class methods.

A capability of drawing execution paths (e.g. method calls) can help in understanding the

functionality and control flow between system components.

As for qualitative measurements, most SV tools are user-friendly and exhibit good

usability. More attention needs to be paid in the conformance of these tools with the

standard and formal modeling notations. The software reverse engineers cannot depend

on one SV tool to comprehend the structure of system on hand, which results in exerting

more efforts.

For future work, more SV tools need to be evaluated on extended sets of measurements

also the case study used in this research is of small-scale object oriented software. The

evaluation should target more than one application with various complexities.

References

[1] J.-E. Dubois and N. Gershon, “The Information Revolution: Impact on Science and Technology”,

Springer Science & Business Media, (2013) March 12.

[2] S. Diehl, “Software Visualization: Visualizing the Structure, Behaviour, and Evolution of Software”, 1st

Edition, Springer-Verlag Berlin Heidelberg. ISBN: 978-3-642-07985-6, (2007).

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

Copyright ⓒ 2018 SERSC 49

[3] B. Schmid, J. Schindelin, A. Cardona, M. Longair and M. Heisenberg, “A high-level 3D visualization

API for Java and Image”, BMC bioinformatics, vol. 11, no. 1, (2010), pp. 274.

[4] R. Wettel and M. Lanza, “Visual Exploration of Large-Scale System Evolution”, 15th Working

Conference on Reverse Engineering, Antwerp, doi: 10.1109/WCRE.2008.55, (2008), pp. 219-228.

[5] S. S. P. Shum, K.-m. Yu and K.-m. Au, “3D Fillet Solid Model Reverse Engineering from 2D

Orthographic Projections”, International Conference on Manufacturing Automation, Hong Kong, doi:

10.1109/ICMA.2010.15, (2010), pp. 71-78.

[6] E. S. Raymond, “The Art of Unix Programming”, Addison-Wesley, ISBN 0-13-142901-9, (2003)

October.

[7] G. Canfora Harman and M. Di Penta, “New frontiers of reverse engineering”, Future of Software

Engineering. IEEE Computer Society, (2007).

[8] B. A. Price, R. M. Baecker and I. S. Small, “A principled taxonomy of software visualization”, Journal

of Visual Languages & Computing, vol. 4, no. 3, (1993), pp. 211-266.

[9] H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R. Tilley and K. Wong, “Reverse engineering:

A roadmap”, Proceedings of the Conference on the Future of Software Engineering. ACM, (2000), pp.

47-60.

[10] E. J. Chikofsky and J. H. Cross, “Reverse engineering and design recovery: A taxonomy”, IEEE

software, vol. 7, no. 1, (1990), pp. 13-17.

[11] G. Canfora, M. Di Penta and L. Cerulo, “Achievements and challenges in software reverse engineering”,

Communications of the ACM, vol. 54, no. 4, (2011), pp. 142-151.

[12] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen and R. Koschke, “A systematic survey of

program comprehension through dynamic analysis”, IEEE Transactions on Software Engineering, vol.

35, no. 5, (2009). pp. 684-702.

[13] G. Booch, J. Rumbaugh and I. Jacobson, “Unified Modeling Language User Guide”, 2nd Ed., Addison-

Wesley Professional, ISBN-10: 0-321-26797-4, (2005) May.

[14] W. J. Dzidek, E. Arisholm and L. C. Briand, “A realistic empirical evaluation of the costs and benefits

of UML in software maintenance”, IEEE Transactions on software engineering, vol. 34, no. 3, (2008),

pp. 407-432.

[15] Code 2 UML, Official Website: https://sourceforge.net/projects/code2uml/, last visited (2018)

September.

[16] The ObjectAid UML Explorer for Eclipse, Official Website: http://www.objectaid.com/, last visited

(2018) September.

[17] StarUML 2, Official Website: http://staruml.io/, last visited (2018) May.

[18] Class Visualizer, Official Website: http://www.class-visualizer.net/, last visited (2018) February.

[19] Visual Paradigm, Official Website: https://www.visual-paradigm.com/features/uml-and-sysml-tools/,

last visited (2018) February.

[20] Papyrus Modeling Environment – Eclipse, Official Website: https://www.eclipse.org/papyrus/, last

visited (2018) February.

[21] M. J. Pacione, M. Roper and M. Wood, “A comparative evaluation of dynamic visualisation tools”, 10th

Working Conference on Reverse Engineering, (2003).

[22] R. Wettel and M. Lanza, “Visualizing software systems as cities”, 4th IEEE International Workshop on

Visualizing Software for Understanding and Analysis, IEEE, (2007).

[23] F. Fittkau, A. Krause and W. Hasselbring, “Software landscape and application visualization for system

comprehension with ExplorViz”, Information and Software Technology, vol. 87, (2017), pp. 259-277.

[24] A. O. Mendelzon and J. Sametinger, “Reverse engineering by visualizing and querying”, Software-

Concepts and Tools, vol. 16, no. 4, (1995), pp. 170-182.

[25] R. Koschke, “Software visualization in software maintenance, reverse engineering, and re-engineering: a

research survey”, Journal of Software Maintenance and Evolution: Research and Practice, vol. 15, no. 2,

(2003), pp. 87-109.

[26] M. J. Pacione, “Software visualization for object-oriented program comprehension”, ICSE 2004.

Proceedings of the 26th International Conference on Software Engineering, IEEE, (2004).

[27] S. Liu, W. Cui, Y. Wu and M. Liu, “A survey on information visualization: recent advances and

challenges”, The Visual Computer, vol. 30, no. 12, (2014), pp. 1373-1393.

[28] L. McNabb and R. S. Laramee, “Survey of Surveys (SoS): Mapping The Landscape of Survey Papers in

Information Visualization”, In Computer Graphics Forum, vol. 36, no. 3, (2017), pp. 589-617.

[29] A.-L. Mattila, P. Ihantola, T. Kilamo, A. Luoto, M. Nurminen and H. Väätäjä, “Software visualization

today: systematic literature review”, In Proceedings of the 20th International Academic Mindtrek

Conference (AcademicMindtrek'16), ACM, New York, NY, USA, (2016), DOI:

https://doi.org/10.1145/2994310.2994327, (2016), pp. 262-271.

[30] T. Ahmed Ghaleb, M. A. Alturki and K. Aljasser, “Program comprehension through reverse-engineered

sequence diagrams: A systematic review”, Journal of Software: Evolution and Process, e1965, (2018).

https://en.wikipedia.org/wiki/International_Standard_Book_Number

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

50 Copyright ⓒ 2018 SERSC

Author

Abdullah O. Al-Zaghameem, an assistant professor at Tafila Technical University. He

has been a lecturer since 2005. He was awarded his Ph.D. from the Technical University

of Berlin (Germany) in September 2012. His main research interests include software

engineering, distributed programming models, distributed aspect-oriented programming,

and mobile computing.

