
International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018), pp.1-18

http://dx.doi.org/10.21742/ijseia.2018.12.3.01

ISSN: 1738-9984 IJSEIA

Copyright ⓒ 2018 SERSC

Automatic Code Generation for Web Services Composition

Based on a Formal Specification
1

Meftah Mohammed Charaf Eddine1 and Kazar Okba2

1University of Echahid Hamma Lakhdar-El Oued, Algeria
2University of Mohamed Khider, BISKRA, Algeria

Mmce2011@yahoo.fr, Kazarokba@yahoo.fr

Abstract

The web service oriented architecture (WSOA) design the software as services and

uses the services as platforms. The orchestration of the services describes how Web

services can interact with each other in an operational perspective, with control

structures, including the order execution interactions. Many languages allow expressing

executable processes to implementing Web services orchestration. These languages are

used to describe how interactions between multiple services are coordinated to achieve a

goal. However, the operational semantics of each of the structures of these languages is

not formally defined and their limitations to the reasoning and verification of Web

services compositions. This approach involves the automatic code generation for web

services composition from formal specifications. We described the application using

graphical notations (UML). Next, B automatic process of refinement can be applied to

build a web services composition that satisfies the purpose of the web application. Due to

the generic nature of the refinement rules, an automatic code generation tool (UML-B-

BPEL4SW) can be achieved, thereby reducing the cost of the development. A case study

implementation of the proposed approach is developed using B tools.

Keywords: Web Service, UML, Formal Method B, Refinement Process, BPEL4SW

1. Introduction

In recent years, the security in the development of Web applications becomes a need

and goal significant and crucial.

The Web (2+) technologies such as SOA, design the software as services. More

importantly, they are rethinking the services as platforms, rather than viewing services as

products; these sets of technologies considered a service is primarily a brick whose role is

allow to other services to build other services by using it. In such applications, the

difficulty for designers’ lies in writing programs that respect the integrity of all

transactions and web services orchestration.

The aim of this paper is the definition of a formal approach to developing secure Web

services compositions. In these compositions, designers tend to use methods such

semiformal say: UML, CTT, OMT ... mainly based on graphical notations (classes,

entities, states / transitions ...) or symbolic (as CTT) for intuitive representation,

simplified and synthetic system to study. These methods represent undeniable advantages

for modelling. They are an ideal medium for communication between the different actors

of the system. Nevertheless, these methods still suffer from a lack of precise semantics of

their concepts. This lack of semantic greatly reduces the possibility of formal reasoning

and evidence obtained on modelling.

Our work depends on the generation of an implementation (BPEL4SW) from formal

specifications B (mathematical notations). This generation is performed by successive

Received (April 25, 2018), Review Result (June 28, 2018), Accepted (July 3, 2018)

mailto:Mmce2011@yahoo.fr
mailto:Kazarokba@yahoo.fr

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

2 Copyright ⓒ 2018 SERSC

refinements of abstract specifications obtained by the translation phase of graphical

notations. A set of generic rules refinement B has been defined. These rules consider the

dynamic aspect (operations) of the web application. The objective of such a translation is

obtaining the design model precise, concise and analyzable by tools (Control, evidence,

simulation ...).

The rest of the article is organized as follows: Section 2 presents briefly the formal

method B, then in section 3 presents briefly BPEL4SW language. Sections 4, presents the

related works; next the general approach proposed is described in Section 5; in Section 6

we detail the approach through a case study. A synthetic study of work similar to our

approach is given in Section 7. Section 8 concludes and describes potential prospects of

our work.

2. Presentation of B Method

B Method [1] is first and foremost a new approach for the specification and design of

software that ensures its safety and reliability. All of the specification, design and coding

processes are therefore fully based on the realization of a certain number of mathematical

proofs. It is only once a model has been mathematically proven that it is considered

coherent and fault-free. The main objectives of this method are therefore:

 To create correct software by construction

 To model systems in their environment

 To formalize specifications

 To simplify programming

B is a formal specification method which, thanks to an adequate language, allows for

highly accurate expressions of the properties required by specifications. One can then

prove in a fully automated fashion that these properties are unambiguous, coherent and

are not contradictory. This then allows us to mathematically prove that these properties

are taken into account as the design stages progress.

Therefore, this method and its associated proof allow for:

 Clear technical specifications and system specifications to be reached that are

structured, coherent and unambiguous,

 The development of software that is contractually guaranteed to be fault-free,

B Method usually refers to the set that includes: B language, refinement, proof and

related tools. B development starts with the writing of a concrete model that includes all

of the defined needs. The main data processed by the system is described, as well as the

fundamental properties of this data. Services ensure the processing of this data while

preserving its properties. The B model thus obtained is a specification of what the system

should create.

B model is then transformed (refined with B vocabulary) until a complete software

installation of the software is obtained. B Method is therefore: “a proven construction

approach (referred to as correct) based on B Language, refinement and proof.” [2]

The B language basics are the abstract machine and refinement:

An abstract machine describes a system through a set of variables called states. Typing

and constraints governing these variables, writings in a variation of the set theory

Zermalo- Frankel (ZF), are expressed in the INVARIANT clause machine.

MODEL nameM

 REFINES nameR

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

Copyright ⓒ 2018 SERSC 3

 SETS . . .

 PROPERTIES . . .

 VARIABLES . . .

INVARIANT . . .

ASSERTIONS . . .

INITIALISATION . . .

EVENTS . . .

END

The dynamic part of the system is specified by a set of operations B. The operations are

described in the language of Disjkstra substitutions:

Generalized substitutions:

[SKIP]P  P

[S1 II S2]P  [S1]P ^ [S2]P

[ANY v WHERE E THEN S END]P  ¥ v.(E => [S]P)

[SELECT E THEN S END]P  E => [S]P

[BEGIN S END]P  [S]P

[x := E]P  P(x/E)

The basic substitution is assigning a value to a variable. The generalization of this

language allows defining more sophisticated substitutions: non-deterministic replacing

preconditioned substitution....

A preconditioned substitution is of the form:

SELECT p THEN s END,

p is a predicate and s is a substitution. If p checked the substitution s is executed

correctly; if not s fails. The result of the execution of the substitution s is unpredictable.

Method B offers several architectural clauses allowing to incremental specification. At

the most abstract level, the most used link INCLUDES. A machine may be included more

than once in a machine B: variable A can be read from B, the update of these variables is

only possible through the use of operations of A. This restriction allows a separation of

proof associated with two machines.

Indeed, at B, each refinement step is validated by the establishment of a set of proof

obligations generated automatically, which guarantees the correction of various

transformations wrought by the refinement.

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

4 Copyright ⓒ 2018 SERSC

Figure 1. Structuring of a Developing B [2]

However, in general, the refining process is still a manual task, relatively heavy,

particularly in proof phase. Method B is implemented by various tools including

Click'n'Prove / B4Free v2 [2].

3. Business Process Execution Language for Web Services (bpel4sw)

Language

Business Process Execution Language (BPEL) [3] defines a notation for specifying

business process behavior based on Web Services. Business processes can be described in

two ways:

 Executable business processes model actual behaviour of a participant in a business

interaction.

 Business protocols, in contrast, use process descriptions that specify the mutually

visible message exchange behaviour of each of the parties involved in the protocol,

without revealing their internal behaviour. The process descriptions for business

protocols are called abstract processes.

BPEL is used to model the behavior of both executable and abstract processes. The

scope includes:

- Sequencing of process activities, especially Web Service interactions

- Correlation of messages and process instances

- Recovery behavior in case of failures and exceptional conditions

- Bilateral Web Service based relationships between process roles [3].

Processes in BPEL export and import information by using web service interfaces.

BPEL describe Web-service interactions, this interaction is ensured through Partnerlink.

They represent the static part of a BPEL process and are described in a WSDL document.

The dynamic part of BPEL is described by two types of activities:

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

Copyright ⓒ 2018 SERSC 5

A. Basic activities: define basic operations of a business process as:

 <invoke> to invoke an operation in a service.

 <Receive>, wait a message from an external source.

 <reply>, in response to an external source.

 <wait>, wait for a period of time.

 <assign>, to copy data from one place to another.

 <throw> to launch a runtime error.

 <terminate>, to end the instance of service.

 <empty>, which does nothing (useful for synchronizing parallel activities).

B. Structural activities: define the order in which the nested activities are executed, such

as:

 <sequence>, for sequential execution order.

 <flow>, for parallel execution.

 <switch>, for conditional execution routing.

 <while>, for loops.

 <pick> to wait an event.

 <scope>, activity allows decomposing the BPEL process into sub-processes.

Figure 2. Web Services Orchestration (BPEL4SW)

4. Related Work

To overcome the lack of formality in this area, several approaches have been proposed

to this effect, based on the work related to transition systems [4-7], the process algebra [8]

[9] or temporal theories [10-11]. These works are devoted to the formalization of Web

services orchestrations and allow some checks of their behavior. This verification step

will help to ensure a certain level of confidence in the internal behavior of an

orchestration. It may be noted that all of this work includes both the expression of an

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

6 Copyright ⓒ 2018 SERSC

executable process, the expression properties, and validation of this process with regard to

the different properties.

However, these proposals works are partial solutions to the problem of development of

secure Web services composition. The specifications generated are too abstract to be

directly supported by an implementation language. These specifications correspond to the

conceptual level.

A refinement stage (coding) of these specifications is essential.

5. The Proposed Approach

An important concept in the design of the Web services composition is the task. These

tasks describe the various interactions between web services (orchestration) to achieve a

particular goal.

Figure 3. Tools used (UML and B)

5.1. General Architecture of the Proposed Approach

The activity model that we have considered is described by the UML activity diagram.

The design of an orchestration calls particularly to descriptions of activities of Web

services to describe the actions of task that a services are achieved using this

orchestration.

Web services compositions (orchestration) can be specified by the composition of

elementary tasks with the operator UML activity diagram. We represent the composition

of web services using the refinement. This approach (Figure 4) allows the inclusion of

UML activity models in the developments in the B event.

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

Copyright ⓒ 2018 SERSC 7

Figure 4. The Proposed Approach

Regarding the verification, two approaches can be differentiated:

- The first is translating the source code of application into a formal language in order

to check as in the following Figure (4):

Figure 5. From BPEL4SW to Language B (ascending)

The second is to express a behavioural aspect of the process with a formal language, in

order to check, and then translate it into source code, as in Figure 5:

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

8 Copyright ⓒ 2018 SERSC

Figure 6. From BPEL4SW to Language B (descending)

5.2. The Refinement of a Composition

Refinement is the process of transforming abstract specifications composition of web

services to more concrete specifications. Generally, refinement step is the most critical

and difficult phase of B project development. There is no precise method that would

refine any abstract specification to a language. Indeed, such a method should be able, for

each possible implementation, determining concrete variables and also the linking

invariants binder these concrete variables to abstract variables of the specification.

However, the definition of a special refinement process for a specific area is possible.

In our field (web services) the abstract specification of web services composition it’s

the specification of the nature of the composition between services, it can take two forms:

Order: a composition can execute the services components sequentially or in parallel.

Alternative: a composition may invoke alternative services until one of them

successful.

Figure 7. Web Services Composition

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

Copyright ⓒ 2018 SERSC 9

In B, there are two types of refinement:

Data refinement: it is the replacement of an abstract data D by concrete data D'. In this

case, a predicate J, called invariant bonding. This invariant establishes the link between

the data D and D '. The invariant bonding J is specified in the INVARIANT clause.

In our field (web services) invariant bonding establishes the link between WSDL data

(abstract Part: Types, messages, portType and concrete part: binding, service) of the

services composed with the same WSDL date of the services components.

Algorithmic refinement: it is the transformation of an abstract substitution S in a less

abstract substitution S' (e.g., replacement of a simultaneous substitution by sequential

substitution and elimination of preconditions).

In our field (web services) applying this type of refinement on basic operations of the

services activities; we consider that each service as a set of operations interact with a set

of messages.

5.3. Dependence of Messages

Dependence message defines the mapping of inputs and outputs messages. There are

three types of dependence:

Synthesis: This type combines the output messages of the components services to form

the output messages of the composed service.

Decomposition: This type decomposes the input message of the composed service to

generate the input messages of components services.

Correspondence messages: allows the correspondence between the inputs and outputs

messages of the services.

These two types of refinement (data and algorithmic) are not mutually exclusive: they

can be operated in the same stage of refinement. Obviously any data refinement leads to

an algorithmic refinement.

The last level of refinement of an abstract machine is called implementation (described

in a language called B0). The language describing this implementation uses data

structures and programs supported by the programming language chosen (BPEL4SW).

The translation of this implementation (B0) to the BPEL4SW language becomes very

natural and it can be automatically.

5.4. Translation Rules

B (Descending / Ascending) translation requires translation rules to represent the

control structures:

A. Descending translation (UML-B)

Capturing the behavior aspect (activity diagrams) of the composition process. Then

represent the execution of services activities as a set of processes (sequential or parallel

include assignments) in B. These assignments are scheduled by a set of control structures

of B : sequential composition, loops, if then else ...

B. Ascending translation (BPEL4SW-B)

Capturing the behavioral aspect of source code (BPEL4SW). Then represent the

execution of these instructions as a set of processes: sequential or parallel assignments of

B.

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

10 Copyright ⓒ 2018 SERSC

C. Encoding Rules (B-BPEL4SW):

The abstract specifications (B), are refined until the level of abstraction (language B)

corresponding to the formalization of the concepts of source code BPEL4SW. This level

of abstraction is defined as a set of assignments. These assignments are scheduled by a set

of control structures BPEL4SW: sequential composition loops, if then else...

The abstract model of Web services composition (orchestration process) consists of the

main events are: Invoke Service 1 and Invoke Service 2,, Invoke service n whose role

is to invoke an operation in a partner services (Services 1 Service 2 ... Service n). It can

be used for both synchronous and asynchronous communication. These events are

synchronized by variables: invokeS1, invokeS1 ... invokeSn (which have a boolean

behavior (1/0) to indicate that the service is called or not); and S1pick, S2pick, ..., Snpick

variables (which have a Boolean behavior (1/0) to indicate that the service is in a state of

waiting the arrival of an event or not).

Table 1. Translation Rules (UML-B-BPEL4SW)

UML Specifications

(semi-formal)

Sequential composition:

Model B

(Formal)

+

(Refinement)

+

(Proof)

VARIABLES

Invoke Service 1, Invoke Service 2,….., Invoke Service n

INVARIANT

invokeS1 ϵ (0,1)˄ invokeS2 ϵ (0,1) ˄…˄ invokeSn ϵ (0,1)

S1 pickϵ (0,1)˄ S2 pick ϵ (0,1) ˄…˄ Sn pickϵ (0,1)

invokeS1≠ invokeS2≠……≠ invokeSn

S1 pick ≠S2 pick ≠…≠ Sn pick

EVENTS

...

Invoke Service 1 = SELECT

invokeS1= 1^ S1pick=1

…

THEN

invokeS1:= 0 ^ S1pick:= 0 II…

invokeS2 := 1 II…

…

END;

Invoke Service 2 = SELECT

invokeS2= 1^ S2pick=1

..

THEN

invokeS2:= 0 ^ S2pick:= 0 II…

invokeS3:= 1 II…

…

END;

 …….

Invoke Service n = SELECT

invoke S n = 1^ S1pick=1

..

THEN

 invoke S n := 0 ^ Snpick:= 0 II…

…

END;

END;

Source code (BPEL

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

Copyright ⓒ 2018 SERSC 11

4SW) <sequence>
 S1
 S2

 . . .
 Sn

 <sequence>

UML

Specifications

(semi-formal)

Conditional compositions:

Model B

(Formal)

+

(Refinement)

+

(Proof)

VARIABLES

Invoke Service 1, Invoke Service 2

INVARIANT

invokeS1 ϵ (0,1)˄ invokeS2 ϵ (0,1)

S1 pickϵ (0,1)˄ S2 pick ϵ (0,1)

Cond ϵ (0,1)

invokeS1≠ invokeS2

S1 pick ≠S2 pick

EVENTS

...

Invoke Service 1 = SELECT

invokeS1= 1^ S1pick=1^ Cond=1

…

THEN
invokeS1:= 0 ^ S1pick:= 0 II…

…

END;

Invoke Service 2 = SELECT

invokeS2= 1^ S2pick=1^ Cond=0

…

THEN

invokeS2:= 0 ^ S2pick:= 0 II…

…

END;

 …….

END;

Source code

(BPEL 4SW)
if Cond then T(S1)

 else T(S2)

UML

Specifications

(semi-formal)

Iterative loops composition:

VARIABLES

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

12 Copyright ⓒ 2018 SERSC

Model B

(Formal)

+

(Refinement)

+

(Proof)

Invoke Service 1

INVARIANT

invokeS1 ϵ (0,1)

S1 pickϵ (0,1)

Condi ϵ (0,1)

EVENTS

...

Invoke Service 1 = SELECT

invokeS1= 1^ S1pick=1^ Condi=1

…

THEN

invokeS1:= 1 ^ S1pick:= 1 II…

…

END;

 …….

END;

Source code

(BPEL 4SW)
While Condi {T(S1)}

Based on the previous rules (Table 1) we have developed [14] a code transformation

tool (B-BEL4SW) and (BPEL4SW-B):

Figure 8. A Code Conversion Tool (B-BPEL4SW, BPEL4SW-B)

6. Case Study: Build the Complete Application (travel agency)

A travel agency (service01) provides the following services: reservation airline tickets,

reservation hotel rooms and car rental. in order to providing these services to its clients,

the agency should establish links with other services: airlines (service02), hotels

(service03), car rental companies(service04) and banks (service05) to facilitate financial

transactions between clients and the travel agency and between the agency and other

partners. For this purpose, five web services can be offered:

 WS-AV: provides an interface with its clients, and establish links with other

services,

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

Copyright ⓒ 2018 SERSC 13

 WS-VOL: used to flights reservation according to a specified date, the city of

departure and arrival and number of people.

 WS-Hotel: used to hotel rooms reservation according to the date and the number

of people.

 WS-LV: used to reserve cars by a specified date and number of days.

 WS-Bank: used to pay different reservations.

The following figure shows the services of our application:

Figure 9. Web Services of a Travel Agency

In this example the service (WS-AV) is the composition of four services (WS-VOL,

WS-Hotel, WS-LV and WS -Bank).

The four services: Airline, Hotel, Car rent and Bank Web services have been exposed

over the network and their WSDL file can be accessed by URLs as following:

Table 2. WSDL URLs for Web Services of a Travel Agency

Netbeans tool enables also to import the WSDL files for any external web service

provider. Thus, we import the five WSDL files for the five service providers with their

xml Schema. WSDL of the process imports the WSDL of other web services providers

and defines the partnerlink types for them.

Web Services URL

WS-VOL http://localhost:8080/AirlineReservation/AilrlineReservationService?WSDL

WS-Hotel http://localhost:8080/HotelReservation/HotelReservationService?WSDL

WS-LV http://localhost:8080/CarrentReservation/CarrentReservationService?WSDL

WS -Bank http://localhost:8080/BankPayer/BankPayerService?WSDL

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

14 Copyright ⓒ 2018 SERSC

The five partner link types are as following:

 ClientPartnerLink: used to describe the interaction between the client and the BPEL

process itself. This interaction is synchronous. This partner link type is declared in

the WSDL of the BPEL process.

 AirlinePartnerLink: used to describe the interaction between the Airline service

provider and the BPEL process itself. This interaction is synchronous. This partner

link type is defined in the BPEL process.

 HotelPartnerLink: used to describe the interaction between the BPEL process and the

Hotel Reservation Web service. This interaction is synchronous. This partner link

type is defined in the BPEL process.

 CarPartnerLink: describes the interaction between the BPEL process and the Car rent

Web service. This interaction is synchronous. This partner link type is defined in the

BPEL process.

 BankPartnerLink : describes the interaction between the BPEL process and the Bank

Web service. This interaction is synchronous. This partner link type is defined in the

BPEL process.

6.1 Application Development

The role of WS-AV is to organize the trip through the internet. The service provides to

clients an interface to input the following information:

Departure date, return date, departure city, arrival city, number of persons and return

the tickets and the total price of the trip.

The internal scenario that will lead the interactions between services is as follows: The

WS-AV service will first connect both the WS-hotel services and WS-VOL through its

methods reserveCHam respectively () and reserveVol (), later and after thes previous

reservations, it will connect to the WS-LV Service by reserveVoiture () method. then it

will send the price of each service to WS-Bank service to calculate the total price and paid

by his method liabilities () as shown in the following UML activity diagram.

Figure 10. UML Activity Diagram of a Travel Agency

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

Copyright ⓒ 2018 SERSC 15

The application functionalities are described using UML activity diagrams. A precise

semantics of these diagrams was defined in [13]. These diagrams are the entrance of the

translation process by B. This is described by a set of formal rules defined in (V.C). The

development of an orchestration will be by coding the expression of activity by

refinements B using the operators’ refinement patterns.

The specifications generated during the translation stage can be divided into several

abstract machines (B) interconnected by the INCLUDES clause.

Figure 11. Model B of Travel Agency Web Service

The objective of such modularization is to reduce the size and complexity of the

machines, thus improving the readability of the specifications and elucidate the proof

phase.

Figure 12. Machine B for WS-AV

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

16 Copyright ⓒ 2018 SERSC

The abstract specifications, generated in the previous step, are refined until the level of

abstraction (language B0) corresponding to the formalization of the concepts of source

code BPEL4SW. A set of generic rules of basic instructions is defined in paragraph (5.4).

Figure 13. BPEL 4SW Code for WS-AV

7. Comparison with Existing Works

In this section we propose a model for comparison between works and approaches in

this field. The proposed model adopts the concepts: formalization, aspect and automation

of development processes. The comparison shows the importance of the contribution

presented in this paper.

Table 3. Comparison with Existing Works

Approaches Formalization Aspect Code

generation

Our

approach

Formal Behavior Automatic

(BPEL4SW)

Transition

systems

LTSA-WS

[4] [6] [7]

Formal Functional not
automatic

Petri net [5]. Semi-formal

Behavior not

automatic
 L- process

algebra-

ASDL[8] [9]

Formal

Functional
 not

automatic

LOTOS/CA

DP[10] [11]

Formal

Functional not
automatic

Diapason
[13].

Formal Behavior not

automatic

UML-

Colombo-

WS [15].

Formal

Behavior automatic
(XML)

Le π -calcul

[16] [17]

Formal

Behavior not
automatic

MDA-UML-

S [18]

Semi-formal

Behavior not

automatic

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

Copyright ⓒ 2018 SERSC 17

8. Conclusion and Perspectives

This work provides a solution for the formal modeling and automatic generation of the

composition of web services. Indeed, many proposed approaches to formalizing and

modeling of web services, however, these approaches are partial solutions to the problem

of development of safe composition. The specifications generated are too abstract to be

directly supported by an implementation language. These specifications correspond to the

conceptual level considered development. A refinement stage (coding) of these

specifications is essential.

Our approach is based primarily on the refinement B. The process described in this

paper is dedicated to the generation of a BPEL4SW implementation from a semi-formal

specification that reflects the activities of a web application described using UML

diagrams. We have defined a set of rules which allows not only the refinement of the data

but also the associated operations.

The approach presented in this article has several advantages:

• Reduced costs of development: automation phases specification, refinement, and

automatic code generation

• Standardization of the generated code: the two phases of translation and refinement

dictated by precise and deterministic rules. These code standards provide a better

understanding and code maintenance and product.

• The proposed approach is a top-down / bottom-up approach to formal specification,

the formal validation and automatic code generation orchestrations (BPEL4SW).

Our current research focuses on:

 The realization of an automatic refinement tool. This tool will be complement this tool,

which allows the automatic generation of WSDL documents related to composed

services.

 The realization of an automatic translation tool. This tool will complement this tool,

allowing automatic translation of UML diagrams and specifications B.

So these tools, will aim to assist the designer during the development process of its

web applications. Such a tool will relieve the designer of different manual and most costly

phases of the development process.

We also work on the same ideas to apply them to another technology (AJAX) for

aspect (dynamic web interfaces) of Web 2+ applications.

References

[1] Abrial. J. R The B-Book, Combridge University Press, (1996).

[2] B. Method Website: http://www.methode-b.com/en/b-method/ (Clearsy System Engineering)

[3] BEA Systems, International Business Machines Corporation, Microsoft Corporation, SAP AG, Siebel

Systems: “Business Process Execution Language for Web Services Specification”, version 1.1 dated

(2003) May 5.

[4] F. Andrews, H. Curbera, Y. Dholakia, J. Klein Goland, F. Leymann, K. Liu, D. Roller, D. Smith, S.

Thatte, I. Trickovic and S. Weerawarana, “Business process execution language for web services version

1.1”, http://www-128.ibm.com/developerworks/library/specification/ws-bpel, (2003).

[5] Hamadi and B. Benatallah, “A petri net-based model for web service composition”, Fourteenth

Australasian Database Conference (ADC2003), (2003).

[6] S. Uchitel Foster, J. Magee and J. Kramer, “Model-based verification of web service compositions”,

IEEE Automated Software Engineering (ASE), (2003).

[7] S. Foster, J. Magee and J. Kramer, “Tool support for model-based engineering of web service

compositions”, IEEE International Conference on Web Services (ICWS), (2005).

International Journal of Software Engineering and Its Applications

Vol.12, No.3 (2018)

18 Copyright ⓒ 2018 SERSC

[8] S. Uchitel Foster, J. Magee and J. Kramer, “Ltsa-ws: A tool for model-based verifi-cation of web service

compositions and choreography”, IEEE International Conference on Software Engineering (ICSE 2006),

(2006).

[9] A. Ferrara Salaun and A. Chirichiello, “Negotiation among web services using lotos/cadp”, European

Conference on Web Services (ECOWS 04), (2004).

[10] Chirichiello and G. Salaun, “Encoding abstract descriptions into executable web services: Towards a

formal development negotiation among web services using lotos/cadp”, IEEE/WIC/ACM International

Conference on Web Intelligence (WI 2005), (2005).

[11] A. Cau Solanki and H. Zedan, “Asdl : A wide spectrum language for designing web services”, 15th

International World Wide Web Conference (WWW2006), (2006).

[12] W. Gaaloul Rouached, W. M. P. van der Aalst, S. Bhiri and C. Godart, “Web service mining and

verification of properties: An approach based on event calculus”, OTM Confederated International

Conferences, (2006).

[13] F. Pourraz, “Diapason : une approche formelle et centrée architecture pour la composition évolutive de

services Web Préparée au sein du LISTIC : Laboratoire d’Informatique, Systèmes”, Traitement de

l’Information et de la Connaissance, (2007).

[14] Meftah Mohammed Charaf Eddine and Hani nabil: Decembre, (2015).

[15] A. Elgammal and M. El-Sharkawi, “Using UML to Model Web Services for Automatic Composition”,

Int. J. of Software Engineering, IJSE, vol. 3, no. 2, (2010) July.

[16] R. Milner, “Communication and concurrency”, Prentice Hall, (1989).

[17] R. Milner, “Communicating and mobile systems: the _-calculus”, Cambrige University Press, (1999).

[18] C. Dumez Thèse Doctorat : Approche dirigée par les modèles pour la spécification, la vérification

formelle et la mise en œuvre de services Web composés (MDA-UML-S) de l’Université de Technologie

de Belfort-Montbéliard, (2010).

Authors

Dr. Meftah Mohammed Charaf Eddine, received his master

degree in Computer Science from University of Eloued since

2010. Received his PhD degree in Computer Science from

University of Biskra since 2016. Currently a lecturer in the

Department of Computer science at the EL-Oued University

(Algeria). His research interest includes Software engineering,

Web services and Formal approach.

Pr. Okba Kazar, received his master degree in 1997 from the

Constantine University (Algeria) working on artificial

intelligence field. He obtained his PhD degree from the same

university in 2005. He is member of editorial board of some

Journals. He is an author of some publication in international

journals and session chair in international conferences. Actually

Okba KAZAR is full professor at computer science department

of Biskra University and director of intelligent computer science

laboratory. He is interested to the multi-agents systems and their

applications, advanced information systems, Web services,

semantic Web, bigdata, internet of things and cloud computing.

