
International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018), pp.17-30

http://dx.doi.org/10.21742/ijseia.2018.12.2.02

ISSN: 1738-9984 IJSEIA

Copyright ⓒ 2018 SERSC

A Survey of the Bug Localisation Techniques
1

Kavya Shree N S1 and Pushpalatha M N2

1Department of Information Science and Engineering

M S Ramaiah Institute of Technology, Bangalore, India
2Department of Information Science and Engineering

M S Ramaiah Institute of Technology, Bangalore, India
1kavyashashi.ks@gmail.com, 2pushpalathamn1@gmail.com

Abstract

Bug localisation is the integral part of software testing and maintenance. Many bug

reports are generated during the evolution of software system. The developers must

consider the bug reports from various bug tracking systems like Bugzilla, Jira etc. and

identify the parts of the source code that contains concerns. It will be a complex task for

the developers to identify the source code causing the trouble and it is also time consuming.

Many automated bug localisation techniques have been identified in recent years to

smoothen the process of bug localisation. There are various static, dynamic, Information

Retrieval and hybrid bug localisation techniques. These techniques mainly rely on the

similarity between the bug report and the source code. The existing techniques also

considers, source code structure, previous bug reports, version histories to improve the

efficiency of the bug localisation. This paper aims to provide the short survey on various

bug localisation techniques and compares various pros and cons of those techniques. This

paper presents and classifies survey of 25 research papers in area of software bug

localisation.

1. Introduction
In today’s twenty first century bus ticket booking, train ticket booking, online food

ordering, groceries shopping, online clothing, attendance, banking all are automated or

computerized. Generally, customers trust online systems because it is built on pre-defined

functions and hence yields results which are precise and accurate. The main spirit behind

any automated system is the software. The software development is not an easy job there

are lot of efforts and big mind work of software developers and testers behind it. The effort

of building the software is quite agile and it is an extensively increasing process. Software

testing plays an ideal role to deliver the correctly working software to the customer.

Software testing is an important phase in the software development life cycle where the

errors, faults or failures are identified that leads to unintended behavior of the software and

make the software bug free. A software bug is flaw in the application software which

results in unintended result or output of the program. Software bugs must be identified and

removed from the application software to achieve high quality of the software. Testing is

highly important because it ensures high software quality, low maintenance costs which

are the main parameters for the customers satisfaction. Testing also ensures the software

system without failure which otherwise may lead to very complex problems when

identified later. Text mining solutions are applied here to perform concern localisation

which is part of software testing. Text mining includes concept identification, text

extraction, text summarization, text clustering, text characterization etc. The applications

of the text mining domain help to solve the key issues related to the concern localisation.

Received (January 15, 2018), Review Result (April 25, 2018), Accepted (May 28, 2018)

mailto:kavyashashi.ks@gmail.com

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

18 Copyright ⓒ 2018 SERSC

Computer software is a collection or a set of programs that perform specific tasks. From

a small digital smart watch to the large complex behemoths which manage space shuttle

launches none of the machines will work without programming it. Software program must

be checked for error faults or failures before delivering it to the customer to ensure high

quality and reliable outcome. Software developers or testers receive bug reports through

various issues management tools such as Jira or Bugzilla. If the tester is new to the team it

becomes very difficult for him to comprehend the application. Comprehending is the

process of thoroughly understanding the application before performing testing. It will be

very difficult for him to locate the code blocks that must be modified and hence concern

localisation must be automated which in turn decreases the time taken by the tester to

identify the code blocks and in this way the maintenance cost is also reduced. This means

more bugs can be identified and reduced in shorted life span and thus more bug free

software can be delivered to the customer. So, selecting the proper bug localisation tool

will save both time and cost and high-quality software can be achieved. By using this, a

company can manage resources in a better way and offer solutions much faster. By

automating bug localisation companies can utilize resources in better way and achieve

solutions much faster.

Considering the above facts incorporating the efficient bug location technique may

result in more quality software by considering less time and cost which will be

advantageous to the society in their daily lives.

2. Basic Overview of Bug Localisation

Bug localisation is an overall process of location the code unit that contains the bug given

in the query. There are four general approaches to perform bug localisation they are: static,

dynamic and text retrieval approach and hybrid approach.

Static bug localisation approach makes use of the source code to perform bug localisation.

Static method works better because it can be applied on non-working software as well. In most

of the static techniques initial method is identified as a start point to search for a feature. Some

of the examples of the static bug localisation techniques are Latent Dirichlet Analysis, BLIA

etc.

Dynamic Bug localisation approached depends on the execution traces of the program. It is

difficult to perform this approach if properly working software is not available. This approach

makes use of run time data to locate the affected files. The Dynamic bug localisation techniques

are often expensive and time consuming when compared to static methods. Some of the

examples of dynamic techniques include bug localisation using execution traces, bug

localisation using dynamic call graphs etc.

Information Retrieval techniques outperforms both static and dynamic based approaches

because it can be used in the interactive modes for the refinement of the retrieved results. That

is if the developer is not satisfies with the given results (the results may be quite large) about a

query then the developer will have the option of altering his query to retrieve more accurate

results. During the survey, it was observed that IR techniques where combined with the static

and dynamic based approaches to improve the performance of the bug localisation. Some of

the examples of the bug localisation technique are BLUiR, Deep Neural Networks an

Information Retrieval technique etc. Bug localisation is best performed when combined with

static or dynamic approach which is called as hybrid approach.

Some of the key challenges faced during bug localisation using various techniques are

listed below.

• Software aging, documentation deficiency, and developer mobility can make software

difficult to understand.

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

Copyright ⓒ 2018 SERSC 19

• Polysemy refers to words having more than one distinct meaning. Synonmy refers to

multiple words have same meaning. Having the problem of polysemy and synonmy

will result in less precision during bug localisation.

• The major challenge faced during bug localisation is lexical mismatch which means the

words given in the query differs specifically from the words and tokens used in the

source code.

3. Survey

Kunrong Chen, Václav Rajlich [1] performed case study on search scenario using

dependency graphs. The tool developed could give Abstract System Dependence

Graph(ASDG) and a search graph. This method belongs to “Intelligent Assistance” and

was evaluated on NCSA Mosaic data set. The result was partial comprehension of the

system. Out of 984 functions only 22 were visited.

Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, Samuel P [2] proposed a statistical based

technique called SOBER, which doesn’t require any prior knowledge of the program.

SOBER figures out predicates during both correct and incorrect runs and assigns predicate

as bug relevant if the predicate of incorrect run varies from the predicate of the correct run.

Author evaluated this approach on siemens suite and could retrieve 68 bugs out of 130

bugs.

Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, Václav Rajlich [3] suggested semi-

automatic bug localisation technique SITIR which combines two information sources one

is the execution traces of the source code and second is the comments and identifiers

included in the source code. Author applied Latent Semantic indexing, an information

retrieval method to perform topic modelling. Author integrated dynamic and Information

retrieval technique on the JEdit and Eclipse source code. The case study results indicated

that SITIR outperformed Latent Semantic Indexing and Scenario Based Probabilistic

Ranking. SITIR when applied to Eclipse showed results close to PROMISIER.

Stacy K. Lukins, Nicholas A. Kraft, Letha H. Etzkorn [4] proposed Latent Dirichlet

Allocation, a static bug localisation technique. According to the author modularity and

extensibility are the main strengths of LDA when compared to LSI and pLSI. Initially an

LDA model is generated for the given software structured. Then this model is queried as

many times as required until the bug is localised in that software version. The drawback

of LDA was this method was intractable for direct computation. This approach was

performed on rhino, eclipse and Mozilla data sets. The results clearly indicated that LDA

outperformed LSI and vLSI. Out of eight bugs in eclipse and Mozilla LSI could analyze

three bugs (37 %) whereas LDA was able to analyze all the 8 bugs efficiently.

Ren Wu at [5] combines both static and dynamic based bug localisation. In this

approach author proposes three steps: In first step execution traces collected are used as

the text corpus and the methods inside that execution traces are treated as documents. In

the second step, omnipresent methods are removed from the corpus by setting the certain

threshold. In the third step feature code are treated as the first-class entities and then the

identifiers are retrieved from the rest of the source code to generate the trace-by-identifier

matrix. Then LDA is applied to generate a topic model. Author evaluates this approach by

presenting case study on JHotDraw tool.

Brent D. Nichols [6] suggests an extension to the Latent Semantic Indexing by

integrating it with the data in the previous bug reports. Author suggests three phases: taking

out the semantic data from the code base using LSI, adding additional data from the

previous bugs and then querying the model. Author evaluates his techniques by performing

two case studies. In the first case study, he compares the results with manually observed

data. In the second case study, he compares his work with the LSI model without

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

20 Copyright ⓒ 2018 SERSC

considering the past data. In both the case studies he uses open source Rhino data set. The

results of the case studies showed the effectiveness of this method.

Matthew Beard [7] performs research on how effectively can Information Retrieval

technique can be applied to perform code clone localisation. Code clone is the process of

identifying and removing the duplicate code by using CCFinderX tool. Then IR technique

is used to perform concern localisation. This research showed that the efficiency of concern

localisation can be improved by considering the code clone process. It was evaluated on

two open source projects Rhino, Eclipse. Code Clone cannot be considered for all the

projects if code base does not contain duplicate code.

Shivani Rao, Avinash Kak at [8] compared five Information Retrieval Techniques:

Unigram Model (UM), Vector Space Model (VSM), Latent Dirichlet Allocation (LDA),

Latent Semantic Analysis (LSA), Cluster Based Document Model (CBDM). The main task

of these IR models is to locate the bugs in the code base. IR techniques where evaluated

on four open source java projects Mozilla, Eclipse, JEdit and Rhino. The major

contribution of this paper was the results indicated that simple IR methods such as UM

and VSM outperformed LSA, VSM, CBDM.

Bunyamin Sisman, Avinash C. Kak [9] incorporates version histories with IR to

improve Bug Localisation. Here author presents two base models one is defect histories

and another in modification histories which are stored in versioning tools. These base

models are then incorporated with IR model which significantly increases the

performance. Author made use of Bayesian reasoning and Divergence from randomness

principles algorithm to perform retrieving. The results indicated rise in the Mean Average

Precision by 30%.

Sangeeta Lal and Ashish Sureka at [10] suggested a static character n-gram based bug

localisation approach. Author evaluates this approach on the two open source data sets

JBoss and Apache. The results indicated that use of n-gram approach where advantageous

and robust towards noisy data, comparisons etc. The output measured in terms and SCORE

and MAP metrices. The median value for the Score metric on JBoss and Apache was

99.03% and 93.70% respectively. The average precision value was 0.9% and 1.0% for

JBoss and Apache bug reports respectively.

Phiradet Bangcharoensap, Akinori Ihara, Yasutaka Kamei, Ken-ichi Matsumoto[11]

suggests text mining approach that maps textual similarity between the bug report and the

source code. code mining ranks files using product metrics, change history mining ranks

files based on change process metrics. The results indicated that buggy files which were

retrieved using this approach where in top 20 lists of the bug reports. This approach takes

long times to process large source code and to identify buggy files. Author also suggests

improving the accuracy and performance in the future work.

Emily Hill, Shivani Rao, Avinash Kak [12] showed that there is a relationship between

the query nature and the retrieval performance. The author showed the impact of the

various stemmers on the localisation techniques. Short queries showed variations in the

result and it is difficult for the author to suggest any single stemmer for them. Whereas

long queries contain code snippets and hence does not requires stemming for better

retrieval. Author suggests KStem performs well for large queries. The results indicated

that MStem performed better for all the three types of queries. The results also indicated

the success of stemmers depended on the nature of the query.

Steven Davies & Marc Roper [13] suggests improvement to bug localisation techniques

by combining Textual information, Stack traces, Similarity of bug reports and number of

previous bugs. Here author suggests using simple vector space model in place of complex

IR techniques. Author suggests a technique for combining all the sources of information

and a low-cost tool to perform localisation. He applied this method across three open

source java projects Ant, JMeter, JodaTime consisting 1143 bugs. This method could

retrieve top 10 methods ranking 271 to 322.

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

Copyright ⓒ 2018 SERSC 21

Ripon K. Saha, Matthew Lease, Sarfraz Khurshid, Dewayne E. Perry [14] suggests

BLUiR which considers structural information such as methods and class names on the

code base to increase the efficiency of the bug localisation. Author built BLUiR on top of

open source tool Indri [31]. Author evaluates this approach on four open source java

projects and compares it with state-of-art technique and the results indicated BLUiR

outperformed existing techniques.

Dongsun Kim, Yida Tao, Sunghun Kim, Andreas Zeller [15] suggests two phase model

which considers information about the bug report for performing bug localisation. In the

first phase, the description of the bug is verified whether it is enough to predict the buggy

files. If so then the buggy files are retrieved in the second phase based on the information

in the bug report. This method was evaluated on Firefox and Core projects. The results

showed that almost 70% of the results points to the correct files. The author compared two

phase models with other three models – one phase model, the Usual Suspects and

BugScout. The results outperformed the existing methods.

Klaus Changsun Youm, June Ahn, Jeongho Kim [16] suggests Bug Localisation with

Integrated Analysis (BLIA) an information Retrieval based bug localisation approach.

Here author integrates summary of the bug description, stack traces, structured information

in the code base and code base change histories to improve the localisation technique.

Author also suggests removing the project key words in the source code which are repeated

but useless this in turn helps in reducing the computational costs. Author explored this

technique on three open source java projects AspectJ, SWT and ZXing. BLIA was

compared with existing techniques such as BugLocator, BLUiR, BR Tracer, AmaLgam

and the results clearly indicated that BLIA outperforms in terms of Mean Reciprocal Rank

and Mean Average Precision metrics.

Shanto Rahman, Kishan Kumar Ganguly, Kazi Sakib [17] introduced an Information

Retrieval Technique which identifies the similarities between the bug reports and the

source code files. Author also incorporated rVSM with structural information of the source

code and the recently changed files to improvise bug localisation. Author insisted on

retaining class and method name as they appear frequently in the bug reports. This method

was evaluated on three open source projects SWT, ZXing and Guava and the results

indicated that it outperformed BugLocator in terms of MRR by 7% and MAP by 8%.

Sanjana Singh, Sandeep K. Singh [18] created a prototype tool based on the research

work. Author suggests Mutation based bug localisation. Here Mutation operators are

introduced for Exceptional handling and Multithreading that helps in generating mutations

for the code units. This concept is only a research approach and mutation operators for

exception handling and multithreading resulted in redundant output.

Yukiya Uneno, Osamu Mizuno, Eun-Hye Choi [19] proposes DrewBL where vector

space model is used to find the relevance between the bug report and the source code. He

also proposed CombBL which combines BugLocator and Bugspots to improve the

efficiency of the bug localisation. Form the results, proposed method achieves time

efficiency. The author suggests comparing this with other hybrid bug localisation

techniques in his future works.

Tanu Sharma, Kapil Sharma, Tapan Sharma [20] proposed Pachinko Allocation Model

to Perform bug localisation. This method was evaluated on Rhino and ModeShape data

sets. According to the results the PAM model outperformed LDA model by 15%. Here

only lexical information is considered. The author suggests using the combination of both

lexical and structural data to improve the process of bug localisation.

An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen [21] proposed DNNLOC model

which combines Revised Vector Space Model (rVSM) with Deep Neural Network(DNN)

to improve the efficiency of the bug localisation. rVSM identifies the textual similarities

between the source code and the bug report and collects the features. Now the DNN is used

to relate the words in bug reports with the different code tokens and words in the code

base. Author applied the technique on the dataset provided by Ye et al., [26] The results

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

22 Copyright ⓒ 2018 SERSC

showed that potentially buggy files where retrieved in almost 50% of the cases. In almost

66% of the cases it could retrieve potentially buggy files in top three files.

Steven Davies, Marc Roper & Murray Wood [22] proposed enhancing bug localisation

using similarity between bug reports. This method was applied on four open source

projects ArgoUML, JabRef, jEdit, muCommander. When evaluated this method was not

so effective when implemented alone but found to increase the performance when

aggregated with other bug retrieval techniques.

Sai Zhang Cohngle Zhang [23] suggests solution for bug localisation based on Markov

Logic. Morkov Logic is derived from machine learning. Here the model is generated using

Markov Logic, with predicates and negations. Each statement in the code base is assigned

with the predicate si and if that predicate is true then that statement is treated as buggy.

Then the marginal distribution p(si) is calculated to prioritise the buggy statements.

Markov logic allows to combine different sources of information like program structure

information, prior bug knowledge, statement knowledge and apply in bug localisation. The

Markov Approach was implemented to build the tool MLNDebbugger to address bug

localisation. This tool was used to evaluate small four programs and results showed that it

performed better than the previous approach.

X. Ye, R. Bunescu, and C. Liu [24] suggested learning-to-rank approach that involves

developers in emulating bug localisation. This approach considers domain knowledge such

as API specification, syntactic structure of the code base and summary about the issues.

Author evaluated this approach on six open source java project AspectJ, Birt, Eclipse, JDT,

SWT, Tomcat and the results indicated that it outperformed state-of-art approaches,

BugScout and BugLocator.

4. Table of Comparison

Below table gives the comparison of various bug localisation techniques which

considers techniques used, data set used, Methods, Merits and Demerits. The papers are

listed year wise for easy reference.

Table 1. Comparison of various Bug Localisation Techniques

Paper Year Technique Data Set Methods, Merits Remarks, Demerits

Kunrong Chen,

Vaclav Rajlich [1]

2000 Software

Dependence

Graph

NCSA

Mosaic

Author Performed case

study on search scenario

using dependency graphs.

The tool developed could

give Abstract System

Dependence Graph

(ASDG) and a search

graph.

The result was partial

comprehension of the

system. Out of 984

functions only 22

where visited.

Chao Liu, Xifeng

Yan, Long Fei,

Jiawei Han,

Samuel P [2]

2005 Static based

Method –

SOBER

Siemens

suite

Author suggested

SOBER which is

statistical based

technique. The main

advantage of this method

is the user does not have

prior knowledge on the

programs.

This method was

evaluated on small

projects so its method

cannot be generalised

on large-scale

projects.

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

Copyright ⓒ 2018 SERSC 23

Denys

Poshyvanyk,

Yann-Gae l̈

Gue h́e ńeuc,

Andrian Marcus at

[25]

2007 PROMESIR

Technique

was used for

feature

location.

Eclipse and

Mozilla

In this paper author

merged both IR

technique- Latent

Semantic Indexing (LSI)

with Scenario based

Probabilistic

Ranking(SPR) which is a

dynamic approach. The

results indicated

proposed approach is

better when compared

with individual

techniques.

Concern localisation

using PROMESIR

yields accurate and

faster results but the

major drawback was

the technology

behind PROMISIER

is computationally

intensive.

Dapeng Liu,

Andrian Marcus,

Denys

Poshyvanyk,

Václav Rajlich at

[3]

2007 Information

Retrieval

Approach –

Latent

Semantic

Indexing

JEdit and

Eclipse

Author suggests SITIR

which is semi-automatic

bug localisation

technique. He suggests

combing execution traces

along with the comments

information in the source

code to perform bug

localisation.

Author is not sure on

selection of scenarios

in AspectJ as he is

not well versed in

that data ser. The

results may vary on

selection of different

scenarios. The results

are sensitive towards

the query given by

the programmer.

Stacy K. Lukins,

Nicholas A. Kraft,

Letha H. Etzkorn

at [4]

2008 Information

Retrieval

Technique –

Latent

Dirichlet

Allocation

(LDA) a Static

Approach.

Eclipse Latent Dirichlet

allocation can be used

effectively for source

code retrieval for bug

localisation. The results

outperformed LSI

approach. When

compared using bugs as

in [25] LSI could retrieve

3 bugs out of top 8 bugs

(36.5 %) where as LDA

was able to retrieve all

the 8 bugs (100%) out of

top 10 bugs. LDA

performed 77% when

applied to all bugs.

It only used the

eclipse bug report for

experimentation. This

technique must be

applied for different

data sets and to

improve the

technique in those

cases where LDA

dint perform well.

Ren Wu at [5] Static and

Dynamic

method

combined –

LDA

JHotDraw Author suggests

combining both static and

dynamic based

techniques. He makes

uses of execution traces

and removing the

omnipresent methods

from the source code to

generate the trace by

identifier matrix.

Author suggests

extending his work

by combing dynamic

techniques along with

the structural model

and conducting

systematic study to

choose the

parameters for the

proposed approach.

Brent D. Nichols

at [6]

2010 Information

Retrieval

Model –

Latent

Semantic

Indexing

Rhino Author suggests an

extension to the Latent

Semantic Indexing by

integrating it with the

data in the previous bug

reports. Author suggests

three phases: taking out

the semantic data from

Author suggests

extending his work

on the large datasets

and on different

languages.

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

24 Copyright ⓒ 2018 SERSC

the code base using LSI,

adding additional data

from the previous bugs

and then querying the

model.

Matthew Beard at

[7]

2011 Information

retrieval

model LSI and

LDA is used

with code

clones

Rhino,

Eclipse

Here author introduced

Code Clone. Code clone

is the process of

identifying and removing

the duplicate code by

using CCFinderX tool.

Then IR technique is

used to perform concern

localisation. This

research showed that the

efficiency of concern

localisation can be

improved by considering

the code clone process.

Code Clone cannot

be considered for all

the projects if code

base does not contain

duplicate code.

Shivani Rao,

Avinash Kak [8]

2011 IR

Techniques,

Unigram

Model (UM),

Vector Space

Model (VSM),

Latent

Semantic

Analysis

Model (LSA),

Latent

Dirichelet

Allocation

(LDA),

Cluster Based

Document

Model

(CBDM)

Mozilla,

Eclipse,

Rhino and

JEdit

Experimental Results

indicated that IR methods

are effective as static and

dynamic techniques.

According to the

results it was seen

that simple IR

methods like UM and

VSM outperformed

LSA, LDA and

CBDM. Author also

suggests integrating

IR techniques with

Dynamic techniques

to achieve high

accuracy.

Bunyamin

Sisman, Avinash

C.Kak [9]

2012 Information

Retrieval

Model -

Bayesian

reasoning and

Divergence

from

randomness

principles

algorithm

AspectJ Author suggests

incorporating version

histories and

modification history

along with the

information retrieval

model to increase the

performance. Bayesian

reasoning and

Divergence from

randomness principles

algorithm are used to

perform retrieving.

The efficiency of this

technique relies on

the quality of the bug

summary. The

evaluation of this

approach is

performed only on

AspectJ dataset and

accuracy of results on

other projects is open

for debate.

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

Copyright ⓒ 2018 SERSC 25

Sangeeta Lal and

Ashish Sureka at

[10]

2012 Static N-Gram

based

Information

Retrieval

Model

JBoss and

Apache

Author suggested a static

character n-gram based

bug localisation

approach.

Phiradet

Bangcharoensap,

Akinori Ihara,

Yasutaka Kamei,

Ken-ichi

Matsumoto at [11]

2012 Text mining,

code mining

and change

history mining

Eclipse Here text mining

approach maps textual

similarity between the

bug report and the source

code, code mining ranks

files using product

metrics, change history

mining ranks files based

on change process

metrics. The results

indicated that buggy files

which were retrieved

using this approach

where in top 20 lists of

the bug reports.

This approach takes

long times to process

large source code and

to identify buggy

files. Author also

suggests improving

the accuracy and

performance in the

future work.

Emily Hill,

Shivani Rao,

Avinash Kak at

[12]

2012

Information

Retrieval

Technique-

Vector Space

Model for

concern

Localisation

and Unigram

Model for bug

localisation

Eclipse Stemmers where used for

performing concern

localisation and bug

localisation on the java

source code. Experiments

clearly indicated that

there is relationship

between the nature of the

queries and the retrieval

performance.

Overall search

improvement was

only 1-3% overall.

Stemming can have

large improvement

only for individual

queries.

Steven Davies &

Marc Roper at

[13]

2013 Information

retrieval

techniques are

combined

with multiple

sources of

information

ECLIPSE Here existing IR

techniques are improved

by considering many

sources of data like

classes or methods

obtained from similar

bug reports, no of bugs

associated with methods,

and stack traces in the

bug reports. The results

indicated that by

combining this three

information the system

could perform over 19%

compared to existing

systems.

Many bug reports

will not contain stack

traces and hence in

some cases it cannot

be considered with

information retrieval

methods.

Ripon K. Saha,

Matthew Lease,

Sarfraz Khurshid,

Dewayne E. Perry

[14]

2013 Information

retrieval

Model –

BLUiR Model

SWT,

Eclipse,

AspectJ,

ZXing

Author uses open source

tool Indri [31] to build

his tool BLUiR. He

suggests performance of

the bug retrieval can be

improved by considering

the method names and

the class names of the

source code.

This method relies on

the similarity

between the bug

report and the code

base so if there is any

poor coding then it

will be difficult to

perform bug

localisation.

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

26 Copyright ⓒ 2018 SERSC

Dongsun Kim,

Yida Tao,

Sunghun Kim,

Andreas Zeller at

[15]

2013 Two Phase

Model

Firefox and

Core

Author presents two

phase model. In the first

phase contents of the bug

report is verified if it is

enough to proceed further

to the second phase else

the first phase is

terminated. In the second

phase the buggy files are

identified based on the

contents of the bug

reports.

Bug localisation was

applicable only on

open source projects

so it might not be

generalizable to close

source projects.

Klaus Changsun

Youm, June Ahn,

Jeongho Kim at

[16]

2015 BLIA (Bug

Localisation

with

Integrated

Analysis) – a

Static

approach

ZXing,

AspectJ,

SWT

BLIA is an information

retrieval based approach

which considers stack

traces of the fault

description, source file

textual information and

change remarks of the

code units. The results

indicated clear

improvements in the

metrics when compared

with the existing

techniques: BLUir:23%,

BRTracer:18%,

BugLocator-33%,

Amalgam- 7%.

This method may not

be approachable to

industrial projects.

Shanto Rahman,

Kishan Kumar

Ganguly, Kazi

Sakib at [17]

2015 Information

Retrieval

Model -

Modified

Revised

Vector Space

Model

(MrVSM)

Guava,

SWT,

ZXing

Here Modified Vector

Space Model is derived

which considers

similarity between fault

descriptions, source code

historical data and

structure of the source

code. To make the

system more reliable

classes and methods are

given higher priority in

the bug reports rather

than words. From the

experimental results, it

outperformed other

existing methods with

82.61%

This Method must be

applied for industrial

projects to evaluate

its effectiveness.

Sanjana Singh,

Sandeep K. Singh

at [18]

2015 Source Code

Mutation

Eclipse Here source code

mutation technique is

proposed for bug

localisation. Mutation is

the process of making

small changes in the

existing source code

which results changes in

the results as well. Here

Mutation operators are

introduced for

Exceptional handling and

Multithreading that helps

This concept is only a

research approach

and mutation

operators for

exception handling

and multithreading

resulted in redundant

outputs.

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

Copyright ⓒ 2018 SERSC 27

in generating mutations

for the code units.

Yukiya Uneno,

Osamu Mizuno,

Eun-Hye Choi at

[19]

2016 DrewBL

based on

Vector Space

Model

Benchmark

and Ye’s

datasets

Here author proposes

DrewBL where vector

space model is used to

find the relevance

between the bug report

and the source code. He

also proposed CombBL

which combines

BugLocator and

Bugspots to improve the

efficiency of the bug

localisation. Form the

results, proposed method

achieves time efficiency.

The author suggests

comparing this with

other hybrid bug

localisation

techniques in his

future works.

Tanu Sharma,

Kapil Sharma,

Tapan Sharma at

[20]

2016 Information

Retrieval

Model –

Pachinko

Allocation

Model

Rhino and

ModeShape

Author proposed

Pachinko Allocation

Model to Perform bug

localisation. According to

the results the PAM

model outperformed

LDA model by 15%.

Here only lexical

information is

considered. The

author suggests using

the combination of

both lexical and

structural data to

improve the process

of bug localisation.

An Ngoc Lam,

Anh Tuan

Nguyen, Hoan

Anh Nguyen at

[21]

2017 Deep Neural

Networks is

used with

Information

Retrieval

model –

Vector Space

Model

Eclipse Here an IR model VSM

gathers the textual

similarity between code

units and bug

descriptions. DNN is

then applied to learn and

to relate terms in bug

description to the terms

in the code tokens and

source code terms. The

new model in termed as

DNNLOC. The results

showed DNN and VSM

yield more accurate

results when combined

rather than individual

methodologies.

DNN cannot produce

highly accurate

results due to small

number of

dimensions.

5. Conclusion

Bug localisation is the complex and time-consuming task for a developer. This paper

presents a review and classification on 25 survey papers in the area of software bug

localisation. Four categories of bug localisation techniques have been identified they are

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

28 Copyright ⓒ 2018 SERSC

static, dynamic, Information retrieval and hybrid. Based on these identified categories 25

survey papers are systematically organized. Further it was found that Bug localisation was

best performed when Information retrieval approaches where combined with other

approaches. Even though many approaches are already available for bug localisation there

is still deficiency for a technique which can be applied effectively in the real-time

environment.

References

[1] K. Chen and V. Rajlich, “Case Study of Feature Location Using Dependence Graph”, IEEE, (2000).

[2] C. Liu, X. Yan, L. Fei, J. Han and S. P. Midkiff, “SOBER: Statistical Model-based Bug Localization”,

ESEC-FSE’05, (2005).

[3] D. Liu, A. Marcus, D. Poshyvanyk and V. Rajlich, “Feature Location via Information Retrieval based

Filtering of a Single Scenario Execution Trace”, ASE’07, Atlanta, Georgia, USA, (2007).

[4] S. K. Lukins, N. A. Kraft and L. H. Etzkorn “Source Code Retrieval for Bug Localization using Latent

Dirichlet Allocation”, 15th Working Conference on Reverse Engineering, (2008).

[5] R. Wu, “Correlating Features and Code by Dynamic and Semantic Analysis”, Shanghai Lixin University

of Commerce, Shanghai 201620, China.

[6] B. D. Nichols, “Augmented Bug Localization Using Past Bug Information”, ACMSE '10, Oxford, MS,

USA, (2010).

[7] M. Beard, “Extending Bug Localization Using Information Retrieval and Code Clone Location

Techniques”, 18th Working Conference on Reverse Engineering, (2011).

[8] S. Rao and A. Kak, “Retrieval from Software Libraries for Bug Localization: A Comparative Study of

Generic and Composite Text Models”, 2011 Mining Software Repositories, Honolulu, Hawaii, (2011).

[9] B. Sisman and A. C. Kak, “Incorporating Version Histories in Information Retrieval Based Bug

Localization”, IEEE, (2012).

[10] S. Lal and A. Sureka, “A Static Technique for Fault Localization Using Character N-Gram Based

Information Retrieval Model”, Proceedings of ISEC '12, Kanpur, UP, India, (2012).

[11] P. Bangcharoensap, A. Ihara, Y. Kamei and K.-i. Matsumoto, “Locating Source Code to be Fixed based

on Initial Bug Reports -A Case Study on the Eclipse Project”, Fourth International Workshop on

Empirical Software Engineering in Practice, (2012).

[12] E. Hill, S. Rao and A. Kak, “On the Use of Stemming for Concern Location and Bug Localization in

Java”, IEEE 12th International Working Conference on Source Code Analysis and Manipulation, (2012).

[13] S. Davies and M. Roper, “Bug localisation through diverse sources of information”, IEEE, (2013).

[14] R. K. Saha, M. Lease, S. Khurshid and D. E. Perry, “Improving Bug Localization using Structured

Information Retrieval”, IEEE, (2013).

[15] D. Kim, Y. Tao, S. Kim and A. Zeller, “Where Should We Fix This Bug? A Two-Phase Recommendation

Model”, IEEE Transactions on Software Engineering, vol. 39, no. 11, (2013).

[16] K. Changsun Youm, J. Ahn and J. Kim, “Bug Localization Based on Code Change Histories and Bug

Reports”, Asia-Pacific Software Engineering Conference, (2015).

[17] S. Rahman, K. Kumar Ganguly and K. Sakib, “An Improved Bug Localization using Structured

Information Retrieval and Version History”, International conference on Computer and Information

Technology (ICCIT), (2015).

[18] S. Singh and S. K. Singh, “A Novel Approach for Bug Localization for Exception Handling and

Multithreading Through Mutation”, IEEE INDICON, (2015).

[19] Y. Uneno, O. Mizuno and E.-H. Choi, “Using a Distributed Representation of Words in Localizing

Relevant Files for Bug Reports”, IEEE International Conference on Software Quality, Reliability and

Security, (2016).

[20] T. Sharma, K. Sharma and T. Sharma, “Software bug localization using Pachinko Allocation Model”,

IEEE, (2016).

[21] A. Ngoc Lam, A. Tuan Nguyen and H. Anh Nguyen, “Bug Localization with Combination of Deep

Learning and Information Retrieval”, IEEE 25th International Conference on Program

Comprehension(ICPC), (2017).

[22] S. Davies, M. Roper and M. Wood, “Using bug report similarity to enhance bug localisation”, 19th

Working Conference on Reverse Engineering, (2012).

[23] S. Zhang Congle Zhang, “Software Bug Localization with Markov Logic”, ICSE Companion 14, May,

Hyderabad, India, (2014).

[24] X. Ye, R. Bunescu and C. Liu, “Learning to rank relevant files for bug reports using domain knowledge”,

in Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering, ser. FSE, ACM, (2014), pp. 689-699.

[25] D. Poshyvanyk, Y.-G. Gue h́e ńeuc, A. Marcus, G. Antoniol and V. Rajlich, “Feature Location Using

Probabilistic Ranking of Methods Based on Execution Scenarios and Information Retrieval”, IEEE

Transactions On Software Engineering, vol. 33, no. 6, (2007).

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

Copyright ⓒ 2018 SERSC 29

Authors

Kavya Shree N S, she received B.E. degree in Information Science

and Engineering from Atria Institute of Technology. She is Pursuing

M. Tech in Software Engineering at M.S Ramaiah institute of

Technology, Bangalore. Her research interest is in Software Testing

and Maintenance.

Pushpalatha M N is a MTech Degree Holder and is serving as an

Assistant professor in ISE Department of MSRIT. She is interested in

subjects related to Data Mining and Machine Learning.

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

30 Copyright ⓒ 2018 SERSC

