
International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018), pp.33-46

http://dx.doi.org/10.21742/ijseia.2018.12.1.03

ISSN: 1738-9984 IJSEIA

Copyright ⓒ 2018 SERSC

An Integrated Framework for Prioritizing Software Specifications

in Requirements Engineering
1

Ishaya Gambo1*, Rhoda Ikono2, Philip Achimugu3 and Abimbola Soriyan4

1,2,4Department of Computer Science and Engineering, Obafemi Awolowo

University, Ile-Ife, Nigeria
3Department of Computer Science, Lead City University, Ibadan, Nigeria
1ipgambo@gmail.com, 2rhoda_u@yahoo.com, 3check4philo@gmail.com,

4hasoriyan@yahoo.com

Abstract

Requirements prioritization is an established activity facilitating good decision making

for the purpose of coping with complexities that often arise when determining the right

choice of requirement during requirements engineering process. However, making

precise and accurate decision for the purpose of averting subsequent system failure is an

issue of concern when developing large scale systems. In this paper, we proposed the use

of imprecise knowledge-based solutions over precise-knowledge based solutions for

prioritizing software requirements to overcome the problem of decision making. In this

regard, our proposed technique is an integration of Fuzzy Multi Criteria Decision Making

(FMCDM), similarity measures and target-based approach to requirements prioritization

using linguistic values of triangular fuzzy numbers. With the integrated framework, the

challenge of making decisions under uncertain conditions are considered. The integrated

framework was based on some defined criteria, a three-phased process comprising of five

steps and a five-point scale used to determine the relative values of requirements. The

result is the specification of a stepwise process of the computations that can be performed

during decision making by the integrated technique proposed. It is hoped that when this

technique is implemented, executed, evaluated and validated on case study, a promising

results will be achieved. For validating the proposed technique, requirements from real-

life case studies can be elicited, analysed, and reconciled for completeness and

consistency.

Keywords: Requirements engineering, prioritization, similarity measures, requirement

1. Introduction

In life everybody makes one form of decision or the other [1]. In doing this,

requirement definition is inevitable. Thus, understanding the complexities inherent in

several decision making tasks has become an on-going research effort that requires keen

attention for a major breakthrough. Hence, the need to make precise and accurate decision

for the purpose of averting subsequent system failure in software development is an issue

of concern for the software engineering community. Brooks in his paper remarked that

“The hardest single part of building a software system is deciding what to build…. No

other part of the work so cripples the resulting system if done wrong. No other part is

more difficult to rectify later.” [2]. Brooks observation has become one of the justification

for prioritizing software requirements in order to cope with these complex decision

making tasks and problem [3]. Requirements prioritization in this context is the process of

managing the subjective views and choices of stakeholders as specified in their

requirements listing and expectations. This process is one among the several activities of

Received (July 6, 2016), Review Result (November 30, 2016), Accepted (September 12, 2017)

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

34 Copyright ⓒ 2018 SERSC

requirements engineering contributing towards making good decisions for software

systems [4], and it is the activity required for the selection of appropriate requirements [5]

for implementation. Even in an agile software engineering methodology for engineering

sociotechnical systems of systems as observed in [6], requirements prioritisation can be

useful in making the right choice from the different viewpoint aspects of stakeholders.

Within the premise of goal-oriented requirements engineering methodology [7, 8],

prioritisation is essential for the purpose of selecting the goals based on domain specific

needs [9]. Requirement engineering (RE) deals with human. The involvement of human

makes the processes in RE naturally collaborative in nature. This is as a result of the

intensiveness from both knowledge and human perspectives that opens up the problem of

decision making [10]. Prioritization in this regard is essential as a first aid approach to

overcoming the problem of decision making.

Consequently, most software prioritization techniques are centered on the importance

of requirements, and the corresponding value each stakeholder have attributed to the

requirement. Therefore, choosing the correct requirements from a list of requirement

specifications as elicited from stakeholders’ is essential for engendering the development

of cost effective quality software. One way of accomplishing this is to prioritize the

requirements to enable the selection of optimal set [11].

In this paper, we are proposing the use of imprecise knowledge-based solutions

over precise-knowledge based solutions for prioritizing software requirements. This

is because, some decision making tasks are quantitatively complex to be understood

due to the uncertainties associated with multi-criteria decision making tasks. We

found in literature that most Fuzzy Multi Criteria Decision Making (FMCDM)

approaches are based on fuzzy set theories. In this regard, our proposed approach is

an integration of FMCDM, similarity measures and target-based approach to

requirements prioritization using linguistic values of triangular fuzzy numbers.

The paper is further structured as follows: First is an overview of the paper, which is

followed by the review of related literatures of some prioritization techniques in Section

2. Next, the methodology describing the approach used and the various components of the

integrated proposed approach was presented in Section 3. These components were meant

to address the limitations of existing prioritization techniques. In Section 4, the proposed

integrated technique was presented alongside the weight scales and computational

aspects. The emphasis in this section was on its suitability and relevance for requirements

prioritization. Section 5 concludes the paper and suggest some future work for the

implementation of the integrated technique.

2. Review of Related Literature

Several benefits of requirements prioritization have been identified in literature to serve

as the basis for having the right sets of requirements in a software development project.

For instance, Liaskos et al., [12] enumerated some of these benefits and opined that

prioritizing software requirement among others, is aimed at handling and negotiating the

contradictory and conflicting expectations from each stakeholder. The work of

Pitangueira et al., [13] further enumerated the aspects of prioritization most researchers

focused on, and also identified the most important prioritization techniques used based on

the defined problem(s).

However, there has been other considerable research on the analysis of various issues

relating to existing prioritization techniques. For example, Babar et al. [14] observed that

prevailing prioritization techniques are deficient in the aspects of handling software

projects with large set of requirements specifications. Consequently, this has rendered

current techniques unsuitable for prioritizing large scale sets of requirements in a software

development project. Another example is the in-depth review that classified existing

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

Copyright ⓒ 2018 SERSC 35

prioritization techniques in [15] and made suggestions on possible areas of improvement

based on the disadvantages discovered.

More generally, Dabbagh and Lee [16] opined that the collective results with

prioritizing software requirement is an ordering of prioritized lists of requirements that

needs to be considered first during the software development process. The authors

Achimugu et al., [15], observed that software requirements prioritization is among the

design principles that can engender the functionality of any software product consider for

development. One of the reasons for this could be tailored towards the possibility of

establishing tradeoff among conflicting constraints such as schedule, budget, resources,

time to develop, time to market and quality [12].

The work of Pergher and Rossi [17] provided the justification for evaluating

prioritization tools by conducting a methodological mapping study. Dabbagh et al., [18]

supported this with focus on executing two consecutive controlled experiments that was

aimed at evaluating current prioritization techniques. Again, the work of Riņķevičs and

Torkar [19] proposed the ECV methods for the analysis of results from commutative

voting (CV) technique. The authors focused on the empirical analysis of CV and the

corresponding implications.

Furthermore, most existing techniques for prioritizing software requirements accept the

association of each requirement with a priority while others group requirements by

priority level [3]. Several methods like Cost-Value [20], Quantitative Win-Win [21] and

EVOLVE [22] have applied existing prioritization techniques within the scope of a larger

project for decision making. Despite the existence and application of these techniques, the

complexities during decision making process requires proper understanding due to the

uncertainties associated with multi-criteria decision making processes and tasks. In the

view of this paper, we make justification that since requirement prioritization is a

complex multi-criteria decision making process [23], an integrated approach is required to

overcome some of these complexities when deciding on which requirement has the

highest priority.

Going further, we noted that the Analytical Hierarchy Process (AHP) has been seen to

have the ability of reducing complexities in decision making during requirements

prioritization. The AHP approach does this by reducing complex decisions to a series of

one-on-one comparisons [24, 25, 26]. The strength of this technique is in its ability to

provide adequate support in obtaining the best decision. However, the technique is

deficient in terms of scalability when large volume of stakeholders’ requirements are

subject to decision making process. For example, given n number of requirements, it will

require an n × (n – 1) / 2 comparison to be made at each hierarchical level. Obviously,

when the number of requirements increases, the number of comparison is equally

expected to increase with a magnitude of O(n2) [27, 28]. Other techniques that suffers the

same lack of scalability and difficulties in decision making includes; Round-the-Group

Prioritization and Cost-Value Ranking [29, 20], the Planning game technique [30], the

Binary-tree [31, 32, 33], Pairwise comparisons and so on. The Attribute goal-oriented

requirement analysis technique [34, 35] focused on the computation of preference values

assigned to requirements in a decision matrix form represented in a goal graph. Still, this

technique is incompetent in the handling of complexities inherent in the goal graph.

Therefore, our paper proposes an integrated technique that encapsulate the FMCDM,

similarity measures and target based approach in prioritizing software requirements using

linguistic values (LV) of triangular fuzzy numbers (TFN).

3. Methodology

The quantitative research approach was considered appropriate in this paper because of

its suitability in quantifying the various stakeholders’ expectations (or requirements),

thereby providing a generalised results from a large number of requirements. This

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

36 Copyright ⓒ 2018 SERSC

approach supports fixed design that are highly pre-specified and prepared. It allows the

conceptualization of a framework or theory to determine what is been sought for. In this

case the fuzzy set theories were conceptualised for proper decision making amidst the

various uncertainties. The quantitative design was used to quantify the relationship

expected in the integrated approach in order to have results that are collective and

prescriptive. With the quantitative approach, the similarities in the LV of TFN assigned to

the elicited requirements can be prioritized. This will allow us see the requirements with

the highest priority level for implementation within the set time frame of the software

development project.

The ranking of requirements can be achieved using fuzzy numbers based on the fuzzy

logic concept. A criterion can be computed by summing all the weights and the highest

ranked alternatives should be considered first. In most cases, requirements specifications

are subjective in nature. Therefore, a fuzzy based approach can be adopted to help in

making objective decisions. As specified in the work of Dubois and Prade [36],

addressing multiple decisions making is usually achieved using two classifications. The

first dealt with the aggregation of weighted scores with respect to each criterion, while the

second has to do with ranking the criteria with normalized values.

3.1. Defining Components of the Methodological Approach

Definition 1: Base on the works of Dubois and Prade [37], Zhang [38] and Bárdossy

and Duckstein [39], a triangular fuzzy number M
~

can be defined by a triplet denoted

as),,(
~

cbaM where a ≤ b ≤ c has the following triangular-type membership functions:

otherwise

cxbif
bc

xc

bxaif
ab

ax

xM

,0

,

,

)(
 (1)

From equation 1 above, the maximum value attributed to the fuzzy set µ(x) is b, while

the lower and upper bounds are attributed to a and c respectively. In this context, a and c

contains all the linguistic variables in the fuzzy set µ(x). The triangular fuzzy numbers

(TFNs) are depicted in Table 1. The TFNs can be used as alternative scores in order to

determine relative values.

Table 1. Triangular Fuzzy Numbers (TFNs)

The defuzzification of TFNs can be achieved using Equation 2. Thus:

3

321 jjj cba
W

 (2)

Variables Fuzzy Rank Fuzzy

Weights

Extremely Important (EI) (1,1,1) (1,1,1)

Weakly More Important (WMI) (3,1,2) (1/2, 1, 1/3)

Strongly More Important (SMI) (3,2,5) (1/5, 1/2, 1/3)

Very Strongly More Important (VSMI) (5, 3,7) (1/7, 1/3, 1/5)

Absolutely More Important (AMI) (7, 4, 9) (1/9, 1/4, 1/7)

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

Copyright ⓒ 2018 SERSC 37

The membership function)(xM of TFNs which can be used to describe the level of

membership of the elements M to the fundamental set Χ is as shown in Figure 1.

Figure 1. Membership Functions of TFNs

Therefore, any element tending towards 0 connotes that, the member is not included in

the given set while the ones tending towards 1 connotes a fully included member. Values

strictly between 0 and 1 characterized the fuzzy members.

Definition 2: Addition, subtraction, multiplication and division of TFNs

The algebraic operations of triangular fuzzy numbers were executed as follows:

),,(),,(),,(212121222111 ccbbaacbacba (3)

),,(),,(),,(212121222111 ccbbaacbacba (4)

),,(),,(),,(212121222111 ccbbaacbacba (5)

),,(),,(),,(212121222111 ccbbaacbacba (6)

Definition 3: Similarity measures between TFNs

Let),...,,(21 naaaA and),...,,(21 nbbbB be two vectors of n lengths where all

the operators are positive. As postulated by Based on Van Laarhoven and Pedrycz [40],

the three significant similarity measures are defined as follows:

n

i

n

i

n

i iiii

n

i ii

ACAC

AC

CAAC

CA
BAX

1 1 1

22

1

2

2

2

2 ||||||||
),((7)

n

i i

n

i

ii

n

i

ii

AC

AC

AC

CA
BAY

1 1

22

1

2

2

2

2

2

||||||||

2
),((8)

n

i

n

i

ii

n

i

ii

AC

AC

AC

CA
BAZ

1 1

22

1

22 ||||||||
),((9)

The three parameters ia (i = 1, 2 and 3) in TFN)(xM = 1a , 2a and
3a could be

considered as a vector representation with three elements. Based on this notion, the

similarity measures between TFNs are shown below:

0

1

1a 1ba

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

38 Copyright ⓒ 2018 SERSC

Let),,(321 xxxX and),,(321 yyyY be two TFNs where 0 ≤ x1 ≤ x2 ≤ x3 ≤ 1 and 0

≤ y1 ≤ y2 ≤ y3 ≤ 1

The similarity measures between the two TFNs are therefore defined as follows:

3

1

3

1

2
3

1

2

3

1),(

i

ii

i

i

i

i

i

ii

A

yxyx

yx

YXS (10)

3

1

2
3

1

2

3

1

2

),(

i

i

i

i

i

ii

B

yx

yx

YXS (11)

3

1

3

1

22

3

1

i i

ii

i

ii

C

yx

yx

S (12)

The similarity measures between the TFNs satisfy the following attributes:

 ;1),(0 YXS (13)

),(),(XYSYXS (14)

If X = Y, that is, xi = yi, where i = 1, 2, and 3. S(X, Y) = 1 (15)

Using basic mathematical equation indicated in Equation 16; it can be easily proof that,

1),(YXS A
as shown in Equation 17.

222 iiii yxyx (16)

iiiiii

i

ii

i

i

i

i yxyxyxyxyx

2
3

1

3

1

2
3

1

2
 (17)

Equations 17 and 10 results in Equations 18 below:

 1),(YXS A
 (18)

 YX

Equation 18 yields 19 as follows:

3

1

3

1

2
3

1

2

3

1),(

i

ii

i

i

i

i

i

ii

A

xxxx

xx

YXS (19)

Definition 4: Target-based model for calculating missing weights of requirements

Here, the challenge of making decisions under uncertain conditions was considered. In

the case where the weights of requirements are imprecisely or not even given by the

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

Copyright ⓒ 2018 SERSC 39

stakeholders, the results can lead to the generation of inhomogeneous decision matrix.

These weights could be crisp numbers, an interval value or a fuzzy quantity. To address

this challenge, a fuzzy set based technique with the help of extension principles, which

culminates into target-based procedure can be employed. To initiate the target-based

procedure for solving requirements with vague or missing weights, the inhomogeneous

decision matrix must be transformed into the probabilities of meeting the target using

Equation 20.

r

j

jW
R

P
1

1
 (20)

4. The Proposed Integrated Technique

The proposed integrated technique for prioritizing software requirements will be based

on the following:

1. Identification of stakeholders' preferences on what the system should do,

providing a ranking of the requirements, and taking into consideration the

stakeholders' subjective views and importance;

2. Obtain a ranking of requirements that are aimed at determining the preferential

requirements of stakeholders;

3. Obtain a cumulative or global rating of these requirements across project

stakeholders in order to plan for software release phases.

4. Allow software engineers to perform what-if analysis regarding changes in

priorities for the implementation of requirements, while considering new

candidate alternatives (e.g., addition or subtraction of requirements).

The first point is to articulate the stakeholders' goals, which will help to solve the

potential differences and disagreements in opinions that can arise in terms of the expected

requirement specification of the to-be system. For instance, security and response time in

most cases are usually the conflicting quality attributes requiring attention. For instance, if

the expectation is for a strongly secured system, then it may well be that the response time

will increase. The qualities that conflict each other are fundamental information in a trade-

off analysis. In such cases, we should look at the initial stakeholders' desires, and check

which of the conflicting qualities is ranked higher. This ranking can, from thereafter, be

used as a guide by the developers to try their best to satisfy the stakeholders' wishes. This,

together with the other potential conflicting qualities, should guide the information to be

passed over to the architect.

The second point is about having available trustworthy information from where

architects and developers can stem a first vision of the software. System qualities are the

criteria with higher impact on the architecture. Therefore, it is necessary to identify and

prioritize those we need to address. The main difficulty the architects face is to choose the

requirements, or combination of requirements, that best satisfies the set of chosen

qualities. The choice of the wrong requirements, or combination of requirements, can

bring serious problems throughout the software life-cycle, having a strong impact on the

success or failure of the system. Different requirements may pull the system in various

directions; each quality leads to a number of implementation strategies, each one

satisfying the system requirements and serving the stakeholder needs with varying levels

of stakeholder satisfaction.

The third point addressed questions that are related with the identification and display

of prioritised requirements across stakeholders. This can be achieved by transforming

local weights into global weights. The ranking for potential candidate requirements to be

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

40 Copyright ⓒ 2018 SERSC

developed may support stakeholders in identifying new software attributes with less risks

and costs.

The fourth point is tailored towards giving developers the flexibility to play with

different choices and understand their impact on the ranking and, consequently, on the

decisions they have to make. This was very important, because, it will enable the storing

of decisions and their respective rationale, which might be useful in future similar

decision processes.

Therefore, in Figure 2, we describe the conceptual framework of the proposed

integrated technique. This technique is a three-phased process that is composed of five

steps. The first step is meant for the elicitation of requirements.

In the second step, trade-offs between criteria using pairwise comparisons can be

performed. In addition, the second step supports the calculation of criteria priority vector,

requirements with missing weights using the harmonic mean. The normalization of the

respective weights and calculation of the weighted normalized matrices can also be

carried out in the second step. In step 3, support for the calculation of relative closeness

degrees of requirements and consistency indexes is provided. In step 4, the calculation of

the weights and the display of prioritized requirements with respect to each criterion,

using the classical weighted normalized decision matrix can be dealt with. It is in this step

that the ratings for each requirement is/are provided. Finally, step 5 will deal with the

performance evaluation of proposed integrated technique.

Figure 2. Proposed Integrated Technique

4.1. The Weight Scale

A 5-point scale can be utilised to determine the relative values of requirements. The

scale consists of linguistic values and their corresponding scores were used to rate a

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

Copyright ⓒ 2018 SERSC 41

typical multi-criteria decision making problem, where the criteria are inversions and

indiscrimination. Inversion occurs when the real rankings of requirements are known and

the method being tested ranks them in a different order. For example, if the real ranking

of three requirements is equal to (5>3>1) then the possible tested method result can be

(5>1>3). Indiscrimination happens when the tested method yields a tie between two or

more requirements. For example, if the computed result is (1>3=2).

In literature, Triantaphyllou tested 78 different scales. These were classified as Class 1,

Class 2…, Class 78, and they all depicts different performances in terms of the two above

mentioned criteria, and also on the number of criteria used. However, the 5-point scale

suggested in this paper is with a corresponding triangular fuzzy numbers. This is required

for use in fuzzy or uncertain environment, which covers the majority of the sizes of sets of

criteria that considers equal weights for the criteria shown in Table 2.

Table 2. Weight Scale

Terms RALCI rating Equivalent TFNs

Extremely high (EH) 5 (0.9, 1.0,1.0)

Very high (VH) 4 (0.7, 0.9, 1.0)

High (H) 3 (0.5, 0.7, 0.9)

Fair (F) 2 (0.3, 0.5, 0.7)

Low (L) 1 (0.1, 0.3, 0.5)

4.2. Computational Aspects of Proposed Technique

This section specifies the stepwise process of the computations that can be performed

by the integrated technique proposed. The first step of phase 1 is meant to identify the

criteria and the requirements. The theoretic employed included letting nc be the number of

criteria and nr the number of requirements. In the second step, stakeholders’ weights can

be elicited for the relative importance of each requirement based on their respective

criteria.

The values of the weight scales are the elements of the criteria matrix c of dimension

nc. For all i and j with 1≤i<j≤nc; the ith and jth criteria are compared, leading to the value

cij. The remaining entries of the matrix are determined by cji=1/cij, i.e., the inverse

function.

In the third step, the model calculates the priority vector for the requirements, which

represents the weights for phase 2, using the geometric mean. The geometric mean is

selected, following the conclusions of Dong et al., [41] about its superior suitability over

Saaty's eigenvalue method.

Assuming that s comparisons were done for each attribute, where s < n (preferably s

<< n). These s attributes are drawn randomly and evenly distributed such that each

attribute is compared pairwise with some other attribute 2s times. The result of

stakeholders’ assessments is then an n× n matrix A where 2sn of the entries are filled in. In

other words, assuming the attribute i is directly compared with the attributes j1, . . ., j2s

(where the attributes j1, . . . , js are assigned to i and js+1, . . . , j2s are the ones to which i is

assigned). The entry aji in A is the score i achieved when compared with j and aij = −aji.

The entries in row i in A then are all aij for j = j1, . . . , j2s, denoted by ai(j1) , . . . , ai(j2s). The

remaining entries are not filled in, except aii = 0.

Progressively, some consecutive repeated calculations can be performed to find a final

weight vector. The “first” weight vector is given by the arithmetic mean of these scores.

That is, the attribute i gets the following weight;

w1(i) = w(i) = (ai(j1) + · · · + ai(j2s))/2s

For i = 1, . . ., n, and the weight vector is W1 = (w1(1) ... w1(n))T.

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

42 Copyright ⓒ 2018 SERSC

This is then repeated with the weights of the directly connected attributes taken into

account, that is, w1(jl), l = 1, . . . , 2s is added to the value ai(jl). The score attained for each

of the directly connected attributes will enhance the relative score and the “second”

weight for i is

w2(i) = (ai(j1) + w1(j1) + · · · + ai(j2s) + w1(j2s))/2s) = w1(i) + (w2(j1) + · · · + w2(j2s))/2s.

This can be done repeatedly until the weight vector stabilizes. That is, Wr does not

differ significantly from Wr+1 and the ranking does not change. Assuming this happens

after r iterations. Then the attribute i has the score/weight.

wr(i) = w1(i) + (wr−1(j1) + · · · + wr−1(j2s))/2s, and the weight vector is Wr = (wr(1) , . . .

, wr(n))T. In actual sense, the weight vector was expected to stabilize after a relatively

small number of iterations.

In this regard, an attribute will only relate to its closest neighbours, but will be pushed

up or down on the ranking according to the score attained by the direct neighbours. For

example, one attribute, which is expected to score average compared with the others, do

really well in the first round and end up towards the top of the ranking if its direct

neighbours typically obtain low ratings. The score for such attribute can then be adjusted

in the subsequent rounds according to how its neighbours score. Hence, these adjustments

will spread out and draw scores from all the attributes and by repeating a satisfactory

number of times given by the desired result. In this example the score for this particular

attribute can be pulled down.

4.3. Architecture of the Proposed Integrated Technique

In Figure 3, the flowchart depicting the architecture of the proposed technique is

depicted. The architecture summarises the proposed steps of prioritizing software

requirements based on the definitions and operations indicated. The summary is as

enumerated below:

Step 1: Elicit requirements from project stakeholders and determine the criteria for

describing each requirement to enable a comprehensive rating exercise.

Step 2: Obtain the decision matrix D as shown in Equation 17.

 kij

k aA ~~
 (21)

kA
~

, represent the computed decision matrix of the form
ijijij cba ,, ; k stands for the

numbers of relevant stakeholders while ija~ is the fuzzified local weights of the entire

requirements allotted by relevant stakeholders.

Step 3: Determining the relative weights of requirements across project stakeholders

using the linguistic scale shown in Table 2. The processes involved in achieving this are

described below:

 Construction of a decision matrix by taking the criteria of requirements into

consideration.

 Using the stakeholders’ weights to fill the decision matrix.

 Finding the weights of each requirement and computing the eigenvalue of the

decision matrix.

Step 4: The linguistic values are converted to the corresponding triangular fuzzy numbers

across the project stakeholders as represented below:

 kij

k aRV)(1 (22)

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

Copyright ⓒ 2018 SERSC 43

 kij

k aRV)(2 (23)

 mijn

n aRV)((24)

Step 5: The weight vector of the stakeholders m ,...,, 21 for each

requirement
iR is used to calculate the preference vectors as follows:

k
m

k

k

ik

m

k

k

ik

m

k

k

iki xxxRV

 1
13

1
12

1
111 , (25)

k
m

k

k

ik

m

k

k

ik

m

k

k

ik xxxR

 1
23

1
22

1
212 , (26)

k
m

k
n

k

ik

m

k
n

k

ik

m

k
n

k

ikn xxxR

 1
3

1
2

1
1
, (27)

Step 6: Normalization of the decision matrix weights is executed by applying Equation 28

and 29.

mjni

w

w
w

n

j

j

j ,..1;,...1

1

__

 (28)

2

__

1

__

2

__

22

__

21

__

1

__

12

__

11

__

...

...

...

NMNN

M

M

j

xxx

xxx

xxx

w

 (29)

Where

n

j

jw
1

__

1

Step 7: Calculation of the weighted normalized decision matrix (WNDM) using Equation

30 and 31.

mjniwxx jijij ,..1;,...1*
__

 (30)

NMNN

M

M

j

xxx

xxx

xxx

w

...

...

...

21

22221

11211

 (31)

Step 8: After calculating the WNDM, the next step is to synthesize the weights using

Equation 32.

3

321

jjj xxx
 (32)

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

44 Copyright ⓒ 2018 SERSC

Step 9: Requirements are finally prioritized based on the final ranks calculated with the

help of Equation 33.

k

j

ij

k
P

1

 (33)

Figure 3. Flowchart of the Proposed Technique

5. Conclusion and Future Work

In conclusion, this paper proposed an integrated technique comprising of Fuzzy Multi

Criteria Decision Making (FMCDM), similarity measures and target-based approach to

requirements prioritization using linguistic values of triangular fuzzy numbers. The paper

Software Project

Requirements Elicitation

 Attributes/criteria definition

Consensus Requirements

Factor Analysis

Pair wise Comparisons

Local Weights

Harmonic Means

Normalize Weights

Decision Matrix

Weighted Normalized Matrix

Aggregated Decision Matrix

Priority Weights

Requirements Ranks

Results Evaluation

 Sensitivity Analysis

Verdict

No

Yes

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

Copyright ⓒ 2018 SERSC 45

enumerated the components of the proposed technique. These components were meant to

address the limitations of existing prioritization techniques. Consequently, the

components of the proposed technique have the capacity of prioritizing large numbers of

requirements, reduce disparities or disagreement between ranked weights, reverse ranks

when weights or requirements evolves, reduce computational complexities, easy to use

and generation of accurate results. Various algorithms and models were formulated in

order to enhance the usability of the proposed technique. The evaluation of the proposed

technique can be executed with relevant datasets for real-life software development

project and validation in the appropriate domain. Therefore, for future research, we look

forward to implementing this concept encapsulated in the integrated technique proposed

for requirements prioritization. It is hoped that when this technique is implemented,

executed, evaluated and validated, a promising results will be achieved.

References

[1] I. P. Gambo, “Development of a Model for Conflict Resolution in the Requirements Engineering

Process of Software Systems”, Ph.D. thesis, Department of Computer Science and Engineering,

Obafemi Awolowo University, Ile-Ife, Nigeria, (2016), pp. 1-298.

[2] F. P. Brooks, “The Mythical Man-Month”, Essays on Software Engineering, Addison-Wesley Longman,

Boston, MA, USA, (1995).

[3] P. Berander and A. Andrews, “Requirements prioritization”, Engineering and managing software

requirements, Springer Berlin Heidelberg, (2005), pp. 69-94.

[4] Q. Ma, “The effectiveness of requirements prioritization techniques for a medium to large number of

requirements: a systematic literature review”, Doctoral dissertation, Auckland University of

Technology, (2009).

[5] R. K. Chopra, V. Gupta and D. S. Chauhan, “Experimentation on Accuracy of Non Functional

Requirement Prioritization Approaches for different complexity Projects”, Perspectives in Science,

(2016), http://dx.doi.org/10.1016/j.pisc.2016.04.001.

[6] K. Taveter and A. Norta, “Agile Software Engineering Methodology for Information Systems’

Integration Projects”, In Proceedings of the 4th International Conference on Future Data and Security

Engineering (FDSE 2017), Ho Chi Minh City, Vietnam, Springer, (2017) November 29-December 1,

pp. 215-230.

[7] J. Horkoff, F. B. Aydemir, E. Cardoso, T. Li, A. Maté, E. Paja and P. Giorgini, “Goal-oriented

requirements engineering: an extended systematic mapping study”, In Requirements Engineering

Journal, Springer London, (2017), pp. 1-28.

[8] J. Horkoff, F. B. Aydemir, E. Cardoso, T. Li, A. Maté, E. Paja and P. Giorgini, “Goal-oriented

requirements engineering: a systematic literature map”, In Proceedings of the 24th IEEE International

Conference on Requirements Engineering (RE), Beijing, China, IEEE, (2016) September 12-16, pp.

106-115.

[9] N. U. Rehman, S. Bibi, S. Asghar and S. Fong, “Comparative Study of Goal-Oriented Requirements

Engineering”, In Proceedings of the 4th IEEE International Conference on New Trends in Information

Science and Service Science (NISS), TBD Gyeongju, Korea, (2010) May 11-13, pp. 248-253.

[10] I. P. Gambo, H. A. Soriyan and R. N. Ikono, “A Proposed Process Model for Requirements Engineering

using Delphi Techniques for Prioritisation”, International Journal of Information Technology and

Computer Science (IJITCS), vol. 7, no. 1, (2014), pp. 73.

[11] P. Berander, “Prioritisation of Stakeholder Needs in Software Engineering, Understanding and

Evaluation”, Blekinge Institute of Technology. ISBN: 91-7295-052-8. Licentiate Series No 2004:12,

(2004).

[12] S. Liaskos, S. A. McIlraith, S. Sohrabi and J. Mylopoulos, “Representing and reasoning about

preferences in requirements engineering”, Requirements Engineering, vol. 16, no. 3, (2011), pp. 227-

249.

[13] A. M. Pitangueira, R. S. P. Maciel and M. Barros, “Software requirements selection and prioritization

using SBSE approaches: A systematic review and mapping of the literature”, Journal of Systems and

Software, vol. 103, (2015), pp. 267-280.

[14] M. I. Babar, M. Ghazali, D. N. Jawawi, S. M. Shamsuddin and N. Ibrahim, “PHandler: An expert

system for a scalable software requirements prioritization process”, Knowledge-Based Systems, vol. 84,

(2015), pp. 179-202.

[15] P. Achimugu, A. Selamat, R. Ibrahim and M. N. R. Mahrin, “A systematic literature review of software

requirements prioritization research”, Information and Software Technology, vol. 56, no. 6, (2014), pp.

568-585.

[16] M. Dabbagh and S. P. Lee, “An approach for prioritizing NFRs according to their relationship with

FRs”, Lecture Notes on Software Engineering, vol. 3, no. 1, (2015), pp. 1-5.

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

46 Copyright ⓒ 2018 SERSC

[17] M. Pergher and B. Rossi, “Requirements prioritization in software engineering: a systematic mapping

study”, Paper presented at the 2013 IEEE Third International Workshop on Empirical Requirements

Engineering (EmpiRE), (2013), pp. 40-44.

[18] M. Dabbagh, S. P. Lee and R. M. Parizi, “Functional and non-functional requirements prioritization:

empirical evaluation of IPA, AHP-based, and HAM-based approaches”, Soft Computing, (2015), pp. 1-

24.

[19] K. Riņķevičs and R. Torkar, “Equality in cumulative voting: A systematic review with an improvement

proposal”, Information and Software Technology, vol. 55, no. 2, (2013), pp. 267-287.

[20] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing requirements”, IEEE Software, vol. 14,

no. 5, (1997), pp. 67-74.

[21] G. Ruhe, A. Eberlein and D. Pfahl, “Quantitative WinWin: a new method for decision support in

requirements negotiation”, Proceedings of the 14th International Conference on Software Engineering

and Knowledge Engineering (SEKE’02), ACM Press, New York, (2002) July, pp. 159-166.

[22] D. Greer and G. Ruhe, “Software release planning: an evolutionary and iterative approach”, Information

and Software Technology, vol. 46, no. 4, (2004), pp. 243-253.

[23] D. Leffingwell and D. Widrig, “Managing Software Requirements – A Unified Approach”, Addison-

Wesley, Upper Saddle River, NJ, USA, (2000).

[24] P. F. Rad and G. Levin, “Project portfolio management tools and techniques”, www. iil. com/publishing,

(2006).

[25] S. Koul and R. Verma, “Dynamic Vendor selection: a fuzzy AHP approach”, International Journal of

Manufacturing Technology Management, vol. 22, no. 8, (2009), pp. 1-13.

[26] R. Verma and S. Koul, “Dynamic Vendor Selection: A Fuzzy AHP Approach”, International Journal of

the Analytic Hierarchy Process, vol. 4, no. 2, (2012). DOI: http://dx.doi.org/10.13033/ijahp.v4i2.25.

[27] J. R. Hubbard, “Theory and Problems of Data Structures with C++”, McGraw-Hill, NY, USA, (2000).

[28] N. W. Kassel and B. A. Malloy, “An approach to automate requirements elicitation and specification”,

Proceedings of 7th International Conference on Software Engineering and Applications, 2003, Marina

del Rey, USA, (2003) November 3-5, pp. 3-5.

[29] S. Hatton, “Choosing the right prioritisation method”, Proceedings of ASWEC 19th Australian

Conference on Software Engineering, Australia, (2008) March 26-28, pp. 517-526.

[30] C. Duan, P. Laurent, J. Cleland-Huang and C. Kwiatkowski, “Towards automated requirements

prioritization and triage”, Requirements engineering, vol. 14, no. 2, (2009), pp. 73-89.

[31] M. Aasem, M. Ramzan and A. Jaffar, “Analysis and Optimization of Software Requirements

Prioritisation Techniques”, Proceedings of IEEE International Conference on Information and Emerging

Technologies (ICIET), Karachi, Pakistan, (2010) June 14-16, pp. 1-6.

[32] M. Beg, R. Verma and A. Joshi, “Reduction in number of comparisons for requirement prioritisation

using B-Tree”, Proceedings of IEEE International Advance Computing Conference, (IACC, 2009),

Delhi, India, (2009) March 6-7, pp. 340-344.

[33] B. Babar, M. Ramzan and S. Ghayyur, “Challenges and Future Trends in Software Requirements

Prioritisation”, Proceedings of the 2011 IEEE International Conference on Computer Networks and

Information Technology (ICCNIT), Abbottabad, Pakistan, (2011) July 11-13, pp. 319-324.

[34] H. Kaiya, H. Horai and M. Saeki, “AGORA: Attributed goal-oriented requirements analysis method”,

Proceedings of the IEEE Joint International Conference on Requirements Engineering, September 9-13,

(2002), pp. 13-22.

[35] N. Carod and A. Cechich, “Requirements Prioritization Techniques”, Encyclopedia of Information

Science and Technology, (2009), pp. 3283-3291.

[36] D. Dubois and H. Prade, “New results about properties and semantics of fuzzy set-theoretic operators”,

In Fuzzy Sets, Springer US, (1980), pp. 59-75.

[37] D. Dubois and H. Prade, “Operations on fuzzy numbers”, International Journal of Systems Science, vol.

9, no. 6, (1982), pp. 613-626.

[38] G. Q. Zhang, “Convergence of a sequence of fuzzy number-valued fuzzy measurable functions on the

fuzzy number-valued fuzzy measure space”, Fuzzy Sets and Systems, vol. 57, no. 1, (1993), pp. 75-84.

[39] A. Bárdossy and L. Duckstein, “Fuzzy Rule-Based Modeling with Applications to Geophysical,

Biological and Engineering Systems, Boca Raton: CRC Press.Barki. H., and Hartwick,. (2001).

Interpersonal conflict and its management in information system development”, MIS Quarterly, vol. 25,

no. 2, (1995), pp. 195-228.

[40] P. J. M. Van Laarhoven and W. Pedrycz. “A fuzzy extension of Saaty's priority theory”. Fuzzy sets and

Systems, vol. 11, no. 1, (1983), pp. 199-227.
[41] Y. Dong, Y. Xu, H. Li and M. Dai, “A comparative study of the numerical scales and the prioritization

methods in AHP”, European Journal of Operational Research, vol. 186, (2008), pp. 229-242.

