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Abstract 

In today’s growing world, the quality of software developed is very essential for 

critical and huge applicable areas. The undetected bug in the software leads to an 

avalanche breakdown of services in the total network. On the other hand, the complete 

defect analysis in each and every module is again a huge task with lot of man-hours. A 

trade of between these two is established by following Software Defect Prediction (SDP) 

techniques or algorithms. Software defect Prediction is the process of finding the defects 

in the specific modules of the software. This paper aims to review the Software Defect 

Predicting (SDP) techniques and algorithms proposed in the literature to alleviate in the 

area of class imbalance software defect. 

Keywords: software defects analysis, classification, decision tree, class imbalance 

learning, Software Defect Prediction (SDP) 

1. Introduction

In Machine Learning community, and in Data Mining works, Classification has its own

importance. Classification is an important part and the research application field in the 

data mining [1]. With ever-growing volumes of operational data, many organizations have 

started to apply data-mining techniques to mine their data for novel, valuable information 

that can be used to support their decision making [2]. Decision tree learning is one of the 

most widely used and practical methods for inductive inference [3]. 

Software Defect Prediction: 

A learning algorithm in software testing which aims to locate and analyze which part 

of software is more likely to contain defects is known as software defect predicting (SDP) 

algorithm. When the project budget is limited or the whole software system is too large to 

be tested completely, a good defect classifier can guide software engineers to focus the 

testing on defect-prone parts of software. 

SDP data feature: collected training data contains much more non-defective modules 

(majority) than defective ones (minority), as shown in the Table 1. The rare defective 

examples are more costly and important. Class imbalanced distribution is harmful for 

classification performance, especially the minority class. Existing methods to tackle class 

imbalance in SDP problems are under sampling non-defective examples [4-6], over 

sampling defective examples [7-8], cost-sensitive: setting a higher misclassification cost 

for the defect class [9-10].  

They were compared to the methods without applying any class imbalance techniques, 

and showed usefulness. However, the following issues have not been answered: 

1. In which aspect and to what extent class imbalance learning can benefit SDP

problems? (e. g., more defects are detected or fewer false alarms?).
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2. Which class imbalance learning methods are more effective? Such information 

would help us to understand the potential of class imbalance learning methods in 

SDP and develop better solutions. 

 

Software Engineering Datasets: 

 

The software engineering datasets which are publicly available for software defect 

prediction analysis are given below in Table 1. The Table 1 contains S.no, System, 

Features, Total number of modules (examples) present in the software engineering 

project, percentage of defective modules and the imbalance ratio of the dataset, which can 

give the idea of the level of class imbalance in the dataset. 

Table 1. Details of the PROMISE Data Sets of Software Engineering Projects 
__________________________________________________________ 

S.no.  System         Features #Module      %defective     IR 

__________________________________________________________ 

1.  ar1  30 121  10.89 12.44 

2.  ar3  30 63  5.04 6.87 

3.  ar4  30 107  21.4 4.35 

4.  ar5  30 36  2.28 3.5 

5.  ar6  30 101  15.15 5.73 

6.  CM1  38 327  137.34 6.78 

7.  CM11  38 344  144.48 7.19 

8.  DATATRIEVE 9 130  14.3 10.81 

9.    JM1  22 7782  130115 3.65 

10.  JM11  22 9593  168740 4.45 

11.  KC2  22 522  558.5 3.89 

12.  KC3  40 194  69.84 4.38 

13.  KC31  40 200  79.2 4.55 

14.  MC1  39 1988  914.48 42.21 

15.  MC2  40 125  55 1.84 

16.  MC11 39 9277 6308  135.4 

17.  Mozilla4 6 15545  794038 2.04 

18   MW1  38 1253  68.31 8.37 

19.  PC1  38 705  430.05 10.55 

20.  PC2  37 745  119.2 45.56 

21.  PC3  38 1077  1443.18 7.03 

22.  pc4  38 1458  2595.24 7.19 

23.  pc5  38 1054  1402.2 7.01 

__________________________________________________________ 

 

Experimental Validation Framework: 

 

The Experimental validation methodology used for training and testing the classifier is 

10 fold cross validation. The main steps in the 10 fold cross validation is shown in the 

below Figure 1. 
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Figure 1. The Experimental Framework used for 10 fold Cross Validation for 
Training and Testing the Classifier 

2. Data Mining 

Data Mining is the analysis of (often large) observational data sets to find unsuspected 

relationships and to summarize the data in novel ways that are both understandable and 

useful to the owner [11]. There are many different data mining functionalities. A brief 

definition of each of these functionalities is now presented. The definitions are directly 

collated from [12]. Data characterization is the summarization of the general 

characteristics or features of a target class of data. 

Association analysis is the discovery of association rules showing attribute value 

conditions that occur frequently together in a given set of data. Classification is an 

important application area for data mining. Classification is the process of finding a set of 

models (or functions) that describe and distinguish data classes or concepts, for the 

purpose of being able to use the model to predict the class of objects whose class label is 

unknown. The derived model can be represented in various forms, such as classification 

rules, decision trees, mathematical formulae, or neural networks. Unlike classification and 

prediction, which analyze class-labeled data objects, clustering analyzes data objects 

without consulting a known class label.  

Outlier Analysis attempts to find outliers or anomalies in data. A detailed discussion of 

these various functionalities can be found in [12]. Even an overview of the representative 

algorithms developed for knowledge discovery is beyond the scope of this paper. The 

interested person is directed to the many books which amply cover this in detail [11], 

[12]. 

 

The Classification Task 

 

Learning how to classify objects to one of a pre-specified set of categories or classes is 

a characteristic of intelligence that has been of keen interest to researchers in psychology 

and computer science. Identifying the common ―core characteristics of a set of objects 

that are representative of their class is of enormous use in focusing the attention of a 

person or computer program. For example, to determine whether an animal is a zebra, 

people know to look for stripes rather than examine its tail or ears. Thus, stripes figure 

strongly in our concept (generalization) of zebras. Of course stripes alone are not 

sufficient to form a class description for zebras as tigers have them also, but they are 

certainly one of the important characteristics. The ability to perform classification and to 

be able to learn to classify gives people and computer programs the power to make 

decisions. The efficacy of these decisions is affected by performance on the classification 

task. 
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In machine learning, the classification task described above is commonly referred to as 

supervised learning. In supervised learning there is a specified set of classes, and example 

objects are labeled with the appropriate class (using the example above, the program is 

told what a zebra is and what is not). The goal is to generalize (form class descriptions) 

from the training objects that will enable novel objects to be identified as belonging to one 

of the classes. In contrast to supervise learning is unsupervised learning. In this case the 

program is not told which objects are zebras. Often the goal in unsupervised learning is to 

decide which objects should be grouped together—in other words, the learner forms the 

classes itself. Of course, the success of classification learning is heavily dependent on the 

quality of the data provided for training—a learner has only the input to learn from. If the 

data is inadequate or irrelevant then the concept descriptions will reflect this and 

misclassification will result when they are applied to new data. The popular approach of 

classification examples are C4.5 [13], CART [14], REP [15]and Random Forest [16]. 

 

3. Problem of Imbalanced Datasets 

A dataset is class imbalanced if the classification categories are not approximately 

equally represented. The level of imbalance (ratio of size of the majority class to minority 

class) can be as huge as 1:99. It is noteworthy that class imbalance is emerging as an 

important issue in designing classifiers. Furthermore, the class with the lowest number of 

instances is usually the class of interest from the point of view of the learning task.  

 

4. Data Balancing Techniques 

Whenever a class in a classification task is underrepresented (i.e., has a lower prior 

probability) compared to other classes, we consider the data as imbalanced. The main 

problem in imbalanced data is that the majority classes that are represented by large 

numbers of patterns rule the classifier decision boundaries at the expense of the minority 

classes that are represented by small numbers of patterns. This leads to high and low 

accuracies in classifying the majority and minority classes, respectively, which do not 

necessarily reflect the true difficulty in classifying these classes. Most common solutions 

to this problem balance the number of patterns in the minority or majority classes.  

A general issue encountered in data mining is dealing with imbalance datasets, in 

which one class is predominantly outnumbers the other class. This issue results in high 

accuracy for the instances of majority class i.e. instances belonging to the predominant 

class and less accuracy for the instances of minority class. Therefore, when dealing with 

class imbalance datasets a specific strategy has to be implemented for efficient knowledge 

discovery from the datasets. There are different type of approaches exists in the literature 

to handle the problem of class imbalance nature, to name a few are oversampling, under 

sampling, subset approaches, cost sensitive learning, algorithm level implementations and 

hybrid techniques which combine more than one approaches. 

In oversampling, the instances in the minority subset are oversampled by following 

different strategies. In under sampling, the instances in the majority subset are reduced by 

several techniques. In subset approaches, the dataset is split into different subsets to 

reduce the imbalance nature. In cost sensitive learning, the instances are assigned with 

cost values and the reshuffling of the dataset is performed by considering the cost values. 

In algorithmic level approaches, the base algorithm applied to the class imbalance data is 

modified to suit with the imbalance data learning. In hybrid level implementation, more 

than one above said approaches are applied to solve the problem of class imbalance 

learning. Table 2 presents the summary of the strategies in literature. 
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Table 2. Balancing Strategies Proposed in Literature  

============================================================================== 

S.No  Algorithm   Advantages               Disadvantages 

============================================================================== 

1.  AdaBoost.NC[17] Improve prediction accuracy of minority      Ignore overall performance of                 

       classifier 

________________________________________________________________________________________ 

2.  RUSBoost [18]   Simple, faster and less complex than         Unable to solve Multiclass 

SMOTE Boost           imbalance algorithm problem  

________________________________________________________________________________________ 

3.  Infinitely imbalanced Mostly used for binary classification            Performance is depends on 

     logistic regression [19]                         number of outlier in data.  

________________________________________________________________________________________ 

4.  Linear Proximal       Handle dynamic class imbalance               No consideration for distribution of 

     support vector          problem               sample 

     machines [20]                                 

________________________________________________________________________________________ 

5.  Boosting SVM [21]  Improved the performance of         Ignore imbalance class distribution. 

SVM classifier for prediction minority  

 sample            

============================================================================== 

 

5. Evaluation Criteria’s for Class Imbalance Learning 
 

5.1. Evaluation Criteria 

To assess the classification results we count the number of true positive (TP), true 

negative (TN), false positive (FP) (actually negative, but classified as positive) and false 

negative (FN) (actually positive, but classified as negative) examples. It is now well 

known that error rate is not an appropriate evaluation criterion when there isclass 

imbalance or unequal costs. In this paper, we use AUC, Precision, F-measure, TP Rate 

and TN Rate as performance evaluation measures.  

Let us define a few well known and widely used measures for C4.5 [14] as the baseline 

classifier with the most popular software defect datasets. Apart from these simple metrics, 

it is possible to encounter several more complex evaluation measures that have been used 

in different practical domains. One of the most popular techniques for the evaluation of 

classifiers in imbalanced problems is the Receiver Operating Characteristic (ROC) curve, 

which is a tool for visualizing, organizing and selecting classifiers based on their tradeoffs 

between benefits (true positives) and costs (false positives). 

The most commonly used empirical measure; accuracy does not distinguish between 

the numbers of correct labels of different classes, which in the framework of imbalanced 

problems may lead to erroneous conclusions. For example, a classifier that obtains an 

accuracy of 90% in a dataset with a degree of imbalance 9:1, might not be accurate if it 

does not cover correctly any minority class instance. 

 

 

 

 

 

Because of this, instead of using accuracy, more correct metrics are considered. A 

quantitative representation of a ROC curve is the area under it, which is known as AUC. 

When only one run is available from a classifier, the AUC can be computed as the 

arithmetic mean (macro-average) of TP rate and TN rate: 

 

The Area under Curve (AUC) measure is computed by, 
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Or 
 

 

 

 

On the other hand, in several problems we are especially interested in obtaining high 

performance on only one class. For example, in the diagnosis of a rare disease, one of the 

most important things is to know how reliable a positive diagnosis is. For such problems, 

the precision (or purity) metric is often adopted, which can be defined as the percentage 

of examples that are correctly labeled as positive: 

 

The Precision measure is computed by, 

   FPTP

TP
ecision


Pr

 

The F-measure Value is computed by, 

 

 
 

To deal with class imbalance, sensitivity (or recall) and specificity have usually been 

adopted to monitor the classification performance on each class separately. Note that 

sensitivity (also called true positive rate, TP rate) is the percentage of positive examples 

that are correctly classified, while specificity (also referred to as true negative rate, TN 

rate) is defined as the proportion of negative examples that are correctly classified: 

 

The True Positive Rate measure is computed by, 

 

   FNTP

TP
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The True Negative Rate measure is computed by, 

 

   FPTN
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6. Recent Advances on Class Imbalance Learning: Software Defect 

Prediction 

Currently, the trends of research in software defect analysis with class imbalance 

learning methods are presented in this section. The recent research directions for software 

defect analysis are as follows: 

Yu Song et al., [22] have applied principal component analysis (PCA) to analyze the 

factors which lead to defects in software projects, and determine the important factors to 

improve the developing process. Muhsien M. Yazid et al., [23] have developed an 

approach involving coercivity versus the nucleus Volume for identified defect regions 

using Raman spectroscopy as an oxide in character rather than metallic for magnetic force 

microscopy (MFM) to investigate the domain structure of sintered Nd–Fe–B magnet in a 

thermally demagnetized state. Yan Xiaobo et al., [24] have studied the fault propagation 

from the perspective of data signal and control signal. They have constructed signal-

component fault propagation model based on signal component graph for embedded 

software. 

2

RATERATE TNTP
AUC




callecision

callecision
measureF

RePr

RePr2








International Journal of Software Engineering and Its Application 

Vol.12, No.1 (2018) 

 

 

Copyright ⓒ 2018 SERSC   27 

Chakkrit Tantithamthavorn et al., [25] have investigated the bias and variance of model 

validation techniques in the domain of defect prediction using single repetition holdout 

validation and out-of-sample bootstrap. After empirical experimental validation they have 

recommend that future defect prediction studies avoid single-repetition holdout 

validation, and instead, use out-of-sample bootstrap validation. Feng Zhang et al., [26] 

have investigated how different aggregation schemes impact defect prediction models in 

software defect analysis. Patrick Rempel et al., [27] have studied the effect on the four 

main requirements implementation supporting activities that utilize traceability on 

expected defect rate in the developed software. 

Raymond A. Paul et al., [28] have investigated on the Orthogonal Defect Classification 

(ODC) method, which uses data gathered from several projects to track the reliability of a 

new program. Combining ODC with root-cause analysis can be useful in many 

applications where it is important to know the reliability of a program for a specific type 

of a fault. Ramanath Subramanyam et al., [29] have collected evidence supporting the 

role of OO design complexity metrics, specifically a subset of the Chidamber and 

Kemerer (CK) suite, in determining software defects. 

Marco D Ambros et al., [30] have proposed an approach which focuses on historical 

dependencies and defect information to learn about a software system and detect potential 

problems in the source code. Zude Li et al., [31] have proposed an empirical study of six 

releases of a large legacy software system (of approx. size 20 million physical lines of 

code) to analyze PMCDs with respect to: (1) the complexity of fixing such defects and (2) 

the persistence of defect-prone components across phases and releases. They have given 

the overall hypothesis that PMCDs inflict a greater negative impact than do other defects 

on defect correction efficacy. 

Chen Qixiang et al., [32] have discussed the role defect analysis in the software testing, 

defect data collection and the specific methods of defect data. Marıa Perez-Ortiz et al., 

[33] have developed a specific ordinal over-sampling method which uses ordinal 

information by approaching over-sampling from a graph-based perspective for improve 

the performance of machine learning classifiers. Xiao-Yuan Jing et al., [34] have 

provided effective solutions for both within-project and cross-project class imbalance 

problems using Subclass Discriminant Analysis (SDA) learning method using features 

with more powerful classification ability from original metrics. 

 

 

Figure 2. Number of Paper Submissions to the Working Conference on 
Mining Software Repositories since its First Chapter in 2004 until its most 

Recent Chapter in 2015 

The Working Conference on Mining Software Repositories (MSR) has experienced an 

increase in the number of paper submissions since its first chapter in 2004 (see Figure 2) 

[3]. 
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Software Defect (bug) Prediction 

 

The main techniques which is used in the software development life cycle in order to 

reduce the amount of defects:  

 Defect prevention takes aim to reduce the number of defects introduce while 

producing the software in the software development life cycle. This is done 

directly in any software engineering activity.  

 Defect removal is to detect defects by software verification or software 

inspection. The main goal is to eliminate introduced defects. Strategies to achieve 

this may be dynamic analysis, or formal inspections of code.  

 Defect tolerance is to provide continuous software service which satisfies given 

requirements despite a defect having occurred in the software.  

 Defect forecasting is to estimate where new defects are likely to emerge in the 

software.  

 

In 2002 IEEE Metric Panel, a group of noted researchers have agreed that fixing 

defects in a software product after being delivered to the customer is up to 100 times more 

expensive than finding and fixing them during the requirements and design phases [36 - 

37]. They have also argued that up to 50 % of effort is spent on avoidable work, 80 % of 

which comes from a small number of defects (i.e., 20%) in the system. The bottom-line is 

that software testing is a costly challenge and practitioners seek the knowledge of where 

the defects might exist before they start testing. In this respect, defect predictors are data 

mining applications to help prioritising the list of software modules to be tested, to 

allocate limited testing resources effectively and to detect as many defects as possible 

with minimum effort. 

Software defect prediction has been a popular area of software quality research that has 

drawn the attention of significant organisations including, but not limited to, Microsoft, 

NASA and AT&T [38 - 40]. Basically, software defect prediction models require a set of 

features to characterize the problem and to give estimation on the defect proneness of the 

system. In software quality, these attributes are referred to as software metrics and 

numerous previous studies demonstrated defect predictors learned from product [38] (e.g., 

size, complexity) and process [40 - 41] (e.g., code churn) metrics. Once relevant data are 

available, a variety of data mining algorithms can be applied to learn defect predictors, 

please see Hall et al., for a systematic literature review [42]. 

Most defect prediction studies formulate the problem as a supervised learning problem, 

where the outcomes of a defect predictor model depend on historical data used for 

training. They can be either labels indicating that a software module is or is not likely to 

contain defects, or the predictive number of defects expected to be present in the software 

module, or a ranking of software modules according to their defect proneness. Majority of 

research focus on the algorithmic models and report simulation results of defect predictors 

that are trained on a project and tested on a reserved portion of the same project, i.e., 

retrospective analyses, or the application of defect predictors to the newer versions of the 

same project in terms of longitudinal case studies [43,41]. These attempts for defect 

prediction modelling assume the availability of local project data (i.e., within project 

predictors). In other words, building data mining models requires a project to have a 

historical data repository, where project metrics and defect information from past are 

stored. However, this is rarely the case in reality. 

To address this issue, recently a branch of defect prediction research emerged that 

makes use of transfer learning and deals with cross-project predictors, where the goal is to 

learn a predictor model from a project and then to apply the model to another project [44]. 

Cross-project defect prediction is a challenge with important practical aspects. One such 

practical aspect is that cross-project predictions may enable practitioners to use the 
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available open-source project data for defect prediction [45], without making big changes 

in or investments to their existing processes for data collection, and process improvement 

activities. Existing studies provide empirical evidence over a wide range of software 

systems, advocating that cross-project defect predictors can be effective. Considering that 

the idea behind cross-project prediction is to make estimates of faulty locations in projects 

with no history, it is a viable stop-gap choice [46] in data starving project environments. 

 

Data Collection 

 

Software engineering experts also play an important role in creating and providing data 

that can be used by data mining approaches. They have useful knowledge regarding data 

quality, which can be provided for data mining experts to decide how to best process the 

data before applying data mining approaches. As explained by Bener et al., [47], data 

mining professionals can decide whether or not to include certain parts of the data in the 

training set based on software engineering experts’ knowledge. Given that poor data 

quality is likely to result in poor predictive models, software engineering experts may also 

have the key knowledge to identify the reasons for possibly poorly performing predictive 

models. 

 

7. Conclusion 

In this paper, the state of the art methodologies to deal with software defect prediction 

in the context of class imbalance problem has been reviewed. In recent years, several 

methodologies integrating solutions to enhance the induced classifiers in the presence of 

class imbalance by the usage of evolutionary techniques have been presented. 
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