
International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018), pp.21-32

http://dx.doi.org/10.21742/ijseia.2018.12.1.02

ISSN: 1738-9984 IJSEIA

Copyright ⓒ 2018 SERSC

Review: Software Defect Prediction for Class Imbalance Datasets
1

K. Nitalakshewara Rao and Ch. Satyananda Reddy

Andhra University, Visakhapatnam

nitla_kolukula@yahoo.co.in, satyanandau@yahoo.com

Abstract

In today’s growing world, the quality of software developed is very essential for

critical and huge applicable areas. The undetected bug in the software leads to an

avalanche breakdown of services in the total network. On the other hand, the complete

defect analysis in each and every module is again a huge task with lot of man-hours. A

trade of between these two is established by following Software Defect Prediction (SDP)

techniques or algorithms. Software defect Prediction is the process of finding the defects

in the specific modules of the software. This paper aims to review the Software Defect

Predicting (SDP) techniques and algorithms proposed in the literature to alleviate in the

area of class imbalance software defect.

Keywords: software defects analysis, classification, decision tree, class imbalance

learning, Software Defect Prediction (SDP)

1. Introduction

In Machine Learning community, and in Data Mining works, Classification has its own

importance. Classification is an important part and the research application field in the

data mining [1]. With ever-growing volumes of operational data, many organizations have

started to apply data-mining techniques to mine their data for novel, valuable information

that can be used to support their decision making [2]. Decision tree learning is one of the

most widely used and practical methods for inductive inference [3].

Software Defect Prediction:

A learning algorithm in software testing which aims to locate and analyze which part

of software is more likely to contain defects is known as software defect predicting (SDP)

algorithm. When the project budget is limited or the whole software system is too large to

be tested completely, a good defect classifier can guide software engineers to focus the

testing on defect-prone parts of software.

SDP data feature: collected training data contains much more non-defective modules

(majority) than defective ones (minority), as shown in the Table 1. The rare defective

examples are more costly and important. Class imbalanced distribution is harmful for

classification performance, especially the minority class. Existing methods to tackle class

imbalance in SDP problems are under sampling non-defective examples [4-6], over

sampling defective examples [7-8], cost-sensitive: setting a higher misclassification cost

for the defect class [9-10].

They were compared to the methods without applying any class imbalance techniques,

and showed usefulness. However, the following issues have not been answered:

1. In which aspect and to what extent class imbalance learning can benefit SDP

problems? (e. g., more defects are detected or fewer false alarms?).

Received (May 31, 2017), Review Result (July 2, 2017), Accepted (July 7, 2017)

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

22 Copyright ⓒ 2018 SERSC

2. Which class imbalance learning methods are more effective? Such information

would help us to understand the potential of class imbalance learning methods in

SDP and develop better solutions.

Software Engineering Datasets:

The software engineering datasets which are publicly available for software defect

prediction analysis are given below in Table 1. The Table 1 contains S.no, System,

Features, Total number of modules (examples) present in the software engineering

project, percentage of defective modules and the imbalance ratio of the dataset, which can

give the idea of the level of class imbalance in the dataset.

Table 1. Details of the PROMISE Data Sets of Software Engineering Projects
__

S.no. System Features #Module %defective IR

__

1. ar1 30 121 10.89 12.44

2. ar3 30 63 5.04 6.87

3. ar4 30 107 21.4 4.35

4. ar5 30 36 2.28 3.5

5. ar6 30 101 15.15 5.73

6. CM1 38 327 137.34 6.78

7. CM11 38 344 144.48 7.19

8. DATATRIEVE 9 130 14.3 10.81

9. JM1 22 7782 130115 3.65

10. JM11 22 9593 168740 4.45

11. KC2 22 522 558.5 3.89

12. KC3 40 194 69.84 4.38

13. KC31 40 200 79.2 4.55

14. MC1 39 1988 914.48 42.21

15. MC2 40 125 55 1.84

16. MC11 39 9277 6308 135.4

17. Mozilla4 6 15545 794038 2.04

18 MW1 38 1253 68.31 8.37

19. PC1 38 705 430.05 10.55

20. PC2 37 745 119.2 45.56

21. PC3 38 1077 1443.18 7.03

22. pc4 38 1458 2595.24 7.19

23. pc5 38 1054 1402.2 7.01

__

Experimental Validation Framework:

The Experimental validation methodology used for training and testing the classifier is

10 fold cross validation. The main steps in the 10 fold cross validation is shown in the

below Figure 1.

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

Copyright ⓒ 2018 SERSC 23

Figure 1. The Experimental Framework used for 10 fold Cross Validation for
Training and Testing the Classifier

2. Data Mining

Data Mining is the analysis of (often large) observational data sets to find unsuspected

relationships and to summarize the data in novel ways that are both understandable and

useful to the owner [11]. There are many different data mining functionalities. A brief

definition of each of these functionalities is now presented. The definitions are directly

collated from [12]. Data characterization is the summarization of the general

characteristics or features of a target class of data.

Association analysis is the discovery of association rules showing attribute value

conditions that occur frequently together in a given set of data. Classification is an

important application area for data mining. Classification is the process of finding a set of

models (or functions) that describe and distinguish data classes or concepts, for the

purpose of being able to use the model to predict the class of objects whose class label is

unknown. The derived model can be represented in various forms, such as classification

rules, decision trees, mathematical formulae, or neural networks. Unlike classification and

prediction, which analyze class-labeled data objects, clustering analyzes data objects

without consulting a known class label.

Outlier Analysis attempts to find outliers or anomalies in data. A detailed discussion of

these various functionalities can be found in [12]. Even an overview of the representative

algorithms developed for knowledge discovery is beyond the scope of this paper. The

interested person is directed to the many books which amply cover this in detail [11],

[12].

The Classification Task

Learning how to classify objects to one of a pre-specified set of categories or classes is

a characteristic of intelligence that has been of keen interest to researchers in psychology

and computer science. Identifying the common ―core characteristics of a set of objects

that are representative of their class is of enormous use in focusing the attention of a

person or computer program. For example, to determine whether an animal is a zebra,

people know to look for stripes rather than examine its tail or ears. Thus, stripes figure

strongly in our concept (generalization) of zebras. Of course stripes alone are not

sufficient to form a class description for zebras as tigers have them also, but they are

certainly one of the important characteristics. The ability to perform classification and to

be able to learn to classify gives people and computer programs the power to make

decisions. The efficacy of these decisions is affected by performance on the classification

task.

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

24 Copyright ⓒ 2018 SERSC

In machine learning, the classification task described above is commonly referred to as

supervised learning. In supervised learning there is a specified set of classes, and example

objects are labeled with the appropriate class (using the example above, the program is

told what a zebra is and what is not). The goal is to generalize (form class descriptions)

from the training objects that will enable novel objects to be identified as belonging to one

of the classes. In contrast to supervise learning is unsupervised learning. In this case the

program is not told which objects are zebras. Often the goal in unsupervised learning is to

decide which objects should be grouped together—in other words, the learner forms the

classes itself. Of course, the success of classification learning is heavily dependent on the

quality of the data provided for training—a learner has only the input to learn from. If the

data is inadequate or irrelevant then the concept descriptions will reflect this and

misclassification will result when they are applied to new data. The popular approach of

classification examples are C4.5 [13], CART [14], REP [15]and Random Forest [16].

3. Problem of Imbalanced Datasets

A dataset is class imbalanced if the classification categories are not approximately

equally represented. The level of imbalance (ratio of size of the majority class to minority

class) can be as huge as 1:99. It is noteworthy that class imbalance is emerging as an

important issue in designing classifiers. Furthermore, the class with the lowest number of

instances is usually the class of interest from the point of view of the learning task.

4. Data Balancing Techniques

Whenever a class in a classification task is underrepresented (i.e., has a lower prior

probability) compared to other classes, we consider the data as imbalanced. The main

problem in imbalanced data is that the majority classes that are represented by large

numbers of patterns rule the classifier decision boundaries at the expense of the minority

classes that are represented by small numbers of patterns. This leads to high and low

accuracies in classifying the majority and minority classes, respectively, which do not

necessarily reflect the true difficulty in classifying these classes. Most common solutions

to this problem balance the number of patterns in the minority or majority classes.

A general issue encountered in data mining is dealing with imbalance datasets, in

which one class is predominantly outnumbers the other class. This issue results in high

accuracy for the instances of majority class i.e. instances belonging to the predominant

class and less accuracy for the instances of minority class. Therefore, when dealing with

class imbalance datasets a specific strategy has to be implemented for efficient knowledge

discovery from the datasets. There are different type of approaches exists in the literature

to handle the problem of class imbalance nature, to name a few are oversampling, under

sampling, subset approaches, cost sensitive learning, algorithm level implementations and

hybrid techniques which combine more than one approaches.

In oversampling, the instances in the minority subset are oversampled by following

different strategies. In under sampling, the instances in the majority subset are reduced by

several techniques. In subset approaches, the dataset is split into different subsets to

reduce the imbalance nature. In cost sensitive learning, the instances are assigned with

cost values and the reshuffling of the dataset is performed by considering the cost values.

In algorithmic level approaches, the base algorithm applied to the class imbalance data is

modified to suit with the imbalance data learning. In hybrid level implementation, more

than one above said approaches are applied to solve the problem of class imbalance

learning. Table 2 presents the summary of the strategies in literature.

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

Copyright ⓒ 2018 SERSC 25

Table 2. Balancing Strategies Proposed in Literature

==

S.No Algorithm Advantages Disadvantages

==

1. AdaBoost.NC[17] Improve prediction accuracy of minority Ignore overall performance of

 classifier

__

2. RUSBoost [18] Simple, faster and less complex than Unable to solve Multiclass

SMOTE Boost imbalance algorithm problem

__

3. Infinitely imbalanced Mostly used for binary classification Performance is depends on

 logistic regression [19] number of outlier in data.

__

4. Linear Proximal Handle dynamic class imbalance No consideration for distribution of

 support vector problem sample

 machines [20]

__

5. Boosting SVM [21] Improved the performance of Ignore imbalance class distribution.

SVM classifier for prediction minority

 sample

==

5. Evaluation Criteria’s for Class Imbalance Learning

5.1. Evaluation Criteria

To assess the classification results we count the number of true positive (TP), true

negative (TN), false positive (FP) (actually negative, but classified as positive) and false

negative (FN) (actually positive, but classified as negative) examples. It is now well

known that error rate is not an appropriate evaluation criterion when there isclass

imbalance or unequal costs. In this paper, we use AUC, Precision, F-measure, TP Rate

and TN Rate as performance evaluation measures.

Let us define a few well known and widely used measures for C4.5 [14] as the baseline

classifier with the most popular software defect datasets. Apart from these simple metrics,

it is possible to encounter several more complex evaluation measures that have been used

in different practical domains. One of the most popular techniques for the evaluation of

classifiers in imbalanced problems is the Receiver Operating Characteristic (ROC) curve,

which is a tool for visualizing, organizing and selecting classifiers based on their tradeoffs

between benefits (true positives) and costs (false positives).

The most commonly used empirical measure; accuracy does not distinguish between

the numbers of correct labels of different classes, which in the framework of imbalanced

problems may lead to erroneous conclusions. For example, a classifier that obtains an

accuracy of 90% in a dataset with a degree of imbalance 9:1, might not be accurate if it

does not cover correctly any minority class instance.

Because of this, instead of using accuracy, more correct metrics are considered. A

quantitative representation of a ROC curve is the area under it, which is known as AUC.

When only one run is available from a classifier, the AUC can be computed as the

arithmetic mean (macro-average) of TP rate and TN rate:

The Area under Curve (AUC) measure is computed by,

FNFPFNTP

TNTP
ACC






2

1 RATERATE FPTP
AUC




International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

26 Copyright ⓒ 2018 SERSC

Or

On the other hand, in several problems we are especially interested in obtaining high

performance on only one class. For example, in the diagnosis of a rare disease, one of the

most important things is to know how reliable a positive diagnosis is. For such problems,

the precision (or purity) metric is often adopted, which can be defined as the percentage

of examples that are correctly labeled as positive:

The Precision measure is computed by,

   FPTP

TP
ecision


Pr

The F-measure Value is computed by,

To deal with class imbalance, sensitivity (or recall) and specificity have usually been

adopted to monitor the classification performance on each class separately. Note that

sensitivity (also called true positive rate, TP rate) is the percentage of positive examples

that are correctly classified, while specificity (also referred to as true negative rate, TN

rate) is defined as the proportion of negative examples that are correctly classified:

The True Positive Rate measure is computed by,

   FNTP

TP
veRateTruePositi




The True Negative Rate measure is computed by,

   FPTN

TN
veRateTrueNegati




6. Recent Advances on Class Imbalance Learning: Software Defect

Prediction

Currently, the trends of research in software defect analysis with class imbalance

learning methods are presented in this section. The recent research directions for software

defect analysis are as follows:

Yu Song et al., [22] have applied principal component analysis (PCA) to analyze the

factors which lead to defects in software projects, and determine the important factors to

improve the developing process. Muhsien M. Yazid et al., [23] have developed an

approach involving coercivity versus the nucleus Volume for identified defect regions

using Raman spectroscopy as an oxide in character rather than metallic for magnetic force

microscopy (MFM) to investigate the domain structure of sintered Nd–Fe–B magnet in a

thermally demagnetized state. Yan Xiaobo et al., [24] have studied the fault propagation

from the perspective of data signal and control signal. They have constructed signal-

component fault propagation model based on signal component graph for embedded

software.

2

RATERATE TNTP
AUC




callecision

callecision
measureF

RePr

RePr2






International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

Copyright ⓒ 2018 SERSC 27

Chakkrit Tantithamthavorn et al., [25] have investigated the bias and variance of model

validation techniques in the domain of defect prediction using single repetition holdout

validation and out-of-sample bootstrap. After empirical experimental validation they have

recommend that future defect prediction studies avoid single-repetition holdout

validation, and instead, use out-of-sample bootstrap validation. Feng Zhang et al., [26]

have investigated how different aggregation schemes impact defect prediction models in

software defect analysis. Patrick Rempel et al., [27] have studied the effect on the four

main requirements implementation supporting activities that utilize traceability on

expected defect rate in the developed software.

Raymond A. Paul et al., [28] have investigated on the Orthogonal Defect Classification

(ODC) method, which uses data gathered from several projects to track the reliability of a

new program. Combining ODC with root-cause analysis can be useful in many

applications where it is important to know the reliability of a program for a specific type

of a fault. Ramanath Subramanyam et al., [29] have collected evidence supporting the

role of OO design complexity metrics, specifically a subset of the Chidamber and

Kemerer (CK) suite, in determining software defects.

Marco D Ambros et al., [30] have proposed an approach which focuses on historical

dependencies and defect information to learn about a software system and detect potential

problems in the source code. Zude Li et al., [31] have proposed an empirical study of six

releases of a large legacy software system (of approx. size 20 million physical lines of

code) to analyze PMCDs with respect to: (1) the complexity of fixing such defects and (2)

the persistence of defect-prone components across phases and releases. They have given

the overall hypothesis that PMCDs inflict a greater negative impact than do other defects

on defect correction efficacy.

Chen Qixiang et al., [32] have discussed the role defect analysis in the software testing,

defect data collection and the specific methods of defect data. Marıa Perez-Ortiz et al.,

[33] have developed a specific ordinal over-sampling method which uses ordinal

information by approaching over-sampling from a graph-based perspective for improve

the performance of machine learning classifiers. Xiao-Yuan Jing et al., [34] have

provided effective solutions for both within-project and cross-project class imbalance

problems using Subclass Discriminant Analysis (SDA) learning method using features

with more powerful classification ability from original metrics.

Figure 2. Number of Paper Submissions to the Working Conference on
Mining Software Repositories since its First Chapter in 2004 until its most

Recent Chapter in 2015

The Working Conference on Mining Software Repositories (MSR) has experienced an

increase in the number of paper submissions since its first chapter in 2004 (see Figure 2)

[3].

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

28 Copyright ⓒ 2018 SERSC

Software Defect (bug) Prediction

The main techniques which is used in the software development life cycle in order to

reduce the amount of defects:

 Defect prevention takes aim to reduce the number of defects introduce while

producing the software in the software development life cycle. This is done

directly in any software engineering activity.

 Defect removal is to detect defects by software verification or software

inspection. The main goal is to eliminate introduced defects. Strategies to achieve

this may be dynamic analysis, or formal inspections of code.

 Defect tolerance is to provide continuous software service which satisfies given

requirements despite a defect having occurred in the software.

 Defect forecasting is to estimate where new defects are likely to emerge in the

software.

In 2002 IEEE Metric Panel, a group of noted researchers have agreed that fixing

defects in a software product after being delivered to the customer is up to 100 times more

expensive than finding and fixing them during the requirements and design phases [36 -

37]. They have also argued that up to 50 % of effort is spent on avoidable work, 80 % of

which comes from a small number of defects (i.e., 20%) in the system. The bottom-line is

that software testing is a costly challenge and practitioners seek the knowledge of where

the defects might exist before they start testing. In this respect, defect predictors are data

mining applications to help prioritising the list of software modules to be tested, to

allocate limited testing resources effectively and to detect as many defects as possible

with minimum effort.

Software defect prediction has been a popular area of software quality research that has

drawn the attention of significant organisations including, but not limited to, Microsoft,

NASA and AT&T [38 - 40]. Basically, software defect prediction models require a set of

features to characterize the problem and to give estimation on the defect proneness of the

system. In software quality, these attributes are referred to as software metrics and

numerous previous studies demonstrated defect predictors learned from product [38] (e.g.,

size, complexity) and process [40 - 41] (e.g., code churn) metrics. Once relevant data are

available, a variety of data mining algorithms can be applied to learn defect predictors,

please see Hall et al., for a systematic literature review [42].

Most defect prediction studies formulate the problem as a supervised learning problem,

where the outcomes of a defect predictor model depend on historical data used for

training. They can be either labels indicating that a software module is or is not likely to

contain defects, or the predictive number of defects expected to be present in the software

module, or a ranking of software modules according to their defect proneness. Majority of

research focus on the algorithmic models and report simulation results of defect predictors

that are trained on a project and tested on a reserved portion of the same project, i.e.,

retrospective analyses, or the application of defect predictors to the newer versions of the

same project in terms of longitudinal case studies [43,41]. These attempts for defect

prediction modelling assume the availability of local project data (i.e., within project

predictors). In other words, building data mining models requires a project to have a

historical data repository, where project metrics and defect information from past are

stored. However, this is rarely the case in reality.

To address this issue, recently a branch of defect prediction research emerged that

makes use of transfer learning and deals with cross-project predictors, where the goal is to

learn a predictor model from a project and then to apply the model to another project [44].

Cross-project defect prediction is a challenge with important practical aspects. One such

practical aspect is that cross-project predictions may enable practitioners to use the

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

Copyright ⓒ 2018 SERSC 29

available open-source project data for defect prediction [45], without making big changes

in or investments to their existing processes for data collection, and process improvement

activities. Existing studies provide empirical evidence over a wide range of software

systems, advocating that cross-project defect predictors can be effective. Considering that

the idea behind cross-project prediction is to make estimates of faulty locations in projects

with no history, it is a viable stop-gap choice [46] in data starving project environments.

Data Collection

Software engineering experts also play an important role in creating and providing data

that can be used by data mining approaches. They have useful knowledge regarding data

quality, which can be provided for data mining experts to decide how to best process the

data before applying data mining approaches. As explained by Bener et al., [47], data

mining professionals can decide whether or not to include certain parts of the data in the

training set based on software engineering experts’ knowledge. Given that poor data

quality is likely to result in poor predictive models, software engineering experts may also

have the key knowledge to identify the reasons for possibly poorly performing predictive

models.

7. Conclusion

In this paper, the state of the art methodologies to deal with software defect prediction

in the context of class imbalance problem has been reviewed. In recent years, several

methodologies integrating solutions to enhance the induced classifiers in the presence of

class imbalance by the usage of evolutionary techniques have been presented.

Acknowledgments

We would like to thank our anonymous reviewers for their insightful detailed

comments and suggestions on the paper, as these comments led us to an improvement of

the work.

References

[1] J. Hu, J. Deng and M. Sui, “A New Approach for Decision Tree Based on Principal Component Analysis”,

Proceedings of Conference on Computational Intelligence and Software Engineering, (2009), pp. 1-4.

[2] H. Zhao and A. P. Sinha, “An Efficient Algorithm for Generating Generalized Decision Forests”, IEEE

Transactions on Systems, Man, and Cybernetics -Part A: Systems and Humans, vol. 35, no. 5, (2005)

September, pp. 287-299.

[3] M. Mitchell, “Machine Learning”, McGraw Hill, New York, (1997).

[4] T. Menzies, J. Greenwald and A. Frank, “Data mining static code attributes to learn defect predictors”,

IEEE Transactions on Software Engineering, vol. 33, no. 1, (2007), pp. 2-13.

[5] A. A. Shanab, T. M. Khoshgoftaar, R. Wald and J. V. Hulse, “Comparison of approaches to alleviate

problems with high-dimensional and class imbalanced data”, In IEEE International Conference on

Information Reuse and Integration (IRI), pp. 234-239.

[6] K. Gao, T. Khoshgoftaar and A. Napolitano, “A hybrid approach to coping with high dimensionality and

class imbalance for software defect prediction”, In 11th International Conference on Machine Learning

and Applications (ICMLA), (2012), pp. 281-288.

[7] L. Pelayo and S. Dick, “Evaluating stratification alternatives to improve software defect prediction”,

IEEE Transactions on Reliability, vol. 61, no. 2, (2012), pp. 516-525.

[8] R. Shatnawi, “Improving software fault-prediction for imbalanced data”, In International Conference on

Innovations in Information Technology (IIT), (2012), pp. 54-59.

[9] J. Zheng, “Cost-sensitive boosting neural networks for software defect prediction”, Expert Systems with

Applications, vol. 37, no. 6, (2010), pp. 4537-4543.

[10] T. M. Khoshgoftaar, E. Geleyn, L. Nguyen and L. Bullard, “Cost-sensitive boosting in software quality

modelling”, In Proceedings of 7th IEEE International Symposium on High Assurance Systems

Engineering, pp. 51-60.

[11] D. Hand, H. Mannila and P. Smyth, “Principles of Data Mining”, MIT Press, (2001) August.

[12] J. Han and M. Kamber, “Data Mining: Concepts and Techniques”, Morgan Kaufmann, (2000) April.

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

30 Copyright ⓒ 2018 SERSC

[13] L. Breiman, J. Friedman, R. Olshen and C. Stone, “Classification and Regression Trees”, Belmont, CA:

Wadsworth, (1984).

[14] J. Quinlan, “C4.5 Programs for Machine Learning”, San Mateo, CA: Morgan Kaufmann, (1993).

[15] J. Quinlan, “Induction of decision trees”, Machine Learning, vol. 1, (1986), pp. 81C106.

[16] L. Breiman, “Random Forests”, Machine Learning, vol. 45, no. 1, (2001), pp. 5-32.

[17] S. Wang and X. Yao, “Multiclass ImbalanceProblems: Analysis and Potential Solutions”, IEEE

Transactions On Systems, Man, And Cybernetics -Part B: Cybernetics, vol. 42, no. 4, (2012) August.

[18] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse and A. Napolitano, “RUSBoost: A Hybrid Approach to

Alleviating Class Imbalance”, IEEE Transactions On Systems, Man, And Cybernetics -Part A: Systems

and Humans, vol. 40, no. 1, (2010) January.

[19] R. Batuwita and V. Palade, “Fuzzy Support Vector Machines for Class Imbalance Learning”, IEEE

Transactions on Fuzzy Systems, vol. 18, no. 3, (2010) June.

[20] L. Zhu, S. Pang, G. Chen and A. Sarrafzadeh, “Class Imbalance Robust Incremental LPSVM for Data

Streams Learning”, WCCI 2012 IEEE World Congress on Computational Intelligence, Australia, (2012)

June 10-15.

[21] B. X. Wang and N. Japkowicz, “BoostingSupport Vector Machines for Imbalanced Data Sets”,

Proceedings of the 20th International Conference on Machine Learning-2009.

[22] Y. Song and X. Wang, “Research on Application of Software Defect Analysis based on PCA”, 3rd

International Conference on Advanced Computer Theory and Engineering (ICACTE), (2010).

[23] M. M. Yazid, S. H. Olsen and G. J. Atkinson, “MFM Study of a Sintered Nd–Fe–B Magnet: Analyzing

Domain Structure and Measuring Defect Size in 3-D View”, IEEE Transactions on Magnetics, vol. 52,

no. 6, (2016) June.

[24] Y. Xiaobo, W. Yichen, L. Bin and L. Jianxing, “A Fault Propagation Model for Embedded Software

system”, IEEE, (2016).

[25] C. Tantithamthavorn, S. McIntosh, A. E. Hassan and K. Matsumoto, “An Empirical Comparison of

Model Validation Techniques for Defect Prediction Models”, IEEE Transactions On Software

Engineering.

[26] F. Zhang, A. E. Hassan, S. McIntosh and Y. Zou, “The Use of Summation to Aggregate Software

Metrics Hinders the Performance of Defect Prediction Models”, IEEE Transactions On Software

Engineering, vol. 43, no. 5, (2016), pp. 476-491.

[27] P. Rempel and P. Mader, “Preventing Defects: The Impact of Requirements Traceability Completeness

on Software Quality”, DOI 10.1109/TSE.2016.2622264, IEEE Transactions on Software Engineering.

[28] R. A. Paul, F. Bastani, L. Yen and V. U. B. Challagulla, “Defect-Based Reliability Analysis for Mission-

Critical Software”, (2000), IEEE.

[29] R. Subramanyam and M. S. Krishnan, “Empirical Analysis of CK Metricsfor Object-Oriented Design

Complexity: Implications for Software Defects”, IEEE Transactions On Software Engineering, vol. 29,

no. 4, (2003) April.

[30] M. D. Ambros, “Supporting Software Evolution Analysis with Historical Dependencies and Defect

Information”, IEEE, (2008).

[31] Z. Li, M. Gittens S. Shariyar Murtaza, N. H. Madhavji, A. V. Miranskyy, D. Godwin and E. Cialini,

“Analysis of Pervasive Multiple-Component Defects in a Large Software System”, IEEE, (2009).

[32] C. Qixiang, M. Minsheng and Z. Qian, “The analysis and research on defect results of software

localization testing”, IEEE, (2010).

[33] M. Perez-Ortiz, P. Antonio Gutierrez, C. Herv_as-Martınez and X. Yao, “Graph-Based Approaches for

Over-Sampling in the Context of Ordinal Regression”, IEEE Transactions On Knowledge and Data

Engineering, vol. 27, no. 5, (2015), May.

[34] X.-Y. Jing, F. Wu, X. Dong and B. Xu, “An Improved SDA based Defect Prediction Framework for

both Within-project and Cross project Class-imbalance Problems”, IEEE, (2016).

[35] L. L. Minku, E. Mendes and B. Turhan, “Data mining for software engineering and humans in the loop”,

Prog ArtifIntell, vol. 5, (2016), pp. 307-314, DOI 10.1007/s13748-016-0092-2.

[36] B. W. Boehm and V. R. Basili, “Software defect reduction top 10 list”, IEEE Comput., vol. 34, no. 1,

(2001), pp. 135-137.

[37] F. Shull, V. Basili, B. Boehm, A. W. Brown, P. Costa, M. Lindvall, D. Port, I. Rus, R. Tesoriero and M.

Zelkowitz, “What we have learned about fighting defects”, In: VIII International Symposium on

Software Metrics, IEEE Computer Society, Washigton, DC, (2002), pp. 249-258,

doi:10.1109/METRIC.2002.1011343.

[38] T. Menzies, J. Greenwald and A. Frank, “Data mining static codeattributes to learn defect predictors”,

IEEE Trans. Softw. Eng., vol. 33, no. 1, (2007), pp. 2-13.

[39] N. Nagappan and T. Ball, “Use of relative code churn measures topredict system defect density”,

Proceedings of the International Conference on Software Engineering, (2005), pp. 284–292,

doi:10.1145/1062455.1062514.

[40] T. J. HOstrand, E. J. Weyuker and R. M. Bell, “Automating algorithms for the identification of fault-

prone files”, D.S. Rosenblum, S.G. Elbaum (eds.) Proceedings of the International Symposium on

Software Testing and Analysis, ACM, (2007), pp. 219-227.

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

Copyright ⓒ 2018 SERSC 31

[41] E. J. Weyuker, T. J. Ostrand and R. M. Bell, “Do too many cooks spoil the broth? using the number of

developers to enhance defect prediction models”, Empirical Softw. Eng., vol. 13, no. 5, (2008), pp. 539-

559.

[42] T. Hall, S. Beecham, D. Bowes, D. Gray and S. Counsell, “Asystematicliterature review on fault

prediction performance in softwareengineering”, IEEE Trans. Softw. Eng., vol. 38, no. 6, (2012), pp.

1276-1304.

[43] A. Tosun, A. B. Bener, B. Turhan and T. Menzies, “Practical considerations in deploying statistical

methods for defect prediction: a case study within the turkish telecommunications industry”, Inform.

Softw. Technol., vol. 52, no. 11, (2010), pp. 1242-1257.

[44] L. C. Briand, W. L. Melo and J. Wst, “Assessing the applicability of fault-proneness models across

object-oriented software projects”, IEEE Trans. Softw. Eng., vol. 28, no. 7, (2002), pp. 706-720.

[45] T. Zimmermann, N. Nagappan, H. C. Gall, E. Giger and B. Murphy, “Cross-project defect prediction: a

large scale experiment on data vs. domain vs. process”, In: van Vliet, H., Issarny, V. (eds.) Proceedings

of the the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering, ACM, (2009), pp. 91-100.

[46] B. Turhan, T. Menzies, A. Bener and J. Di Stefano, “On the relative value of cross-company and within-

company data for defect prediction”, Empirical Softw. Eng., vol. 14, no. 5, (2009), pp. 540-578.

[47] A. Bener, A. Misirli, B. Caglayan, E. Kocaguneli and G. Calikli, “The Art and Science of Analyzing

Software Data: Analysis Patterns, chap”, Morgan Kaufmann, Lessons Learned For Software Analytics

in Practice, (2015).

Authors

K. Nitalaksheswara Rao is a Ph.D candidate in Computer

Science and Systems Engineering at Andhra University. He

received his Master’s degree in Computer Science and

engineering in 2009. Now, he is an Assistant Professor in

department of Computer Science and engineering, Narasaraopet

engineering college, Guntur. His current research interest

includes Software Engineering, Data Engineering and Quality

Assurance.

Dr. Ch. Satyananda Reddy has a Ph.D in Computer Science

Engineering from the Faculty of Engineering, Andhra University,

INDIA and working now as Associate Professor in the Department of

Computer Science and Systems Engineering, College of Engineering,

Andhra University, Visakhapatnam.

Dr. Reddy is mainly interested in the fields of Software

Engineering i.e. Software Engineering, Software Project and Process

Management, Software Estimation, Software Metrics, Software

Project Scheduling, Software Quality Assurance, Human Computer

Interaction, Software Requirements Engineering, Software

Architecture, Software Testing, Data Engineering, Documents

Summarization etc. He is a reviewer for several International Journals

and Program Committee member for several International

Conferences. He is a Member of IAENG, IDES, ISTE, ACEEE. He

had published 40 papers in the field of Computer Science and

Software Engineering.

For full works visit:

http://www.andhrauniversity.edu.in/engg/csse/faculty.html

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

32 Copyright ⓒ 2018 SERSC

