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Abstract 

This research paper investigates the impact of various disturbance factors on 

manufacturing enterprise scheduling. Factors such as machine breakdowns, supply chain 

interruptions, and fluctuating customer demands can significantly disrupt production 

schedules and reduce operational efficiency. To address these issues, this study systematically 

describes and classifies disturbance factors based on their specific impacts and 

characteristics. Given the complex and often uncertain nature of these disturbances, a novel 

approach utilizing a fuzzy neural network is proposed to assess and mitigate their effects. 

This method aims to improve the accuracy and adaptability of scheduling decisions, thereby 

enhancing the resilience and efficiency of production processes. Through simulation 

experiments with real-world scenarios, the proposed approach's effectiveness is validated, 

demonstrating notable improvements in schedule reliability and overall operational 

performance. The findings underscore the potential of fuzzy neural networks in providing 

robust solutions for managing uncertainty in manufacturing scheduling, offering valuable 

insights for both practitioners and researchers in the field. 
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1. Introduction 

Manufacturing enterprises face numerous challenges in maintaining efficient and reliable 

production schedules due to various disturbance factors. These disturbances, including 

machine breakdowns, supply chain interruptions, and fluctuating customer demands, can 

significantly disrupt operations and lead to inefficiencies. Addressing these challenges 

requires a comprehensive understanding and effective management of disturbance factors to 

enhance production scheduling and overall operational performance. 

Recent research has extensively explored the identification and mitigation of disturbance 

factors in manufacturing systems. Shi et al. [1] employed probability theory and mathematical 

statistics to quantify disturbance levels, providing a foundation for systematic analysis. Shan 

[2] categorized disturbance factors into dominant and recessive classes based on their impact 

on the production system, highlighting the importance of tailored response strategies. 

Heidergott and Bernd [3] introduced a finite perturbation analysis method (CFPA) that 

incorporates customer feedback to establish a robust perturbation analysis model. Similarly, 

Abell et al. [4] leveraged simulation and a perturbation analysis (CSPA) algorithm to 
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implement perturbation analysis technology within an object-oriented production system 

framework. 

Despite these advancements, more research is still needed to focus on the degree of 

disturbance within the system and its direct impact on scheduling accuracy. Current studies 

have predominantly concentrated on identifying disturbance factors and proposing general 

solutions. However, a targeted approach to determine the specific degree of disturbance 

factors that influence production schedules is essential for developing resilient and adaptive 

scheduling methods. 

This study aims to bridge this gap by introducing a novel approach that utilizes a fuzzy 

neural network algorithm to evaluate and mitigate the effects of disturbance factors on 

manufacturing enterprise scheduling. First, we classify common disturbance factors into three 

categories: Type A, Type B, and Type C. We then focus on Type B disturbance factors, using 

the fuzzy neural network algorithm to assess their impact and optimize scheduling decisions. 

Finally, the proposed method's effectiveness is validated through simulation experiments, 

demonstrating significant improvements in schedule reliability and overall operational 

performance. 

 

2. Literature Review 

The study of disturbance factors in manufacturing enterprise scheduling has gained 

significant attention over recent years, driven by the need to enhance operational efficiency 

and reliability. This literature review examines key contributions to the field, focusing on the 

identification, classification, and mitigation of disturbance factors through various analytical 

and computational approaches. 

(1) Identification and Classification of Disturbance Factors 

Several scholars have contributed to the identification and classification of disturbance 

factors in manufacturing systems. Shi et al. [5] utilized probability theory and mathematical 

statistics to quantify disturbance levels, providing a framework for systematic analysis of 

disruptions. Shan [2] extended this work by categorizing disturbance factors into dominant 

and recessive classes based on their impact on production systems, which allowed for more 

tailored response strategies. This classification has been pivotal in understanding the nature 

and severity of various disturbance factors, guiding subsequent mitigation efforts. 

(2) Perturbation Analysis and Simulation 

Perturbation analysis has emerged as a critical tool for assessing and managing 

disturbances in manufacturing scheduling. Heidergott and Bernd [3] introduced a finite 

perturbation analysis (CFPA) method that incorporated customer feedback, establishing a 

robust model for evaluating the effects of disturbances on production schedules. Abell et al. 

[4] leveraged simulation and a perturbation analysis (CSPA) algorithm to implement 

perturbation analysis technology within an object-oriented production system framework, 

demonstrating the utility of simulation in predicting and mitigating disruptions. 

(3) Computational Approaches 

The application of computational approaches, particularly artificial intelligence and 

machine learning, has shown promise in addressing disturbance factors in manufacturing 

scheduling. Zhang et al. [6] explored the use of genetic algorithms to optimize scheduling 

under uncertain conditions, highlighting the adaptability of these algorithms to dynamic 

environments. Similarly, Lee et al. [7] proposed a reinforcement learning approach to real-

time scheduling, which improved responsiveness and efficiency in the face of disturbances. 
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(4) Fuzzy Neural Networks 

Fuzzy neural networks have been identified as a particularly effective tool for handling the 

complexity and uncertainty inherent in disturbance factors. Wang et al. [8] utilized fuzzy 

logic combined with neural networks to create adaptive scheduling systems that can learn and 

adjust to varying disturbance patterns. This approach has been shown to enhance the 

robustness and flexibility of production schedules, providing a significant advancement in the 

field. 

(5) Recent Advances and Gaps 

Despite these advancements, more research is still needed, particularly concerning the 

degree of disturbance within the system and its direct impact on scheduling accuracy. Current 

studies have predominantly focused on identifying disturbance factors and proposing general 

solutions, with less emphasis on targeted approaches to determine the specific influence of 

these factors on production schedules [8][9][10][11]. 

This study aims to address this gap by introducing a fuzzy neural network algorithm to 

evaluate and mitigate the effects of disturbance factors on manufacturing enterprise 

scheduling. By focusing on Type B disturbance factors, the research seeks to optimize 

scheduling decisions and enhance operational performance through a novel computational 

approach. 

The existing literature provides a strong foundation for understanding and addressing 

disturbance factors in manufacturing scheduling. However, the need for more targeted and 

adaptive solutions remains evident. This study contributes to the field by proposing a fuzzy 

neural network approach, validated through simulation, to improve scheduling reliability and 

efficiency in the face of disturbances. 

 

3. The judgment of fuzzy neural network based on fuzzy neural 
network 

According to the degree of the disturbance factor, the common disturbance in the 

manufacturing workshop is divided into A-type, B-type, and C-type disturbance factors. The 

A-type disturbance factor needs to be carried out during the overall revision of the original 

plan. The B-type disturbance factor, which has the characteristic of fuzziness, needs to be 

analyzed according to the actual situation. As for the C-type disturbance factor, we need to 

use the periodic type weight scheduling strategy to eliminate its impact on the production 

system. 

Because there are so many multiple fuzzy parameters in the B-type disturbance to 

influence the disturbance degree of the production system, at the same time, these fuzzy 

parameters and the output value of the degree of disturbance have complex nonlinear 

relations, it is difficult to establish a suitable function expression. In this paper, we propose a 

fuzzy neural network model [Figure 1] to evaluate the degree of disturbance of the B-type 

disturbance factor in the production system. 

We use the fuzzy neural network to dispose of the B-type disturbance factor, including the 

parameter model and the neural network training two modules. The parameters of the model 

are to deal with the original data of all kinds of parameters that affect the disturbance degree 

of the production system in the B model, obtain the corresponding membership degree, and 

the results as the input of the neural network are normalized to the range of [0, 1]; The neural 

network training module is a nonlinear mapping relationship between the input parameters 

and the degree of disturbance. 
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Figure 1. Fuzzy neural network model 

1) Parameter fuzzy quantization 

We define the disturbance degree of the B-type perturbation factor to the production 

system as δ, and the main parameters of the model are the following 3 types: 

Intensity of disturbance I: This parameter is fuzzy. Fuzzy subset T(I)={Is,Iw,Im,Ia,Ic}, 

Is,Iw,Im,Ia,Ic stand for respectively the Intensity of the disturbance factor is mild, weak, 

moderate, strong and serious in this Set. The evaluation basis is affected by the number of 

processing steps, which uses the relative number of process nr to assess. As shown in the 

formula nr = na / N. In this formula, N represents the number of the total number of 

processing operations in the scheduling optimization set, and na indicates that the number of 

processing steps affected by the optimization set is affected by the disturbance factors. 

Emergency degree of disturbance factors U: This parameter is also fuzzy, Fuzzy subset 

U(I)={Us,Uw,Um,Ua,Uc}. Us,Uw,Um,Ua, and Uc stand for, respectively, the level of the 

disturbance factor is mild, weak, moderate, strong, and serious. The decision is based on the 

relative priority of the working procedure, which is affected by the disturbance factor. As 

shown in the formula P =(∑
na P /n )/P. In this formula, P is the proportion of the highest 

priority in the process of the machining process, which is affected by the disturbance factor, 

na indicates that the total number of processing steps affected by the scheduling optimization 

set is affected by the disturbance factors. The Pi is the priority of the process operation in the 

scheduling optimization set, Pmax is the priority of the scheduling optimization set. The Pm is 

divided into [0,1], Us,Uw,Um,Ua,Uc are taken as the type R(x), and the corresponding 

membership degree is obtained. 

m i=1  i  a max m 

Cumulative Intensity of disturbance factors A: This parameter has the Aw, Am, Aa. The 3 

represents the fuzzy subset of the cumulative Intensity of the disturbance factor, Specific for 

T (A) ={Aw, Am, Aa}. Among them, Aw, Am, and Aa stand for, respectively, the cumulative 
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degree of the disturbance factor is low, moderate, and high, and it describes the cumulative 

number of processing steps that are not affected by the various disturbance factors. The 

parameters are evaluated by the relative amount of nar in the process of accumulation, As 

shown in the formula nar = naa / N. In the formula, naa indicates that the number of the total 

number of the total number of processing operations is not affected by the disturbance factors, 

and the naa is the total number of processing operations. N represents the total number of 

processing operations for the scheduling optimization set. The nar is divided into [0,1], Aw, 

Am, and Aa, which is taken as the type R(x) and gets the corresponding membership degree. 

2) Neural network 

Because the second part of the quantitative analysis of the disturbance factor is based on 

the fuzzy neural network part of the neural network, we choose the probabilistic neural 

network to analyze the B-type disturbance factor. As shown in [Figure 1], the probabilistic 

neural network consists of four layers, which are the input layer, hidden layer, layer, and 

output layer. We choose 3 main parameters as the input of the neural network. The 3 main 

parameters are Intensity of disturbance Ig, emergency degree of disturbance factors U, and 

cumulative Intensity of disturbance factors A. Setting the Pr, De, and Ig of these three kinds 

of B-type disturbance factors to trigger the rescheduling request as the output of the neural 

network, which Pr said that the immediate implementation of the request, De said that the 

delay in the rescheduling request, Ig can be ignored. At the same time, the output value is as 

follows: the acceptance of the rescheduling request is 1, and the acceptance of the 

rescheduling request is 0. 

 

4. Numerical example analysis and simulation 

In this paper, we use the Matlab2012b version of the proposed fuzzy neural network 

algorithm to simulate. As follows: at first, we can generate 6 kinds of B-type disturbance 

factors and then set up the corresponding data of 6 kinds of disturbance factors. After getting 

data generation, we calculate the membership degree of fuzzy sets as the input of the neural 

network, according to the method of the fuzzy parameter. At the same time, for the input 

data, the experts in the field of relevant production scheduling judge their response strategies 

based on previous experience. That is, Pr, De, and Ig are the 3 kinds of heavy scheduling 

requests, which will select one of the 3 as a neural network output. 

According to the above method, 150 cases are generated, 120 cases are randomly selected 

as training samples, and 30 cases are taken as test samples. [Table 1] is a training sample data. 
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Table 1. Partial training sample data 

Input data Expected output 

Type of B 

type 

disturbance 

factor 

Occurrence intensity Emergency degree Cumulative Intensity 

Pr De Ig 

The absolute 

number of 

affected 

processes 

Relative 

number of 

affected 

processes 

Affected 

highest 

priority 

processes. 

Affected 

process's 

average 

priority 

Affected the 

absolute 

cumulative 

number of 

processes 

Affected the 

absolute 

cumulative 

number of 

processes 

C1 18 0.05 5 2.7 0 0 1 0 0 

C1 20 0.06 4 3.0 12 0.05 0 1 0 

C2 22 0.12 4 2.1 8 0.04 0 1 0 

C2 20 0.17 4 2.9 17 0.05 1 0 0 

C3 10 0.09 5 4.3 0 0 1 0 0 

C3 18 0.13 4 3.2 6 0.07 0 1 0 

C4 14 0.09 4 2.7 0 0 0 1 0 

C4 30 0.38 4 3.2 11 0.05 1 0 0 

··· ··· ··· ··· ··· ··· ··· ··· ··· ··· 

Comparing the expected output and the actual output in [Table 2], we can get satisfactory 

results in the vast majority of cases when using the fuzzy neural network algorithm to solve 

the influence degree of B-type disturbance factor on the production system; that is to say, the 

validity of this method is verified. 

Table 2. Partial test sample data 

Input data 
Actual 

output 

Expected 

d output 

Type of 

B-type 

disturba

nce 

factor 

Occurrence intensity Emergency degree Cumulative Intensity 

 

 

P 

r 

 

 

D 

e 

 

 

I 

g 

 

 

P 

r 

 

 

D 

e 

 

 

I 

g 

The absolute 

number of 

affected 

processes 

The relative 

number of 

affected 

processes 

Affected 

highest 

priority 

process 

s 

Affected 

process's 

average 

priority 

Affected the 

absolute 

cumulative 

number of 

processes 

Affected the 

absolute 

cumulative 

number of 

processes 

C1 20 0.08 5 2.9 6 0.07 1 0 0 1 0 0 

C1 7 0.08 5 2.9 0 0 1 0 0 0 1 0 

C1 20 0.19 4 3.2 24 0.22 1 0 0 1 0 0 

C2 18 0.12 4 3.2 12 0.06 1 0 0 1 0 0 

C2 3 0.03 4 3.9 0 0 0 1 0 0 1 0 

C2 9 0.09 4 2.1 12 0.11 0 1 0 0 1 0 

C2 3 0.03 4 2.9 4 0.03 0 1 0 0 1 0 

C3 3 0.03 4 2.7 0 0 0 0 1 0 0 1 

C3 8 0.08 5 3.3 0 0 1 0 0 1 0 0 

C4 37 0.37 4 2.9 6 0.07 1 0 0 1 0 0 

C4 22 0.22 4 3.2 14 0.06 1 0 0 1 0 0 

C4 7 0.07 4 2.7 0 0 0 1 0 0 1 0 

••• ••• ••• ••• ••• ••• ••• • • • • • • 
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5. Conclusions 

This research has explored the significant impact of disturbance factors on manufacturing 

enterprise scheduling and proposed a novel approach using fuzzy neural networks to address 

these challenges. Disturbance factors such as machine breakdowns, supply chain 

interruptions, and fluctuating customer demands can severely disrupt production schedules 

and compromise operational efficiency. The study systematically classified these factors into 

three categories—Type A, Type B, and Type C—to facilitate targeted analysis and response. 

Our research focused particularly on Type B disturbance factors, leveraging a fuzzy neural 

network algorithm to evaluate their impact and optimize scheduling decisions. The results 

from simulation experiments, based on real-world scenarios, validate the effectiveness of this 

approach, demonstrating significant improvements in schedule reliability and overall 

operational performance. The fuzzy neural network's ability to handle complexity and 

uncertainty has proven to be a robust solution for enhancing the adaptability and resilience of 

manufacturing schedules. 

The findings underscore the potential of integrating advanced computational techniques, 

such as fuzzy neural networks, into manufacturing scheduling systems. This approach not 

only improves the accuracy and responsiveness of scheduling decisions but also contributes to 

the development of more resilient production processes capable of withstanding various 

disturbances. 

While this study has made substantial contributions to the field, there are opportunities for 

further research. Future studies could explore the integration of other machine learning 

algorithms with fuzzy logic to enhance the robustness of scheduling systems further. 

Additionally, expanding the scope to include a broader range of disturbance factors and their 

interactions would provide deeper insights into managing uncertainties in manufacturing. 

In conclusion, this research highlights the critical importance of addressing disturbance 

factors in manufacturing scheduling. It presents a promising methodology for practitioners 

and researchers aiming to improve operational efficiency and reliability. By continuing to 

develop and refine these techniques, the manufacturing industry can better navigate the 

complexities and uncertainties inherent in production environments. 
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