
International Journal of Reliable Information and Assurance 

Vol.7, No.2 (2019), pp.21-26 

http://dx.doi.org/10.21742/ijria.2019.7.2.04 

 

 

Print ISSN: 2288-8950, eISSN: 2207-5143 IJRIA 

Copyright ⓒ 2019GV Press 

Implementation of Low Cost Memory Subsystem for Low-end IoT 

Devices 
 

 

Jonghee M. Youn1 and Doosan Cho21 

1Computer Engineering, Yeungnam Univ., South Korea 
2Electrical & Electronic Engineering, Sunchon National Univ., South Korea 

1youn@yu.ac.kr, 2dscho@scnu.ac.kr 

Abstract 

The increasingly popular IoT devices and cloud computing devices are being developed in 

various models from high to low price, but the low-cost market is still growing more actively. 

In these devices, where internet communication is a key feature, the most expensive components 

are memory and screen panels. Currently, screen panels are limited in LCD and OLED 

technology, so the choice is small, but memory includes flash memory, hard disk, DRAM, SRAM, 

SDRAM, multi-bank memory, and on-chip memory. Therefore, each type is selected and 

configured according to requirements such as function, power consumption, performance, and 

cost. The choice of memory architecture available for low-cost IoT devices is quite limited, with 

a small configuration of SRAM and some flash memory or DRAM. In the case of hard real-time 

IoT devices, it is very difficult to meet the deadlines in such a memory structure, and developers 

apply various system optimizations to solve them. Normally, multibank DRAM is selected at 

the hardware design stage. Parallel access to as many bank memories as possible in the same 

space can significantly improve system performance. If the hardware is selected as multi-bank 

memory, there must be system software to support it. In other words, a compiler must be 

provided to generate program code for parallel memory access. This is because traditional 

compilers generate program code for sequential access. In this paper, we propose a parallel 

memory access program code generation method for multi-bank memory support of low-cost 

IoT devices. The proposed method solves the data placement problem for multi-bank memory 

and maximizes system performance by actively using multi-bank memory. 

 

Keywords: Energy consumption, IoT system, Heterogeneous memory system, Load/store 

data dependence graph, Compiler technique, System optimization 

 

1. Introduction 

To improve system performance, one of the most efficient hardware implementation is multi-

bank memory, because multiple data can be accessed simultaneously in the same time. 

However, to get the most benefit out of these hardware features, it needs to properly assign the 

data so that the data can be used at the same time and generate memory access instructions for 

using the data. Many commercial processors use multi-bank memory such as the Motorola 

DSP56000, Analog Devices ADSP2106x, and NEC µPD77016. They are supported by an 

optimizing compiler to assign data properly onto multiple memory banks. 

 

 
Article history:  

Received (July 13, 2019), Review Result (September 6, 2019), Accepted (October 29, 2019) 



Implementation of Low Cost Memory Subsystem for Low-end IoT Devices 

 

 

 

22 Jonghee M. Youn and Doosan Cho 

 

Figure 1. ALU configuration in DSP56000 (free scale semiconductor) 

[Figure 1] shows a diagram of the memory bank and data ALU of the DSP56000 

manufactured by Freescale Semiconductor. Two X memory banks and two Y memory banks 

are sending operands of data directly to the multiplier and to the accumulator. To process this 

process, the optimizing compiler must distribute data to be used at the same time onto the X 

bank and Y bank separately. The two operands would be used at the same instruction as its 

operands. If they are not separately assigned to X/Y banks, then, the multiplier should wait to 

complete the sending process from one single bank. This case yields the worst execution time 

and power consumption, since the long sending process consumes more time and power. 

Eliminating this inefficiency is the task of the compiler. Thus, compiler’s role is very important 

in the multi-bank memory. The problem is that the existing compiler does not configure the 

hardware structure like multi-bank memory to generate efficient data assignment and 

instruction code. Traditional compilers determine data placement in the order of alphabetical 

or variable declaration order, making it difficult to fully exploit the benefits of multibank 

memory.  

The proposed technique performs data placement optimization for various memory 

architectures composed of multiple memory banks. To explain this effectively, this study is 

organized as follows. The next section looks at the relevant research trends. We will look first 

at existing research and identify the need for our research. Section 3 describes the proposed 

technique in detail. Basically, our technique uses compiler analysis techniques, thus, it can be 

used as part of the compiler or post pass optimization of the compiler. We will examine the 

experimental results in section 4 and then finally make a conclusion. 

 

2. Related works 

The earliest work on the problems discussed in this paper was discussed by Powell, Lee and 

Newman [1]. After the scheduling and register allocation steps, their paper [1] states that the 

placement of local data variables to dual memory banks. It uses meta-assembly code what they 

defined. Data is alternately assigned to the X and Y banks according to the access order of the 

program code without special analysis. Saghir, Chow and Lee’s research discussed variable 

partitioning techniques for virtual VLIW DSP architectures [2][3]. These studies introduce two 

algorithms. Data partitioning and replication are the core of the algorithm. Data partitioning / 

replication is commonly used to improve performance by using locality in common memory 

systems. These techniques can be implemented in the data mapping part of the compiler to 



International Journal of Reliable Information and Assurance 

Vol.7, No.2 (2019), pp.21-26 

 

 

Copyright ©2019 GV Press  23 

improve existing techniques or back-end optimization to improve performance by rearranging 

the data mapping determined by the existing techniques. A study by Sudarsanam and Malik 

[4][5] introduces memory bank allocation and register allocation algorithms using graph 

labeling. In order to find the optimal solution, they adopted simulation annealing and presented 

reliable experimental results. 

In the paper by Leupers and Kotte [6], various search/combinations are attempted to find an 

optimizing solution with dry-run for the search space. By doing so, a solution can be determined 

after executing for the whole search space. This is only available when it is guaranteed that the 

space of the solution search/combination can be terminated in a finite time. A representative 

search method is integer linear programming.  

The most recent memory bank optimization study is [7][8][9]. Cho, Paek and Whalley [7] 

proposed an optimal data and register allocation algorithm for high performance architectures. 

It is difficult to use with existing techniques because it is developed with very complicated and 

sophisticated algorithm. The partitioning task uses heuristics to select the maximum spanning 

tree of the interference graph.  

Certain architectures support parallel load stores, Pande and Greenland [8] proposed a 

register allocation algorithm that provides sufficient support for these hardware resources. The 

first step is to use the PostPath Optimizer, which compiles once and binds the load/store of the 

generated code to the possible range. 

They apply a two-color graph coloring algorithm to propose a partitioned motion schedule 

graph. Zhuge, Xiao and Sha’s research [9] provides two algorithms. They are related to 

optimize data partitioning and code scheduling. The algorithms provide potential parallel data 

accesses that can practically occur in scheduling. The problem is formulated as a variable-

independent graph modified with the moving window used by removing some edges that cannot 

be scheduled in the same control stage. Greedy strategy is used to split the graph into several 

separate sets. 

Most of the previous studies used some sort of graph with different optimization methods. It 

is designed as a post-pass backend step that is applied mostly in assembly code. This has the 

advantage of being able to analyze all data accesses, but in general it is very difficult not to 

affect register allocation and scheduling. The approach we propose works with a high-level 

programming language. Information from sophisticated program analysis can find any possible 

data parallelism among data accesses. Data accesses are analyzed, and the dependence between 

data and usage instructions is analyzed at once, enabling global data optimal placement. For 

pointer variables that use aliases, data access analysis is not always possible, but as described 

in this conclusion, the results of the application are very effective. 

 

3. The proposed technique 

Definition 1. Load-Store Dependence Graph.  

This graph consists of a set of edge and node. Each node in the set N represents load-store 

instructions. Each edge in the edge set represents dependence relation between nodes. A weight 

on edges represents the number of coalesced nodes. 

The graph construction process is as the following. First, a data dependency graph is 

constructed. This uses the existing algorithm [10]. The data dependency graph constructed 

based on the target loop code is the starting point for constructing the load-store dependence 

graph that we proposed. With the data dependence graph, the beginning point is merging all 

arithmetic nodes of the graph to load-store nodes. The arithmetic nodes that depend on the load 

instruction are merged into the node corresponding to the load. At this point, the edge connected 



Implementation of Low Cost Memory Subsystem for Low-end IoT Devices 

 

 

 

24 Jonghee M. Youn and Doosan Cho 

to the other node is connected to the corresponding load node. Repeating this task completes 

the load/store only dependency graph. [Figure 2] illustrates the dependency graph building 

process. 

 

 

Figure 2. The building process of the load/store dependence graph  

 

Figure 3. An example of load/store dependence graph  

[Figure 2] shows the data dependency graph on the most left. The first two load instructions 

create the variable A B, and store the final calculation result through ADD, MULTIPLY, and 

DIVIDE operations. In the second picture of [Figure 2], the Add node is dependent on load A 

and load B. Therefore, it is coalesced with the two loads. At this point, edge is created by 

merging Add between two nodes. The weight 1 indicates that the coalesced node is merged by 

the two loads. Repeat this process to coalesce the Mult and Div nodes. Eventually, the weight 

of 3 creates between the two load nodes. This indicates that since the load coalesced three nodes, 

they must be executed simultaneously before the three operations. [Figure 3] shows the final 

load-store dependence graph. The Store node only stores variable B, so the edge is connected 

only to load B node. The proposed technique uses this load-store graph to determine data 

placement more effectively in multibank on-chip memory. 

Based on the load-store dependency graph, the proposed technique optimizes data to place 

on multiple memory banks. The goal of the technique is to minimize memory access execution 

time. To this end, we formulate this data allocation problem mapping into a simple node 

assignment problem.  



International Journal of Reliable Information and Assurance 

Vol.7, No.2 (2019), pp.21-26 

 

 

Copyright ©2019 GV Press  25 

PROBLEM: 

MINIMIZE_EXECUTION_TIME ( ASSIGNMENT ( LOAD_STORE_GRAPH(N) ) ) 

The proposed technique operates the assignment by level ordering traversal in the load store 

dependence graph. The nodes having edges are then allocated to different memory banks as 

long as there is space available. The reason for allocating nodes with edges to different memory 

banks is to achieve the goal of improving system performance by allowing them to be accessed 

concurrently. 

 

NODE ASSIGNMENT ALGORITHM 

G=Load_Store_Dependence_Graph 

PREV_BEST = 0 

WHILE( 1 ) 

  ITERATE(G) 

    VISIT( G(N) ) 

    BEST_SOLUTION = ASSIGNMENT (MAPPING(N, banks)) 

 STOP(NO_MORE_NODE(G)) 

IF ( BEST_SOLUTION >= PREV_BEST ) 

PREV_BEST = BEST_SOLUTION  

ELSE  

Return PREV_BEST 

Algorithm 1. The proposed node assignment technique 

[Algorithm 1] describes the algorithm for finding the solution to the problem defined 

PROBLEM. The first input to the algorithm is the load-store dependence graph. Algorithm 

visits all nodes in a leveling traversal manner. Each level is allocated to the memory bank in 

consideration of the edges of the nodes. If nodes have edges, assign them to different banks as 

much as they are needed at the same time, even if they are not in different banks. Record the 

determined bank mapping in BEST_SOLUTION. Repeat this process until there are no nodes 

in the graph. Current BEST_SOLUTION stores to PREV_BEST if the gain (execution time 

reduction) is greater compared to PREV_BEST. Again, calculate the solution with a different 

mapping than before, and update the result by comparing PREV_BEST with the gain. Repeat 

this process until there is no more the best solution to update PREV_BEST. 

 

4. Conclusion 

In this paper, we propose a compiler technique that solves data location optimization 

problems for various commercialized processor architectures with multiple memory banks. We 

designed the technique by converting the existing data allocation problem into a simple graph 

node allocation problem, unlike the existing techniques. The advantage of our proposed method 

is that we can plant our technology on various architecture platforms by redefining the problem 

of NP complete as a very simple graph node allocation problem. A simple problem definition 

can provide a range of choices to support a variety of applications. The problem is optimized 

by adding new variables to the user’s needs. The problem in this study is defined for loop code, 

so the problem itself is small. Therefore, it is possible to find the optimal solution using perfect 

search. As a result, optimal performance can be provided. In this study, experiments were 

conducted on small loop codes, but it is expected that it is possible to conduct experiments 



Implementation of Low Cost Memory Subsystem for Low-end IoT Devices 

 

 

 

26 Jonghee M. Youn and Doosan Cho 

using large benchmarks related to multimedia [11] or network communications [12] and to 

develop more generalized improved algorithms. 

 

Acknowledgements 

This work was supported by Basic Science Research Program through the National Research 

Foundation of Korea (NRF) funded by the Ministry of Education (NRF - 2018R1D1A1 

B07050054). 

 

References 

[1] D.B. Powell, E.A. Lee, and W.C. Newman, “Direct synthesis of optimized DSP assembly code from signal 

flow block diagrams,” In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal 

Processing (ASSP), vol.5, pp.553-556, (1992) DOI: 10.1109/ICASSP.1992.226560 

[2] M.A.R. Saghir, P. Chow, and C.G. Lee, “Automatic data partitioning for HLL DSP compilers,” In Proceedings 

of the 6th International Conference on Signal Processing Applications and Technology, pp.866-871, (1995) 

[3] M.A.R. Saghir, P. Chow, and C.G. Lee, “Exploiting dual data-memory banks in digital signal processor,” In 

ACM SIGOPS Operating Systems Review, Proceedings of the 7th International Conference on Architectural 

Support for Programming Languages and Operating Systems, vol.30, no.5, pp.234-243, (1996) DOI: 

10.1145/248208.237193 

[4] A. Sudarsanam and S. Malik, “Memory bank and register allocation in software synthesis for ASIPs,” In 

Proceedings of the IEEE/ACM International Conference on Computer Aided Design, pp.388-392, (1995) 

[5] A. Sudarsanam and S. Malik, “Simultaneous reference allocation in code generation for dual data memory bank 

ASIPs,” Journal of the ACM Transactions on Automation of Electronic Systems (TODAES), vol.5, pp.242-

264, (2000) 

[6] R. Leupers and D. Kotte, “Variable partitioning for dual memory bank DSPs,” In Proceedings of the IEEE 

International Conference on Acoustics, Speech, and Signal Processing (ASSP), vol.2, pp.1121-1124, (2001) 

DOI: 10.1109/ICASSP.2001.941118 

[7] J. Cho, Y. Paek, and D. Whalley, “Efficient register and memory assignment for non-orthogonal architectures 

via graph coloring and MST algorithm,” In Proceedings of the International Conference on the LCTES and 

SCOPES, Berlin, Germany, vol.37, no.7, pp.130-138, (2002) DOI: 10.1145/513829.513853 

[8] X. Zhuang, S. Pande, and J.S. Greenland, “A framework for parallelizing load/stores on embedded processors,” 

In: Proceedings of the International Conference on Parallel Architectures and Compilation Techniques (PACT), 

Virginia, (2002) DOI: 10.1109/PACT.2002.1106005 

[9] Q. Zhuge, B. Xiao, and E.H.-M. Sha, “Variable partitioning and scheduling of multiple memory architectures 

for DSP,” In Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS), 

(2002) 

[10] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren, “The program dependence graph and its use in 

optimization,” ACM Trans. Program. Lang. Syst., vol.9, no.3, pp.319-349, (1987) 

[11] Chunho Lee, M. Potkonjak and W. H. Mangione-Smith, “MediaBench: a tool for evaluating and synthesizing 

multimedia and communications systems,” Proceedings of 30th Annual International Symposium on 

Microarchitecture, Research Triangle Park, NC, USA, pp.330-335, (1997) DOI: 10.1109/MICRO.1997.645830 

[12] Poovey Jason, Conte Thomas, Levy Markus, and Gal-On Shay, “A benchmark characterization of the EEMBC 

benchmark suite,” Micro, IEEE, vol.29, no.5, pp.18-29, (2009) DOI: 10.1109/MM.2009.74 

 


