
International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014), pp.381-396

http://dx.doi.org/10.14257/ijmue.2014.9.9.38

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2014 SERSC

The K-Partition Flash Code with BIFC-based Sharing and some

Variants

Riz Rupert L. Ortiz and Proceso L. Fernandez, Jr.

Ateneo de Manila University

rizortiz@gmail.com, pfernandez@ateneo.edu

Abstract

Flash codes are used to handle decoding and encoding of digital information to flash

memory devices. The performance of a flash code is usually evaluated using the write

deficiency metric. This paper introduces the K-Partition Flash Code (KPFC) with BIFC-

based sharing and explores some of its variants KPFC is a coding scheme that involves a

sharing mechanism within partitions of a flash memory block. The technique was designed to

allow more cell writes to flash devices in order to improve its performance by lowering its

write deficiency. Computer simulations were conducted to estimate the average case

performances of the flash codes. Simulation results showed that its performance is generally

better than the flash codes in literature.

Keywords: block erasure, block-write, flash code, flash memory

1. Introduction

Flash memory is a non-volatile semi-conductor storage device. Flash memory has a wide

variety of applications nowadays. It has become increasingly important that it is even utilized

significantly in some embedded systems used by intelligent applications such as household

appliances, telecommunication devices and other high technology machinery. It has become a

dominant nonvolatile memory because it is cheap, fast, and reliable. Moreover, flash memory

can be electrically programmed and erased with relative ease [1].

Flash memory has a hierarchical structure organized into blocks, where a block can contain

thousands of memory cells. The memory cell is the smallest unit for performing read and

write operations to flash memory. Each cell, which has multiple possible states, can store

electric charges using some rules provided from a coding scheme that can also retrieve the

data from the values stored in the flash memory. This coding mechanism is referred to as

floating codes or commonly known now as flash codes [2, 9].

The process of adding a charge in a cell is called cell programming [4] which is typically

done through electron injection [7]. Using the encoding function from some coding scheme,

the level of charge of a cell can be increased. In multilevel flash memories, there can be two

possible problems that may occur when performing cell writes: errors when too many

electrons are added (overshoots) or errors when too few electrons are added (undershoot).

There is difficulty in lowering a charge to flash memories. Thus, overshoots are more of a

problem than undershoots [6].

Decreasing the charge of a cell is very costly and should be avoided as much as possible.

While it is easy to raise the level of charge in a cell, to lower it is difficult and time

consuming. This property of flash memory is referred to as write asymmetry [2]. In fact,

lowering a charge in a single cell only is not allowed. Such lowering of charges can only be

made through a block erasure, the process that erases the charges of all the cells within a

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

382 Copyright ⓒ 2014 SERSC

memory block. Unfortunately, flash memory is constrained by a limited number of erase

cycles. Currently, typical flash memory can only allow up to about 10
5

block erasures [2],

although there are already some flash devices that are capable of 10
6

block erasures [5]. The

block erasure process is slow and, after some repetitions, causes the memory chip to wear out.

Thus, block erasures significantly reduce the longevity, reliability and speed of flash

memories [7]. Continued block erasures will make memory blocks unreliable for storing data

and will eventually damage the flash memory when the block erasures exceed the allowed

number of erase cycles.

One way of extending the lifespan of flash memory is to improve the hardware technology

to allow for more block erasures. Another approach is to design flash codes that are efficient

so that more cell writes can be made to flash memories before calling a block erasure. The

focus of this study is to come up with efficient coding schemes that can increase the lifespan

of flash memories. Such coding schemes can delay the occurrence of block erasures and,

ultimately, prolong the lifespan of flash memory. The most salient point is to maximize the

number of write operations or bit updates and delay the occurrence of a block erasure.

2. Preliminaries

Flash memory is composed of a number of blocks. A block in particular is comprised of

thousand of cells, the exact number of which is denoted by n in this paper. The typical values

of n are between 2
18

 and 2
22

 [8]. In multilevel flash memories, each cell can be in one of q

levels from a finite set Aq = {0,1,…, q-1}. Thus, a block can be abstractly represented as

vector C = (c0, c1,…, cn-1), where ci  {0,1,…, q-1}. The parameter q ranges from 2 to 256

[8]. Values of every cell can be increased or decreased by injecting a charge through the

process called the Fowler-Nordheim tunneling mechanism or hot-electron injection

mechanism [7], where electrons are trapped and in return determine the threshold voltage of

the cell. The number of trapped electrons concentrates around q discrete levels that

correspond to the q cell states [2]. A cell with a charge of 0 is empty, while a cell with a

charge of q-1 is full. A cell that is neither empty nor full is said to be active.

The information vector encoded in a flash memory block, is a k-bit data D = (d0, d1, ...,

dk−1), where di {0,1} and k < n. A block using binary cells normally stores 64, 128, or 256

kilobytes of data [2, 3, 10].

The mechanism to store the k-bit data D to the block state vector C is managed by some

flash code F as implemented in the flash memory. Formally, the flash code F = (E, D) is a

coding scheme consisting of two main functions. The encoding function E (i,C) provides the

rules on writing a new state to the block given the index i of the data bit di that needs to be

updated and the current state C of the block. The decoding function D (C) interprets the

content C of the block into the corresponding k-bit data D [2].

Flash code operates on both the cell and the block levels. The metric normally used to

evaluate the performance of the flash code is its write deficiency. It is defined as

(1)

where n(q − 1) is the theoretical maximum number of cell writes allowed for a block of n

cells with q levels each, while t is the actual number of write operations that the flash code F

is able to perform before calling a block erasure [11]. Alternatively, the write deficiency ratio

to compare flash codes can be expressed as

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

Copyright ⓒ 2014 SERSC 383

 ̂

(2)

The range of possible values is [0,1], with ̂ as the worst performance and ̂ as

the ideal one.

3. Related Literature

Flash codes are recently attracting the attention of researchers, especially in the area of

computer science. More studies are coming out because of the possibilities that can be made

in developing and improving new and efficient coding schemes. This section provides

background on some flash codes in literature.

3.1 Index-less Indexed Flash Code and Layered Index-less Indexed Flash Code

The index-less Indexed Flash Code (ILIFC) and Layered Index-less Indexed Flash Code

(LILIFC) are two of the popular flash codes in literature. Both coding schemes operate on

sub-blocks called slices. A block of n cells is partitioned into equally sized slices with k cells

each. ILIFC and LILIFC offer an elegant scheme of storing both the bit index and bit value

from the active slices. As to performance, while both flash codes have the same worst case

write deficiency, LILIFC performs better than ILIFC in the average case. The asymptotic

worst case write deficiency of both flash codes is O(k
2
q). Refer to [8,11] for more detailed

discussions on how these two flash codes manage the decoding and encoding of data to flash

memory.

3.2 Bimodal Flash Code and 2-Split Bimodal Flash Code

The Bimodal Flash Code (BMFC) of Esling et al., uses two modes of encoding [12, 13].

Instead of having k cells per slice, the flash code reduced the slice size to k/2, effectively

lowering the write deficiency and improving its performance. Results of the study showed

that BMFC returned a better average case performance than ILIFC and LILIFC. A variant

called 2 Split BMFC (BMFC2) further reduced the size of slice to k/4, which also resulted to

a better average case performance than BMFC. The worst case write deficiency of BMFC and

BMFC2 is O(k
2
q + n/k). Both flash codes showed that performance can be improved by

utilizing a reduced size of slices.

3.3 Binary Indexed Flash Code and BIFC-RCM

Tan and Kaji introduced the Binary Indexed Flash Code (BIFC) [14]. Similar to BMFC,

the Binary Indexed Flash Code uses fewer cells for each slice. Specifically, the slice has a

size s = O(log k), where s is the smallest even number satisfying s ≥ ⌊1+log
2
(k+1)⌋. When k is

sufficiently large, results of the study revealed that BIFC has a better write deficiency than

ILIFC, LILIFC, BMFC and BMFC2 [12-14]. However, there is an overhead deficiency of s-2

for every slice, because of the implicit indexing. To mitigate this problem, another flash code

was proposed by Tan and Kaji to address this overhead issue. It is called the BIFC with

Resizable Cluster Method (BIFC-RCM) [15, 16]. BIFC-RCM uses the BIFC technique that

capitalizes on smaller slice size and incorporates a growing slice to mitigate the effect of the

overhead problem. The BIFC and BIFC-RCM have asymptotic worst case write deficiencies

of O(qk log k + n) and O(qk log k + rk log k log((n/k) log k)), respectively.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

384 Copyright ⓒ 2014 SERSC

3.4 Simple Segmentation Flash Code and the Phoenix Flash Code

In Simple Segmentation Flash Code (SSFC), a block is divided into equally-sized sub-

blocks, called segments. The block C = (c
0
, c

1,
..., c

n−1
) has exactly n/k segments. The ith

segment (0 ≤ i < ⌊n/k⌋) corresponds to the vector S
i = (c

ik
, c

ik+1
, ... , c

ik+k−1
). Within each

segment, the jth entry (0 ≤ j < k) is assigned to the jth bit. SSFC at its best case has a very

good performance when each of the k bits has uniform or equal frequencies for write

operations. On the other hand, Phoenix Flash Code (PFC) is a novel scheme that allows the

process of absorption and revival operations. Similar to SSFC, the erase block C = (c
0
, c

1,
...,

c
n−1

) has exactly ⌊n/k⌋ segments, where the jth element of the segment corresponds to the jth

bit. The idea of introducing absorption stems from the fact the SSFC has a very high write

deficiency in the worst case. SSFC has an asymptotic worst case write deficiency of O(nq)

[17,18], while PFC has O(k
2
q + n) [19].

4. Computer Simulation for Average Case Write Deficiency

This section describes the various procedures involved in the completion of this study.

Figure 1 illustrates how the study is organized and subsequently conducted. Basically, it

involves three phases:

1. Benchmarking of some Flash Codes in Literature - The first phase refers to the

implementation of some flash codes in literature to provide benchmark results

relative to their performance. Write deficiency ratios were returned by the computer

simulations and were later used for comparison. Flash codes with promising

performance were taken into consideration to gain some insights for the design and

development of the proposed flash codes.

2. Design and Development of the Proposed Flash Codes - After careful studies on the

strengths and weaknesses of some flash codes in literature, some key concepts were

integrated to the proposed flash codes. The developed flash codes were thoroughly

tested to ascertain the correctness of the implementation.

3. Performance Analysis - In this study, computer simulation was used to estimate the

average case performance of the flash codes. Computer simulations were

implemented in java (see Table 1 for the parameters used in the simulations).

Empirical results for the average case performances of the flash code were returned

by the simulations, which are set to run in 30 experiments with fixed parameters of

n=2048 and q=8. The experiments were performed for various k values from 4 to

n/2, in increments of 4.

Benchmarking of

some Flash Codes

in Literature

Design and

Development of the

Proposed Flash Codes

Performance Analysis

(Average Case Write

Deficiency)

Figure 1. The Methodology of the Study

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

Copyright ⓒ 2014 SERSC 385

Table 1. Parameters used in the Computer Simulations

Variable Values Description

n 2048 Size of the Block

k 4,8,12, …, 1024 Information Vector Length

q 8 Number of States

E 30 Number of Experiments

The computer simulation used two types of distributions to examine the performance of

the proposed flash codes. The following are the sample frequency distributions:

1. Uniform Frequency Distribution – Each of the k-bit data has an equal chance of being

selected. For instance, if the simulation uses 4-bit data, then each bit has a 1/k (25%)

probability of being selected for bit update. Consequently, all the bits have

approximately equal total number of bit writes at the point of block erasure,

2. Steady Dominated Distribution – In this type of distribution, a certain bit is given a

higher probability for bit update, i.e., that bit dominates the write operation in the

computer simulation. For simplicity, this study examines the performance of several

flash codes using 50% and 70% steady dominated distributions only. It simply means

that a bit is set to 0.5 or 0.7 probability for bit update (see Table 2 for a 4-bit data

illustration), while the remaining probability is distributed uniformly to the remaining

bits.

Table 2. Steady Dominated Distribution

4-bit Data 50% Dominated 70% Dominated

Bit 0 0.500 0.7

Bit 1 0.167 0.1

Bit 2 0.167 0.1

Bit 2 0.167 0.1

5. K-Partition Flash Code with BIFC-based Sharing and its Variants

This section describes the K-Partition Flash Code with BIFC-based Sharing and its

variants, namely KPFC-s, KPFC-r and KPFC-m. The performances of the flash code and its

variants are shown for both uniform and steady dominated distributions.

The basic K-Partition Flash Code (KPFC) partitions the block of n cells into k groups of

contiguous cells, with each partition having exactly ⌊n/k⌋ cells. The k partitions are mapped

to the k bits of data. When a bit update is performed on the ith bit, the level of charge of a cell

within the corresponding ith partition is increased.

For the purpose of illustration, a sample write sequence is shown in Figure 2. In this

example, the data vector D is (1,1,1,1,) after the fourth bit update; each of the partitions has

one charge added. Note that a block erasure only occurred when the partition for bit 0 is

already full and the current bit index to be updated is also 0 (refer to the 11
th
 bit update).

Using computer simulation, the average case performance of KPFC was estimated, and a

summary of the write deficiency across different k values is shown in Figure 3. Regardless of

the availability of other partitions to accommodate cell write, a block erasure is still inevitable

using this coding scheme since each of the k bits is only assigned to one and distinct partition.

With this scenario, an improvement to KPFC is proposed using some sharing mechanism.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

386 Copyright ⓒ 2014 SERSC

5.1. KPFC-s

The first variant of KPFC with sharing mechanism is referred to as KPFC-s. In this flash

code, the block is still divided into partitions to represent each of the k bits from the data

vector. Technically, each partition also has ⌊n/k⌋ cells. To avoid the scenario from KPFC that

triggers the block erasure when a bit update is to be done on a full partition, a sharing

mechanism is introduced. The technique utilizes a BIFC slice, which has a slice size of s ≥

⌊1+log
2
(k+1)⌋ (a detailed discussion on how each BIFC slice is initialized is available in [14]).

Note that the BIFC slice must satisfy the constraint s < ⌊n/k⌋ so that a BIFC slice can be
integrated to a normal partition. Hence, instead of calling for a block erasure when a write

operation is to be performed to an already full partition, the KPFC-s encoding looks for

another partition where there is enough contiguous cells to accommodate a BIFC slice and

perform the necessary bit update. See Fig. 4 for the illustration of a sample write sequence

for KPFC-s.

To avoid ambiguity in decoding, a separator empty cell is maintained within a partition

with a BIFC slice. A BIFC slice can be extended one cell at a time if there is a need for more

cells, a scenario that occurs when there is a dominating bit index to be encoded. Extending the

Figure 3. The Performance of KPFC using Computer Simulation Results.

(Uniform Frequency Distribution, n=2048, q=8, k  {4, 8, … , 400})

Figure 2. A Sample Write Sequence for KPFC

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

Copyright ⓒ 2014 SERSC 387

BIFC slice is allowed if there are still available cells within the partition. Since a separator

cell can also contribute to write deficiency, it is discarded when the BIFC slice needs to take

over the whole partition assuming the original bit assigned to the partition has no bit update at

all. Please refer to Figure 5 on how a BIFC slice is extended with KPFC-s. In effect, a block

erasure occurs if an attempt to initialize a BIFC slice fails.

The implementation of a sharing mechanism is only possible when s < ⌊n/k⌋. However, if s

exceeds the number of cells assigned to every partition, a BIFC slice cannot be made

available within a normal partition. Thus, the flash code is reduced to the original KPFC.

Using empirical results, the write deficiency of KPFC is slightly reduced using the sharing

mechanism of KPFC-s. Note that depending on the number of cells of a block, denoted by n,

and the length of the data vector, denoted by k, the expected improvement of KPFC-s is only

Figure 4. A Sample Write Sequence for KPFC-s

Figure 5. Extending a BIFC Slice in KPFC-s

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

388 Copyright ⓒ 2014 SERSC

possible when s < ⌊n/k⌋. When s ≥ ⌊n/k⌋, the performance of KPFC-s is exactly the same as
that of KPFC (see Figure 6).

The present setup of KPFC-s assigns exactly ⌊n/k⌋ for each partition and does not utilize

the remainder (n mod k) cells. These remainder cells can be at most k-1. When k is large, the

remainder cells can significantly affect the write deficiency of the flash code. Technically,

KPFC-s just leaves these remainder cells untouched. It is with this context that KPFC-s can

still be enhanced by applying some mechanism to utilize those unassigned cells to allow more

cell writes and possibly reduce the write deficiency.

5.2. KPFC-r

KPFC-r is another variant of KPFC that introduces a method to utilize those unassigned

cells not used by KPFC and KPFC-s. Instead of being left discarded, a new technique is

introduced to KPFC so that these remainder cells can still be used. There are two scenarios

Figure 6. The Performance of KPFC and KPFC-s

(Uniform Frequency Distribution, n=2048, q=8, k  {4, 8, …, 400})

Figure 7. KPFC-r Slice Allocation

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

Copyright ⓒ 2014 SERSC 389

where KPFC-r allocates and utilizes the unassigned cells to the existing partitions of the

block. When s ≤ ⌊n/k⌋, the flash code automatically assigns the cells not part of any partition

to the last partition, i.e., partition k-1 has a bigger size compared to the other partitions. For

simplicity of implementation, the last slice absorbs those extra cells so that a sharing BIFC

slice can be initialized and extended if possible. If r = n mod k refers to the number of

unassigned cells, the size of slice k-1 in this scheme is ⌊n/k⌋+ r. For example, if n=30 and k=8,

then r=6, therefore, slice k-1 will have a size of 9 cells while the rest will have a size of only 3

cells each (See Figure 7 Case 1). This strategy works well when k is not sufficiently large.

The second scenario happens when s > ⌊n/k⌋, in which case it is no longer possible to

initialize a sharing BIFC slice. Instead of reverting to the original KPFC where a simple

mapping is implemented, KPFC-r may still use up some of the unassigned cells. Because r =

n mod k, then at most k-1 cells can be distributed and therefore at most k-1 partitions can have

one added cell each (See Fig. 7 Case 2). On the average, half of the partitions can have an

extra cell in this KPFC variant, thus potentially lowering the write deficiency further. The

performance of the flash code is improved because of the technique where unassigned cells

are still utilized as much as possible. Refer to Fig.8 for a comparison of simulation results for

KPFC, KPFC-s and KPFC-r.

5.3. KPFC-m

The last variant of KPFC is called KPFC-m. The idea behind KPFC-m is to initialize as

many BIFC slices as possible within a normal partition. Unlike KPFC-s that can only allocate

a single BIFC slice within a partition, multiple BIFC slices can be accommodated in KPFC-m

as long as there are available contiguous cells for sharing mechanism (see Fig.9). Similar to

KPFC-r, the unassigned cells are also utilized in KPFC-m. However, the remainder cells are

automatically assigned to the last partition. Hence, the last partition will have more cells

compared to the rest of the partition. Contrary to KPFC-s and KPFC-r, extending the BIFC

slice in KPFC-m is not possible. If a bit update is mapped to an already full BIFC slice, the

Figure 8. The Performance of KPFC, KPFC-s and KPFC-r

(Uniform Frequency Distribution, n=2048, q=8, k  {4, 8, …, 400})

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

390 Copyright ⓒ 2014 SERSC

flash code looks for adjacent empty cells that can accommodate a BIFC slice. Block erasure

is returned if search for vacant cells returns a null.

With the introduction of multiple BIFC slices within normal partition, it turns out that the

flash code returned the best write deficiency among the variants of KPFC. With more BIFC

slices made, more write operations were performed (see Table 3). Consequently, call for

block erasures were delayed KPFC-m performs better when there is uniform frequency of

distribution. As shown in Figure 10, KPFC-m outperforms KPFC, KPFC-s and KPFC-r.

KPFC-m is even better than KPFC-s when s ≤ ⌊n/k⌋ (Note that KPFC-s has the ability to
extend its BIFC slice by a single cell only). It can also be inferred from the graph that it has

a superior mechanism to utilize the unassigned cells compared to KPFC-r, most especially for

large values of k. KPFC-m significantly reduces the write deficiency of the flash code

resulting to a better performance.

Table 3. Comparison between KPFC-m and KPFC-r in terms of
Average Write Operations

(n=2048, q=8, k  {4, 8, … , 1024}, E=30 experiments)

k KPFC-r KPFC-m Additional Writes

4 14254 14287 33

204 10582 10649 68

404 8645 9505 860

604 6709 8753 2044

804 4991 7541 2550

1004 5581 6793 1212

Figure 9. Initializing BIFC-slices in KPFC-m

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

Copyright ⓒ 2014 SERSC 391

5.4. KPFC-r and KPFC-m in Steady Dominated Distributions

To examine further the performance of the proposed flash codes, the variants with better

write deficiency in uniform distribution were tested on steady dominated distributions. As

discussed in the previous section, a dominating bit index is designed in this type of

distribution. The performances of the KPFC-r and KPFC-m in 50% and 70% steady

dominated distributions were returned after running the simulation. Results are shown in

Figure 11a and Figure 11b, respectively.

Given the graph of KPFC-r and KPFC-m, the results show that the latter is generally better

than the former for both 50% and 70% steady dominated distributions. However, the write

deficiency of both flash codes eventually increases as the value of k grows. Note that KPFC-r

degenerates at k>200, because the write deficiency ratio shoots up close to 1 already. On the

contrary, KPFC-m can still manage to lower it due to its inherent capability of utilizing the

extra cells of the block. Initializing multiple BIFC slices potentially uses these unassigned

cells.

Figure 10. The performance of KPFC, KPFC-s, KPFC-r and KPFC-m

(Uniform Frequency Distribution, n=2048, q=8, k  {4, 8, …, 400})

Figure 11.a KPFC-r and KPFC-m in 50% Steady Dominated Distribution

(n=2048, q=8, k  {4, 8, … , 400})

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

392 Copyright ⓒ 2014 SERSC

6. Comparison of KPFC variants with existing Flash Codes

This section presents the derived average write deficiency of KPFC, KPFC-s, KPFC-r and

KPFC-m. Moreover, the KPFC-r and KPFC-m were compared to the flash codes in literature.

Figure 12 shows the write deficiency ratios of KPFC, KPFC-s, KPFC-r and KPFC-m for

larger range of values for k, unlike in the previous figures that were only up to k=400. As

depicted in the graph, KPFC-s has a lower write deficiency for some lower values of k when

compared to the original KPFC. Basically, this is due to the sharing mechanism employed in

KPFC-s. Note that KPFC and KPFC-s converge starting at k when s > ⌊n/k⌋. Nonetheless,

another variant, KPFC-r, performs better than the two former flash codes for all instances of

k. This is due to the utilization of the remainder cells in KPFC-r. In general, it is the KPFC-m

that has the best performance among all the variants of KPFC. Apparently, KPFC-m returns

the lowest write deficiency ratios for all values of k. In using multiple BIFC slices, KPFC-m

allows more cell writes, and this results in a delay to the occurrence of block erasures.

KPFC-r and KPFC-m are then compared to the existing flash codes in literature. The

performance of the flash codes as compared to slice based flash codes like ILIFC, LILIFC,

BMFC and BMFC2 are shown in Figure 13, where both KPFC-r and KPFC-m showed a

remarkable performance. When compared to more recent flash codes like BIFC and its

improved variant BIFC-RCM, the proposed flash codes still returned the better average case

performance (see Figure 14). KPFC-r and KPFC-m are then compared to high performing

flash codes like SSFC and PFC. Simulation results reveal that the proposed flash codes still

outperform the SSFC and PFC, as shown in Figure 15. With the introduction of sharing

mechanisms, the write deficiency of the flash codes is significantly reduced, contributing to

the better performance of the flash codes in the average case.

Figure 11. b KPFC-r and KPFC-m in 70%, Steady Dominated Distribution

(n=2048, q=8, k  {4, 8, … , 400})

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

Copyright ⓒ 2014 SERSC 393

Figure 12. Comparing KPFC, KPFC-s, KPFC-r and KPFC-m

(Uniform Frequency Distribution, n=2048, q=8, k  {4, 8, … , 1024})

Figure 13. Comparing ILIFC/LILIFC, BMFC, BMFC2,KPFC-r and KPFC-m,

(Uniform Frequency Distribution, n=2048, q=8, k  {4, 8, … , 1024})

Figure 14. Comparing BIFC, BIFC-RCM, KPFC-r and KPFC-m

(Uniform Frequency Distribution, n=2048, q=8, k  {4, 8, … , 1024})

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

394 Copyright ⓒ 2014 SERSC

7. Conclusion

The K-Partition Flash Code with sharing mechanism is presented in this study.

There were three variants that were explored: KPFC-s, KPFC-r and KPFC-m. The

average case performances of the flash codes were estimated through computer

simulations. Overall, KPFC-r and KPFC-m returned the best performance. Empirical

results showed that the aforementioned variants of KPFC are more efficient than the

existing flash codes in literature. Further analysis shows that the write deficiency due

to unassigned cells has a significant effect on the over-all performance of the flash

codes. Hence, careful handling of these remainder cells is very valuable and essential

in lowering the write deficiency of flash codes, as shown in KPFC-r and KPFC-m.

Further studies can be made to explore new methods of utilizing cells in a block to

maximize cell writes. It is also interesting to conduct investigations on coming up

with novel and promising ways of encoding such as new framework and hybrid flash

codes, among others.

References

[1] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to flash memory”, in Proceedings of the

IEEE, pages 489–502, 2003.

[2] A. Jiang, V. Bohossian, and J. Bruck, “Floating codes for joint information storage in write asymmetric

memories”, in Information Theory, 2007. ISIT 2007. IEEE International Symposium on, pages 1166–1170,

June 2007.

[3] A. Jiang, V. Bohossian, and J. Bruck, “Rewriting codes for joint information storage in flash memories”,

Information Theory, IEEE Transactions on, 56(10):5300–5313, Oct 2010.

[4] A. Jiang and J. Bruck, “Joint coding for flash memory storage”, in Information Theory, 2008. ISIT 2008.

IEEE International Symposium on, pages 1741–1745, July 2008.

[5] Micron Technology Incorporated. Micron collaborates with sun microsystems to extend lifespan of flash-

based storage, achieves one million write  cycles, 2008. Accessed on 16 June 2014.

[6] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for flash memories”, in Information

Theory, 2008. ISIT 2008. IEEE International Symposium on, pages 1731–1735, July 2008.

[7] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, “Flash Memories”, Kluwer Academic Pub., 1999.

Figure 15. Comparing SSFC, PFC, KPFC-r and KPFC-m

(Uniform Frequency Distribution, n=2048, q=8, k  {4, 8, … , 1024})

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

Copyright ⓒ 2014 SERSC 395

[8] H. Mahdavifar, P.H. Siegel, A. Vardy, J.K. Wolf, and E. Yaakobi, “A nearly optimal construction of flash

codes”, in Information Theory, 2009. ISIT 2009. IEEE International Symposium on, pages 1239–1243, 2009.

[9] E. Yaakobi, A. Vardy, P.H. Siegel, and J.K. Wolf, “Multidimensional flash codes”, in Communication,

Control, and Computing, 2008 46th Annual Allerton Conference on, pages 392–399, Sept 2008.

[10] A. Jiang, “On the generalization of error-correcting wom codes”, in Information Theory, 2007. ISIT 2007.

IEEE International Symposium on, pages 1391–1395, June 2007.

[11] R. Suzuki and T. Wadayama. “Layered index-less indexed flash codes for improving average performance”,

in Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on, 2011, pp. 2138-2142

[12] H. Esling, R.R. Ortiz and P. Fernandez, “Bi-Modal Flash Code using Index-less Indexed Flash Code and

Layered Index-less Indexed Flash Code”, Advanced Science and Technology Letters (Software 2013), vol.

35, pp.19-22.

[13] R.R.L. Ortiz, H. Esling, and P. Fernandez, “Combining flash codes for write deficiency reduction”,

International Journal on Software Engineering and Its Applications, 8(4):47–60, April 2014.

[14] M.J. Tan and Y. Kaji, “Uniform compartment flash code and binary-indexed  flash code”, Technical Report

of IEICE, pages 25–30, 2012.

[15] M.J. Tan and Y. Kaji, “Flash code utilizing resizable-clusters”, in IEEE International Conference on Electro

Information Technology, number 2013 IEEE International Conference on Electro/Information Technology,

EIT 2013, Graduate School of Information Science, Nara Institute of Science and Technology, 2013.

[16] M.J. Tan and Y. Kaji, “Flash code utilizing binary-indexed slice encoding and resizable-clusters”, IEICE

Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E96-A(12):2360–

2367, 2013.

[17] M.J. Tan, P. Fernandez, N.A. Salazar, J. Ty, and Y. Kaji, “Flash code with dual modes of encoding”, in

Proceedings of the 2013 Workshop on Computation: Theory and Practice, 2013.

[18] M.J. Tan, P. Fernandez, N. Salazar, J. Ty, and Y. Kaji, “Multi-mode encoding with binary-index flash code”,

Technical Report of IEICE, 2012.

[19] G.N. Corneby, L.K. Sanchez, M.J. Tan, P. Fernandez, and Y. Kaji, “Phoenix flash code: Introducing the

absorption and revival operations for reducing flash memory write deficiency”, in Proceedings of the 11th

National Conference on Information Technology Education, 2013.

Authors

Riz Rupert L. Ortz, is a Ph.D. in Computer Science student at the

Ateneo de Manila University. He is currently connected to the

College of Management and Information Technology (CMIT) at

Northwest Samar State University (NwSSU), Calbayog City, Samar,

Philippines.

Proceso L. Fernandez, Jr., Ph.D., is an Associate Professor at

the Ateneo de Manila University.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

396 Copyright ⓒ 2014 SERSC

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

