
International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014), pp.299-310

http://dx.doi.org/10.14257/ijmue.2014.9.9.31

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2014 SERSC

Virtually Separable Block Management in Flash Storage System

Seung-Ho Lim

Department of Digital Information Engineering

Hankuk University of Foreign Studies

slim@hufs.ac.kr

Abstract

File systems treats Flash storage device as a traditional storage media with their logical

address. However inside the Flash storage device, Flash Translation Layer (FTL) remaps

logical address to physical address to hide physical limitation of Flash memory cells. Due to

the address translation, intentional logical separation of file system’s layout does not directly

applied to physical separation. As a result, the separate-intended file systems’ requests are

mixed in physical location, which degrades write throughput, as well as Flash’s lifecycle. In

this paper, we propose virtually separable Block management scheme for Flash storage

system by introducing new common command interface and separable Block management in

FTL. The experimental results show that the proposed scheme increases IO performance, as

well as reduces flash-internal overhead.

Keywords: Flash Memory, File system, FTL, Virtually separable Block management

1. Introduction

NAND flash memory and corresponding devices has become one of the main storage

media for computing systems including server, personal computers, and mobile systems, with

the help of low power consumption, low density, high capacity, and high IO bandwidth.

However, due to the physical limits for NAND flash memory, the file systems do not fully

utilize bandwidth of storage media, which results in poor user responsiveness and service

quality. There are two main physical limits for NAND flash memory. First, cell-erase

operation should be preceded by cell-write operation, which means that the data cannot be

written in same place without erasing it. Second, the base unit of erase operation is ‘Block’,

whereas base unit of write operation is ‘Page’, where block is much larger than page.

Actually, Block is composed of several Pages.

The physical limitation of NAND flash memory is covered by special firmware called

Flash Translation Layer (FTL) [1, 2]. The NAND flash-based devices such as Solid State

Disk (SSD) [3] and Multimedia Card (MMC) [4] embed FTL inside their systems as a form

of firmware, so FTL runs on controller within the devices. FTL manages address mapping

between file system and NAND flash memory, and does GC (Garbage Collection) [5]. File

systems can treat Flash device just like usual storage media with the logical block address

supported by FTL, and FTL hides internal mapping information and management schemes

from host file systems.

Typically for NAND Flash memory, the size of one page is ranging from 4KB to 16KB,

and the size of one block is ranging from 128KB to 4MB in recent Flash chip. Thus, the

traditional notation for ‘block’ of file systems is match with the ‘page’ of flash, and flash

‘Block’ is much larger concept than file system’s ‘block’. In our notation, ‘block’ represents

file system’s unit, and ‘Block’ represents flash memory’s unit, respectively.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

300 Copyright ⓒ 2014 SERSC

Figure 1. Logical Laout of File System and its Physical Allocation within Flash
Device

Since file system uses Flash device as a view of logical address, there is a mismatch for

view point between logical block and physical block. As a result, traditional file system

architecture and layout design is little effective for Flash-based storage. For instance, many of

typical file systems, such as FFS [6], Ext4 [7], and NTFS [8], separates metadata and data in

physical location since the characteristics of these two types are totally different. In addition

to that, Journaling data of file systems are also recorded in different region in storage [9]. The

separation of these is effective for bandwidth and latency if traditional rotational disk is used

as storage media, since it has same view of logical address and physical address. However,

Flash device has different view of logical address and physical address, so the separation of

file system’s layout does not directly applied to the physical separation for Flash device. As a

result, file system’s data are mixed in physical location for Flash memory-based storage

system even though they are logically separated by file system on purpose, as described in

Figure 1.

The unintentional physical mix for logically separated data from file system degrades IO

bandwidth as well as latency, significantly. In this paper, we propose virtually separable

Block management scheme for Flash storage system. For the separable Block management

system, we propose common command interface between file systems and underline flash

device to support the separation. In the proposed system, file system has identifier, i.e., ID, to

identify data type. For instance, file system having metadata, user data, and journal data has

three types of data to be stored in separated region, the IDs are allocated for each type of data,

and the file system makes read/write commands with the logical address, size, and its ID. In

the flash devices, the flash Blocks are virtually separated according to the data types. For

instance, data and metadata, and journal data are assembled under the separated flash Blocks

virtually, where the ‘virtually’ means that the Blocks are not necessarily consecutive in

physical position. When write command arrives, FTL, which makes overall management of

flash devices, writes the arriving data to the relevant Block according to its ID.

As a result, Blocks having same ID are virtually connected each other, while Blocks

having different ID are virtually separated. This virtual separation can make file system’s

read/write requests sequentially, which leads bandwidth increase. In addition, the GC

efficiency of FTL gets better, which decrease flash-internal overhead and increase lifetime of

Flash device. The experimental results show that the proposed scheme increases IO

performance, as well as reduces flash-internal overhead.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

Copyright ⓒ 2014 SERSC 301

The remainder of this paper is organized as follows. In Section 2, background and related

work is described. The proposed virtually separable Block manage scheme is explained in

Section 3, and its performance evaluation is described in Section 4. Section 5 concludes this

paper.

2. Background and Related Work

In this Section, the backgrounds and related work are illustrated. Most of the

background is referred by our previous work [16].

2.1. NAND Flash Memory and FTL

NAND flash memory is array of memory cells that consist of floating-gate transistors.

There are three commands used in NAND flash memory; read, program (write), and

erase. The read and program command are related with data transfer between host and

Flash devices, whose data unit is Page. The erase command has no data transfer

between host and Flash, and the erase is operated at the Block-based. In NAND flash

memory, the size of one Page is 4KB and doubles as manufacturing process advances

and a Block is composed of 64 or 128 Pages, typically. Due to the size mismatch

between write and erase operation, write operation should consider efficient erase

operation. Typically, read for one Page consumes about 125us, including Page read to

internal chip register and bus transfer from chip register to host side. As a same manner,

write for one Page consumes about 200us~400us.

FTL manages address mapping table between logical address of host part and

physical address of Flash memory. Indeed, except the mapping management, FTL does

many other roles, including wear leveling, garbage collection, bad block management,

and request queuing and caching, and so on. However, the mapping management is

most important job among many FTL's roles, and others are mostly dependent on the

mapping management scheme. The FTL keeps track of the address mapping information

between the logical address and the physical address. In this manner, the FTL prevents

in-place updates of data and hides the latency of the erase operation. When the number

of free pages is insufficient for write operations, free pages should be made by garbage

collection (GC), where GC is the process that makes available free region by selecting

one Block, moving data of valid Pages to other region, and erasing the Block. Thus, the

selected victim Block should have minimum valid Pages for more efficient garbage

collection.

According to the mapping granularity, the FTL mapping management scheme can be

divided into three categories; Page-level mapping, Block-level mapping, and hybrid-

level mapping. In page mapping scheme, mapping table is maintained as a Page level,

so that a logical Page number is mapped to a physical Page number in the mapping

table. In Block mapping scheme, mapping table is maintained as a Block level, so that a

logical Block number is mapped to a physical Block number. Accordingly, a logical

Page can be identified by the physical Page offset within the corresponding physical

Block number. Hybrid mapping mixes these two mapping table. The advantage of

Block-level mapping is that it has small mapping table, however, basically it gives poor

performance due to the lack of flexibility. Likewise, Page-level mapping can give high

performance with good mapping flexibility, but it requires large mapping table

maintained in main memory.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

302 Copyright ⓒ 2014 SERSC

Figure 2. The Overall System and Software Architecture for Flash-based
Storage System

2.2. Related Work

There have been some previous researches for FTL. At the early stage of FTL, the

design is focused on the mapping management issues to reduce mapping table, while

preserving IO bandwidth in portable flash device [10-14]. In [11], one log Block per

one data Block is used, and the Page-level mapping is used for log Blocks for

performance enhancement. In [11], several Blocks are grouped into superblock, and in

superblock, Page-level mapping is used for more efficient use of superblock. Lee et al

use only one log Block for all the Blocks with flash memory to reduce log Block

management overhead and enhance log Block utility [12]. For more efficient use of

blocks, the DFTL [13] deploy demand-based caching of Page-level mapping table, it

implies Page-level mapping management outperforms any other Block-level mapping

management. Dongzhe et al considered Page-level FTL management for small NAND

flash memory system [14].

There is previous work that considers request characteristics and patterns for file

system and apples it to flash storage system and FTL development. Chang e t al separate

metadata requests and userdata requests based on the knowledge of the layout of file

systems and metadata filter to reduce file systems performance degradation [15], where

different FTL management algorithms are applied to each metadata region and userdata

region, explicitly. It is most related work to the work of this paper, in that they tried to

separate metadata and userdata in Flash storage device. However, our approach is

different from [15] in that there are only one FTL in our system, whereas there are two

FTLs in one system. In addition, our system gives much more common design

methodology for separating file system’s overall data. According to our design, the

several file system’s region can be separated virtually in Flash device without any

addition filtering algorithm, and all the separated regions are managed by only one FTL,

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

Copyright ⓒ 2014 SERSC 303

which is efficient for manufacturing Flash storage device. From next Section, the

detailed system design issues are described.

3. Virtually Separable Flash Storage System Design

3.1. System Architecture

The overall system architecture of Flash memory-based storage systems is shown in Figure

2. In the system, the Flash memory is connected to a host system through standard IO

interface such as ATA, SATA or MMC/SD interface. The Device controller takes charge of

the interfacing. FTL provides functionality in mapping management with address translation,

garbage collection, and wear-leveling. Inside the Flash device, usually there are Flash

memory chip array consisting of dozens of single functionality of flash chip for higher

bandwidth.

Since Flash device is connected with standard interface, host system makes use of it as a

traditional storage device by stacking standard storage software which is composed of low

level device driver, block device layer, and file systems, for instance, in Linux Operating

System. The file system and its related system modules generate IO requests with appropriate

strategies. In the figure, file system writes user data while update the corresponding metadata.

At the same time, journaling module generates and writes transactions that are logged to

logically separated area. Journaling module is important file system integrity and essentially

installed for most storage system.

3.2 Separable Flash

To separate physical area in accordance with logical separation, it is required to identify

each logical area. In our design, we allocated ID to each logical area, and the ID is transferred

to Flash device in conjunction with typical information for data transferring, i.e., logical

address and size of the request. Since there is no command interface for transferring identifier

for each command, we introduce new command interface between file system and low level

drivers. For each read and write command from file system, or its related IO subroutine, the

form of read/write command has information like following.

<command > = <ID, LBA, size>

Where, ID is identifier for logically separable region, LBA is the first Logical Block

Address of corresponding request, and size is length of the request, respectively. For example,

metadata, userdata, and journal data are assigned with different identifier, ID, to differentiate

logical area, shown in the figure 3. In the figure, whenever file system makes requests for

underlined storage device, it identifies the request type and assigns appropriate ID to the

request. Then the request is passed to lower layer. The low layer, i.e., device driver and host

controller, transfers the request by shaping command form for appropriate interface type. In

the layer, requests can be re-scheduled or merged each other according the request scheduling

algorithm. The re-scheduling is okay, however merging of requests can be a problem when

requests having different ID are merged. In this case, we prohibit the merge operation, and the

requests are transferred individually.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

304 Copyright ⓒ 2014 SERSC

Figure 3. ID Classification and Request Generationss for Each Logically
Separable File System Region

In the Figure 3, file system makes five requests for throughout the file system region, and

passes theses to lower layer with file system’s own strategies. The lower layer does re-

scheduling and merging algorithm with the requests during its plug-in time slot. In this case,

there is not merge among requests, but might exist some request re-scheduling according to

the scheduling algorithm. The re-scheduling does not have an effect on our system any more,

since the purpose of our system is not scheduling or reduction

The separable Block management within Flash device is described in Figure 4. As shown

in the figure, there are Block buckets in accordance with logical region identifier, i.e., ID. In

each bucket, Blocks are connected virtually with doubly linked list. When write requests are

arrived from host system, FTL checks the ID of the requests, assigns it to the corresponding

bucket, and data to the available Pages of the Block in the bucket. If the possible area are all

consumed for the Block and more Pages are required to complete the request, FTL allocates

another Block from free Block list to the bucket and does the remaining writing job. After

that, FTL updates mapping table.

Bucket management can be done as ad-hoc manner, which means that bucket can be added

or deleted at runtime dynamically, not fixed statically. When Flash device gets request that

has newly assigned ID by host system, FTL assigns new bucket for the new ID, allocates

Block to the new bucket, and writes data to the Block. Likewise, if the bucket has no Block,

the bucket is removed. The removal of Block from bucket is related with GC operation. When

one Block is selected as a victim block in GC, the Block is removed from the assigned bucket,

and moved to free Block list after GC. After GC operation, FTL checks whether the bucket

has Blocks included in. If there is no Blocks, FTL removes the bucket and the corresponding

ID is not used until requests having the ID is arrived.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

Copyright ⓒ 2014 SERSC 305

Figure 4. It describes Separable Block Management within Flash Device, where
FTL Classifies and Assigns Requests to Corresponding Block Bucket

The separable Block management is independent on specific FTL mapping algorithm and

GC algorithm, since it only related with virtual allocation and de-allocation of Block list with

bucket structure. Therefore, separable Block management can be applied to any FTL with

slight changes of Block management issue. In our development, the Block management is

applied to simple Page-level mapping-based FTL, so mapping table exists which is apart from

Block management information. Also GC is also Page-level mapping -based. In GC, the

victim Block is selected from the all the Blocks, not from some bucket. Likewise, the

virtually separable Block management can be also applied to Block-level or hybrid-level

mapping-based FTL.

With the bucket and Block list, the virtually separable Block management is possible, and

intended logical separation of file system can be done in Flash device. For instance, home

data of file system, whose ID is 0, is stored with some physical flash Block consecutively,

where these Blocks are grouped together. Also, other file system’s data, such as journal data

are separated each other. With the Block separation, more sequential writes are generated

within Flash device, which leads that the Page validation and invalidated occurs much more

largely. As a result, GC efficiency and write amplification is improved. The improvement of

flash-internal operations leads device-outside bandwidth.

4. Evaluation

Since our proposal introduces new command interface between file system and flash

device, and includes Block management issue of FTL which reside in flash-device-side, it is

hard to implement with real flash device. Instead of that, we make use of simulation

environment. In Linux system, the NAND flash-based simulation environment can be setup

with MTD device layer. In the MTD device layer, Page-mapping-level FTL is first developed,

actually which is previous work. Based on the Page-mapping-level FTL and MTD device

layer, the proposed scheme is implemented. In our implementation, we only separate two file

system’s region, the one is file system’s home data, and the other is journal data, to see the

feasibility of the virtually separable Block management. Actually, separation of two region is

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

306 Copyright ⓒ 2014 SERSC

enough for file system’s logical separation, since these two regions are representative file

systems’ IO operations.

Figure 5. Experimental Results for IOzone Benchmark; The graphs plot
bandwidth for sequential write and random write, respectively, as request size

increases from 4KB to 64KB.

The implemented system was run on embedded computing system development board with

real bare-NAND flash chip. The embedded board is composed of 1GHz ARM processor and

256MB main memory. The NAND flash device has 1GB, whose page size is 2KB and block

size is 128KB. Typically, read and write time for one Page is 25us and 200us, respectively,

and erase time for one Block is 2ms.

We have evaluated the proposed scheme with well-known file system benchmark, called

IOzone [17]. The IOzone file system benchmark generates and measures bandwidth for file

system operations such as read, write, re-read, re-write, and random write with file generation.

In our experiments, IOzone generates 8MB files, and does file operations with write and

random write for request size 4KB, 8KB, 16KB and 64KB.

During the benchmark running, we mainly focus on estimating write requests rather than

read requests, since the proposed scheme mainly affects write operations. Indeed, the system

performance of Flash storage system is mainly dependent on the write request, as well. The

bandwidth of write and random write operation is estimated as request size varies from 4KB

to 64KB. The experimental results are shown in Figure 5(a) and 5(b) for sequential write and

random write requests, respectively. For the sequential write requests, the proposed scheme

gives slightly better bandwidth than legacy system. However, the proposed scheme

outperforms legacy system for random write requests greatly. The separable Block

management within Flash device makes it possible to allocate correlated data to Blocks which

are virtually connected, while relatively uncorrelated data are separated. As a result, the

random requests from host system stored within Flash device as if sequential write requests,

which results in bandwidth improvement for random write requests. From the Figure 5(b), we

identify that the bandwidth increases about 30%-40% in comparison with legacy system that

does not separate between journal data and file system’s home data.

In addition to the bandwidth, to give the insight that how the proposed invalidation scheme

affects on the flash-internal usage, we have collected flash-internal statistical metrics, such as

Number of GC (NGC), Number of Valid Page Copies per GC (NVPC), and Write

Amplification (WA), respectively, during the IOzone benchmark running. The NGC

represents how many NGC are performed, and NVPC represents how many live Pages exist

for the GC victim Block, respectively. The figure 6(a) and 6(b) plots NGC and NVPC,

(a) Sequential Write (b) Random Write

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

Copyright ⓒ 2014 SERSC 307

respectively. As shown in the figure, both of NGC and NVPC dramatically decrease for

separable Block management system. The reason for reducing NGC is that many Blocks are

totally invalidated as a whole when data are updated, due to the spatial localization for

virtually separable Block area, and these Blocks are recycled to free Block without GC

operations. Likewise, a victim Block has less valid pages, so the NVPC is also reduced in our

system. The reduction of NGC and NVPC decreases flash-internal operations, as a result,

computation time of flash-internal operations decreases.

Figure 6. Experimental Results for IOzone Benchmark; The graphs plot number
of average valid page copy per GC, total GC count, and write amplification,

respectively, as request size increases increases from 4KB to 64KB.

Lastly, WA is investigated, and the experimental results for WA are depicted in Figure 6(c).

The WA represents the ratio between the amount of writes from host system and the amount

of flash-internal writes. Since GC makes data moving of valid data for victim Block, there are

always more real flash writes than host writes, which means that WA is greater than 1 and the

Flash storage system is as good as WA is less. From the figure, we identify that the proposed

scheme reduce WA about 10% for every request size, which is mainly from the reduction of

NVPC.

In Summary, the reduction of NGC, NVPC, and WA results in improvement of flash-

internal operations, such as latency, lifecycle of Block, so write throughput of flash storage

system is improved.

(a) # of GC (B) # of Average Valid Page Copies per GC

 (c) Write Amplification

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

308 Copyright ⓒ 2014 SERSC

5. Conclusion

Although NAND flash memory is becoming main storage resources for computing system,

there are several physical limitations. The limitation of is covered by software layer called

Flash Translation Layer (FTL). File systems can treat Flash device just like usual storage

media with the logical block address supported by FTL, and FTL hides internal mapping

information from host file systems.

In the view of file system, the mismatch between logical address and physical address

makes unintentional performance degradation, as a result, traditional file system architecture

and layout design is little effective for Flash-based storage. Flash device has different view of

logical address and physical address, so the separation of file system’s layout does not

directly applied to the physical separation for Flash device. Therefore, file system’s data are

mixed in physical location for flash device.

In this paper, we propose virtually separable Block management scheme for Flash storage

system by introducing new common command interface between file systems and underline

flash device. In the proposed system, file system has identifier, i.e., ID, to identify data type,

where the IDs are assigned for each type of data, and the file system makes read/write

commands with the corresponding ID. In the flash devices, the flash Blocks having same ID

are virtually connected, where the ‘virtually’ means that the Blocks are not necessarily

consecutive in physical position. The experimental results show that the proposed scheme

increases write throughput, as well as reduces flash-internal overhead by making separable

Block management within Flash device.

Acknowledgements

This work was supported by Hankuk University of Foreign Studies Research Fund.

References

[1] A. Ban, “Flash file system optimized for page-mode flash technologies”, U.S. Patent 5,937,425., Filed

October 16 1997.

[2] Intel Corporation, “Understanding the flash translation layer(FTL) specification”, http://developer.intel.com/.

[3] Webopedia, "What is solid state disk? - A Word Definition from the Webopedia Computer Dictionary" IT

Business Edge, (2012).

[4] JEDEC, “Embedded Multimedia Card Electrical Standard”, (2013) September.

[5] Micron, Garbage Collection in Single-Level Cell NAND Flash Memory, Technical Note, TN-2960.

[6] M. K. McKusick, W. N. Joy, S. J. Leffler and R. S. Fabry, “A Fast File System for UNIX”, ACM

Transactions on Computer Systems, vol. 2, no. 3, (1984), pp. 181–197.

[7] M. C. Avantika Mathur and S. Bhattacharya, “The new ext4 filesystem: current status and future plans”, In

Proceedings of the Linux Symposium, (2007), pp. 21–33.

[8] Microsoft, “New Technology File System”, NTFS Technical Reference, http://technet.microsoft.com/en-

us/library/cc758691(WS.10).aspx

[9] T. M. Jones, “Anatomy of Linux journaling file systems”, IBM Developer Works, (2008).

[10] J. Kim, J. M. Kim, S. H. Noh, S. L. Min and Y. Cho, “A space-efficient flash translation layer for

CompactFlash systems”, IEEE Transactions on Consumer Electronics, vol. 48, no. 2, (2002) May, pp. 366-

375.

[11] J. U. Kang, H. Jo, J. S. Kim and J. Lee, “A superblock-based flash translation layer for NAND Flash

memory”, Proceedings of the 6th ACM & IEEE International conference on Embedded Software, (2006)

October.

[12] S. W. Lee, W. K. Choi, and D. J. Park, “FAST: An efficient flash translation layer for flash memory”,

Embedded and Ubiquitous Workshops, (2006) August, pp. 879–887.

[13] A. Gupta, Y. Kim and B. Urgaonkar, “DFTL: A Flash Translation Layer Employing Demand-based Selective

Caching of Pagelevel Address Mappings”, Proceeding of the 14th international conference on Architectural

support for programming languages and operating systems, (2009).

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

Copyright ⓒ 2014 SERSC 309

[14] D. Ma, J. Feng and G. Li, “LazyFTL: A Page-level Flash Translation Layer Optimized for NAND Flash

Memory”, Proceesing of the ACM SIGMOD, (2011).

[15] Y.-H. Chang, P.-L. Wu, T.-W. Kuo and S.-H. Hung, “An adaptive file-system-oriented FTL mechanism for

flash-memory storage systems”, ACM Transactions on Embedded Computing Systems, vol. 11, no. 1, (2012).

[16] Y. Lee, L. Barolli and S.-H. Lim, “Mapping granularity and performance tradeoffs for solid state drive. The

Journal of Supercomputing, vol. 65, no. 2, (2013), pp. 507-523.

[17] B. Martin, “IOzone for filesystem performance benchmarking”, Linux.com, (2008).

Author

Seung-Ho Lim, he received BS, MS, and Ph.D. degrees in the

Division of Electrical Engineering from the Korea Advanced Institute of

Science and Technology (KAIST) in 2001, 2003, and 2008, respectively.

He worked in the memory division of Samsung Electronics Co. Ltd from

2008 to 2010, where he was involved in developing a high performance

SSD (Solid State Disk) for server storage systems. He is currently a

professor in the Department of Digital Information Engineering at

Hankuk University of Foreign Studies. His research interests include

operating systems, embedded systems, and flash storage systems..

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.9 (2014)

310 Copyright ⓒ 2014 SERSC

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

