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Abstract 
 

Through the analysis of features of short-distance competitive swimming sports, the model 

of both kinetics and energy transformation is built. On the prerequisite of a series of rational 

hypotheses and restrictions, the optimal analysis is performed about the distance in a given 

time frame with the application of the theory of optimal control. The optimal solution to 

propulsive force is deduced with reference to Olympic champion and experimental results by 

former researchers. The three-phase optimum speed distribution strategy is proposed, in 

good agreement with actual situations. 

Keywords: Optimal control theory, Competitive swimming, the best strategy, Olympic 

champion, Active drag 

1. Introduction 

Competitive swimming is a race which combines physical ability, speed and tactics. A 

competitor wins the championship because he/she takes the lead even by a very little time lag, 

which, as a matter of fact, has much to do with strategies. As learnt from the Chinese history 

story: Tianji’s horse racing, which is well-known to all and goes down in the history, it is 

contest of tactics. Strategy can be considered mathematical programming [1-2]. Modern 

mathematical methods used for competitive physical events could be traced back to the 70S 

of last century. In 1973, American mathematician T.B. Keller created a mathematical model 

to train sportsmen [3]. Middle-distance runners who were trained by his theory made 

remarkable achievements. Almost at the same time, Computer experts investigated throwing 

techniques of the then contester for world discus championship with mechanics, mathematics 

and computer. Proposals were raised for the improvement. So that the player achieved four 

meters longer than before in a short time. With the advantage of his scientific training 

method, former Soviet Union, United States and Germany all performed much better in the 

1988 Seoul Olympics. Modern sports especially competitive sports have been closely 

associated with modern sciences, such as mathematics, mechanics, physiology and 

psychology. Scientific training means have been demonstrating more and more strengths. 

Swimming event is without exception since it’s a physical movement in the water. The sports 

are motivated forward by swimmers’ arms pull and footwork in periodical manners, low 

efficiency and fast consumption of energy. For the goal of maximized performance of limited 

physical fitness for the best result, what shall we do to accommodate velocity and thrust force 

reasonably in the defined race distance? That is a question of optimization and the optimal 

control theory is required to discuss.  
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2.  Theory of Optimal Control 

The automatic control theory, evolving since the World War II, is a modern control idea 

which was developed based on the concept of state space. The optimal control theory is an 

important part to the modern control theory. Under the impetus of the development of space 

technology and extensive application of digital computer during 1950-1960S, the theory grew 

into a significant subject branch along with the rapid advancement of dynamic system 

optimization theory. Till today, the theory of dynamic system optimization has had lots of 

successful applications and been widely used in the fields like space technology, system 

engineering, economic management and decision, with remarkable achievements, instead of 

being only confined to the traditional field-automatic control. Meanwhile in the course of 

gradual perfection and improvement, the optimal control has produced plenty of theoretical 

problems to be solved. Hence, the theory is still a hot-concerned field of study [4-5].  

What the optimal control theory needs to solve is: according to dynamism of the controlled 

target, one admissible control is selected to make the controlled run by technical requirements 

and the specific performance index the optima. Mathematically, it is a question to get the 

functional extremum value to meet restrictive conditions. The optimal control theory is in its 

essence calculus of variation because it is only effective for non-restraints or open sets. But in 

practical engineering works, it is rather more a question of the best control where admissible 

control belongs to close set. It’s necessary for us to discover new approaches and solutions to 

dissolve the problem. Amongst different solutions, the two are the most effective: principle of 

the minimum/maximum by the former Soviet scholar Pontryagin, and dynamic programming 

method by American scholar R. E. Bellman. The minimum principle was progressively 

established by Pontryagin et al. after learning from Hamilton principle and strict test. It 

generated the classic variational theory, which became a powerful instrument to deal with 

close-set restrictive questions. Dynamic programming method, proposed by Bellman, led to 

Hamilton-Jacobi theory based on the principle of optimality, which is a strategy suitable for 

computer calculation and handling tasks in a broader range of areas [6]. 

The question of optimized control is expressed by abstracting it to a mathematical model 

and portraying it with accurate mathematical languages. The mathematical description 

involves the four parts:  

2.1. State Equation of Controlled Dynamic System 

In general, before the optimal control problem is described and solved, the mathematical 

model of controlled system should be built, i.e. motion differential equation of dynamic 

system. It’s necessity to abstract reasonably and simplify appropriately the issue to be 

concerned. The law of motion-differential equation can be expressed in accordance to 

fundamental laws of kinetics and kinematics. Since the differential equation of the 

complicated controlled system cannot be written in analytic method, structure and parameter 

of the system is usually determined through “identification” as to create the mathematical 

model. No matter what way will be adopted, the controlled system of one lumped parameter 

can be represented by a group of first-order ordinary differential equation, state equation, like:  

( ) [ ( ), ( ), ]x t f x t u t t                   (1) 

Where, ( )x t  is n-dimensional state vector; ( )u t is m-dimensional controlling vector; t is 

real independent variable. It can generalize the mathematical model of controlled system with 

lumped parameters, such as linear time-invariant system, linear non-stationary system and 

linear time-varying system.  
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2.2. Target Set 

Dynamic system often shifts from one state to another for the effect of ( )u t . For the 

optimal control problem, initial state is generally known, while ft it takes to reach the final 

state as well the final state ( )fx t differs with different problems, which could be one fixed 

point in the state space, or a predefined range, to be more general. At large, the requirement 

of the final state can be expressed with the following limitations:  

1

2

[ ( ), ] 0

[ ( ), ] 0

f f

f f

g x t t

g x t t






                              (2) 

The final state decides one time-variant or time-invariant collection in the state space. The 

collection of state which can suffice restrictions of the final state is named target set.  

2.3. Admissible Control  

Every component of controlling vector has different physical properties, like engine thrust, 

the deflexion angle of control piston, electromagnetic torque, voltage and electricity. They are 

often restrained by objective conditions, of which values can only change in a certain range. 

Such restraint is shown as:  

max0 ( )u t u                    (3) 

Or                                            | | 1,2,...,iu a i m            (4) 

Provisions of the control constraints are called the control domain, it can be written into . 

Belongs to control set, it call admission control. And recorded as ( )u t  . 

2.4. Performance Index 

Transferring from a given initial state to target set can be achieved through different 

controls. In order to measure the effect of the control system on each control function, it’s 

required to build performance index function, renamed performance function, which can be 

employed to evaluate the goodness/badness of control effect or quality. Items and forms of 

such index are different along with specific problems. Even if the problem is same, the index 

will be different owing to different point of view. In some cases, some require time 

optimization; some require fuel consumed the least; some require the both. But whatever the 

problem is, the function can be summarized into a general form as follows: 

0

[ ( )] ( ( ), ) ( , , )
ft

f f
t

J u S x t t L x u t dt       (5) 

Which, the first part on the equation right is final-value performance index and the second 

is integral performance index; those having both combined are composite performance 

indices. What the problem of optimization has to solve is optimize such indices.  

Looking back at the description of optimization problem above, we can get the expression: 

known controlled system state equation and the specified initial state.  

( ) [ ( ), ( ), ]x t f x t u t t               (6) 

0 0( )x t x                       (7) 

Admissible control ( )u t  , 0[ , ]ft t t  

We introduced briefly the theory of optimal control as well as mathematical description 

and general expression of optimized problem. Next, we’ll discuss the problem of the 
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optimized control of time in short-range competitive swimming in virtue of the aforesaid 

theory.  

 

3. Analysis of Optimization of Short-distance Competitive Swimming 

Sports 

Over many years, competitive swimming has developed into an important event in today’s 

physical culture. For the improvement of swimming performance, ideas experienced many 

innovations in the world, which related mainly to increasing technological quality of training, 

making swimming skills and training methods be better and more reasonable. That will not 

only maximize players’ physical potentials and also help them use various tactics to 

progressively make better achievements. For the purpose of strategies, the paper applies the 

optimal control theory to study the competitive event by converting equivalently the problem 

of getting minimum time in a given route to that of obtaining the longest distance. Through 

theoretical inference, the optimal solution is acquired in certain conditions, how to distribute 

reasonably speed and stamina for the longest way that a swimmer can reach in given time 

range.  

3.1. Mathematical Model  

3.1.1. Kinetic Model: Human body is reduced to a particle and only the horizontal movement 

is considered. According to Newton’s second law:  

21
( ) ( ) ( )

2
dmv t f t C A V t                           (8) 

Where, ( )F t  is equivalent horizontal thrust force; m is quality of the player;   is density 

of water; dC  is resistance coefficient; A is sectional area of body’s horizontal projection; V is 

swimming speed. As the thrust force is limited, we set maximum value Q. ( )F t  is 

normalized to ( )u t :  

( )
( )

F t
u t

Q
                             (9) 

 

Therefore, 0 ( ) 1u t  . Considering A & Q is different from people [7], but they are 

linearly bound with m, so quality unit is converted into the following two factors:  

2

dC A
a

m


                           (10) 

Q
b

m
                                    (11) 

The kinetic equation is simplified into   
2( ) ( ) ( )V t aV t bu t                                  (12) 

 

3.1.2. Energy Transformation Model: Swimming is a complicated physiological process. 

Human body relies on aerobic and anaerobic metabolism to furnish energies for physical 

exercise [8]. The change rate of energy storage ( )E t  can be shown like:  

( )E t K P N R                            (13) 

where, K is power for generating calories through aerobic and anaerobic metabolism; 

( ) ( )p bu t V t  is horizontal thrust power; N is non-trust power, which enables water of a 
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certain quality with kinetic energy; R is wasted power in the form of thermal energy. Wasted 

power of heat energy and non-thrust power bear complicated non-linear relationship with 

moving speed and time. It’s reported that in the 50m-long swimming, anaerobic metabolism 

is 95% and aerobic metabolism 5%; in the 100m-long competition, anaerobic metabolism is 

80% and aerobic 20%. It’s obvious that the longer the distance is, the lower percentage 

anaerobic metabolism has and the higher aerobic does. Thus, in the paper, the model is 

designed for short-distance competitive swimming. We assume in the short competition, 

body’s power is all provided by aerobic metabolism, disregard of heat dissipation and non-

thrust force. Then we have:   

( ) ( ) ( )E t b u t V t                                      (14) 

 

3.2. Expression of the Optimized Question 

In fact, in the competitive swimming, what’s concerned is the shortest time in given 

distance. For the purpose of convenience, we analyze its equivalence problem, i.e. about how 

to distribute speed and physical ability in a given time to swim across the longest distance. 

For unification, we assume all swimmers start from the pool wall and the initial speed is 0; 

also their turn-back movements are neglected. The optimal problem is:  

Non-linear time-invariant systems known equation is x f , where 

V
X

E

 
  
 

                                 (15) 

2aV bu
f

buV

  
  

 
            (16) 

Permit propulsion ( )u t , 0 ( ) 1u t  make the system from a given initial state start to 

reach the final state of a given moment ft , so as to meet state constraints 

0 0

0

0
( ) |tX t X

E


 
   

 
                   (17) 

3.3. Theoretical Analysis and Solution 

For the state equation, the right part refers to non-linear function. So far no generic way of 

discrimination has been found for the optimal control. But it’s believed the best solution 

exists in terms of physical meaning of its extreme problem [9]. Performance indices are 

transformed to the equivalent ones with Lagrangian multiplier method and Kuhn-Tucker 

theorem.  

0
[ ( )] ( ) [ ( )( )]

ft
T

fJ u E t V t f X dt                           (18) 

Where, 1 2( ) [ ( ), ( )]Tt t t    is non-zero state vector  is constant, and to   meet 

0, ( ) 0fE t                                   (19) 

Structure of Hamilton function H as follows: 
2

1 2( , , ) ( ) ( )TH X u V f V aV bu buV                        (20) 

Applying the principle of pontryagin minima, it can be obtained: 

Association equation of state: 
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1 1 2

2

1 2

0

H
a V bu

V

H

E

  




    


  

 

                          (21) 

 

 

Cross-sectional condition: 

1

2

( ( ))
( ) 0

( )

( ( ))
( )

( )

f

f

f

f

f

f

S X t
t

V t

S X t
t

E t



 


 




   
 

                 (22) 

Hamilton function H as ( )u t unction, take the absolute minimum when 
*( ) ( )u t u t  

* * * *

0 ( ) 1
( ( ), ( ), ( ))) ( ( ), ( ), ( ))

u t
H x t t u t MIN H x t t u t 

 
                        (23) 

Hamilton function H rail line is at a constant value in optimal: 
* * * *( ( ), ( ), ( ))) ( ( ), ( ), ( ))f f fH x t t u t H x t t u t const          (24) 

By the formula (21), (22) to 

2( )t                                               (25) 

1 1( ) 1 2t a V bu                                      (26) 

Thus Hamilton function becomes: 
 

2

1 1( , , ) ( )H X u V a V V bu                                  (27) 

By equation 23 in other quantity is unchanged, u t should make H take the absolute 

minimum, so: 

1

*

1

1

1, 0

( ) 0, 0

uncertain, 0

V

u t V

V

 

 

 

  


   
  

                              (28) 

Where, uncertain does not mean the absence of the optimal solution but that the best 

solution can’t be achieved only from extremum conditions, any value in 
*0 ( ) 1u t   is 

acceptable.  

When the time of a non-zero distance exists ( , ) [0, ]i j ft t t  and 1 0V   , the optimal 

solution is singular; otherwise it is normal. At this moment, the optimal solution is time-

hopping function of 0, 1. When it’s singular, we take the derivative of 1 0V    to get the 

optimal solution by formula (12) and (21). 
21 3 0 ( , )i ja V t t t                                (29) 

Therefore, only when 0  , the above type can be established, and: 

 

1
( ) ( , )

3
i jV t t t t

a
                       (30) 
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1
( ) ( , )

3
i ju t t t t

b
   …………………(31) 

 

Therefore, only when 0   the upper formula can exist singular situation, and 0  can 

exist normal circumstances exist, if the singular case, the singular time interval speed and 

propulsion are literal 

 

4. Experiment Design and Discussion 

With experimental measuring results of dynamic resistance in the men’s free-style 

swimming, we can have
10.32( )a m . At one Olympic Games, the champion record of 

men’s 50/100/200m-distance freestyle swimming is respectively 21.98s, 48.30s, 

105.35s. Since 50m is the shortest range, it can be assumed 50m that related players 

moved forward from the best propulsive force. We mark 50m championship record 

for 50T , 100m championship record for 100T .In another way, when 50ft T , the optimal 

solution is 1 and:  
50

0

exp( ) 1
50

exp( ) 1

T

e

rt
V dt

rt




                             (32) 

The 50 21T   substituting into the formula 32 can be obtained: 

/ 2.37( / )eV b a m s   

                                  
2 1.79( / )eb aV N Kg                             (33) 

2 1.52(1/ )r ab s   

At the end of time energy should be positive, substitution formula 31 can be obtained: 

 

0 201.0( / )E J Kg                           (34) 

If the advance in 100m and above, in the last moment when energy is negative, the 

100 48.3ft T   substituting into the formula 32 can be obtained: 

 

0 201.9( / )E J Kg                (35) 

The E in the interval [89.9,201.9]  in step of 1 is gradually increasing the numerical 

solution, using a least squares fit 100m, 200m race, and the 10 feasible solutions are 

compared to determine the optimal solution0{1, ,0}cu , with the best energy value: 

 
*

0 176( / )E J Kg                            (36) 

Using the numerical parameters have been obtained, it calculates the maximum distance 

corresponding, when given 48.3ft s 105.35ft s . Comparison of the relative error, as 

shown in Table 1 

 

 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol.9, No.9 (2014) 

 

 

226   Copyright ⓒ 2014 SERSC 

Table 1. Comparison of the Theoretical Corresponding Distance and Actual 
Distance 

( )ft s  actual distance Theoretical optimal solution relative error 

21.98 50 50.00 0 

48.3 100 107.55 7.55% 

105.35 200 182.01 -8.88% 

Using 
*

0E  can calculate the critical moment 42.23( )cT s , when 

given 42.23( )f ct T s  , it can obtain the maximum distance: 
max 98.32( )D m  

When given 42.23( )f ct T s  , the optimal solution is{1, ,0}cu , the propulsion force and 

velocity distribution is: 

 

1

* 1

1 2

2

1, [0, ]

, [ , ]

0, [ , ]

c

f

t t

u u t t t

t t t







  


   


 

                                (37) 

1

*

1 2

2

2

2.37exp(1.52 ) 2.37
, [0, ]

exp(1.52 ) 1

, [ , ]

, [ , ]
0.32 ( ) 1

c

c
f

c

t
t t

t

V V t t t

V
t t t

V t t


  


   

  

 

                          (38) 

Where 

1

1

2.37exp(1.52 ) 2.37

exp(1.52 ) 1
c

t
V

t





                             (39) 

The optimal time 
*

1t
*

2t  is a function of ft , but the formula is very complex, Figure 1 shows 

the corresponding  
*

1t
*

2t  Numerical solution curve at the time [44,105] changes  

 

 

Figure 1. When ft is changed, the Numerical Solution of the corresponding 

*

1t
*

2t  
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In the case of 48.3ft s  can obtain the optimal propulsion and optimum speed curve as 

shown in Figure 2 and Figure3, which may have: 

The first transition time
*

1 2.54t s , the second transition time
*

2 47.61t s , uniform-

speed is 2.27m / s, propulsion 0.92cu    

 

 

 

Figure 2. When given 48.3ft s  Promoting Optimal Propulsion Distribution 

 

Figure 3. When Given 48.3ft s Optimal Velocity Distribution 

We can see the optimal solution {1, ,0}cu  is a three-phase strategy, which divides the 

whole time range [0, ]ft  into three phases. The first stage means normalized driving force is 

constantly the maximum value 1, with speed accelerating rapidly from 0. Then at point 1t , the 

force changes to a steady value cu and now it’s the second phase. The speed stays steady 

accordingly. In the first two phases, human’s stored energy consumes away till all energy 0E  

consumes up and the time jumps to point 2t . The propelling force changes to 0. Finally in the 

third period, speed slows down. Contestants begin to sprint with the speed acquired before. 
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Yet, when they’re spurting, their speeds are decelerating and that they can reach the longest 

distance in the given time. As seen, when 48.3ft s , in the first and third phase, time 

consumes less while the second phase takes the most time, which is mostly used for uniform 

movement.  

   In the last phase of the optimal solution{1, ,0}cu , speed is decreasing, which is beyond 

our understanding. But it’s confirmed in real life. According to on-site observation and data 

statistics about swimming competition in the National Games, we find that of competitors 

ranking the first three positions in single 100/200m event, 50% chose to slow down, moving 

slower in the latter-range than the former. Besides, we presume human’s stored energy ( )E t  

is all consumed for horizontal thrust, but in reality, only a very small portion is converted to 

the force. It means effective output is too low, less than 10%. But it does not prevent us from 

the supposition that ( )E t  is the energy to be really used by human body. One more thing to 

stress is when we were obtaining the best solution and fitting E, 50/100/200m freestyle 

swimming records were used. Actually three records were enough to get the optimal solution 

in the case of limited time hops of driving force, and the shortest the distance is, the more 

precise E is and the distribution of driving force and speed conform better with real situation, 

because the model is created for short distance. Yet, the optimal solution remains{1, ,0}cu , 

what is different is 
*

1t  and
*

2t . Although {1, ,0}cu is deferred in the short distance, it coincides 

basically with real situation, significant to long and medium distance race, because in the 

race, participants make uniform movement, which will help save energy a lot and make much 

more scores.  

 

5. Conclusion 

This paper analyzes the problem is equivalent to the maximum distance, it establish a 

model of energy conversion is only suitable for short-distance situation, because in long 

distance-based human respiratory aerobic respiration, which is bound body to absorb aerobic 

respiration part of the extra energy, at this time if the same method is also used to analyze the 

model must be corrected. 

A model was created to describe the dynamics and energy conversion in short distance 

competitive swimming. Based on some hypotheses and constraints, the study made an 

optimization analysis of the distance traveled in a given time with optimal control theory. 

Using the records of the Olympics games and the results from previous research, an optimal 

solution of propulsion was derived. Correspondingly, the optimal three stage tactic for 

velocity distribution was put forward, which was in agreement with the practice. 
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