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Abstract E )

This paper investigates a gradient descent algorlthm enalty @ecurrent neural
network. The penalty we considered here is a term pro f the weights. Its
primary roles in the methods are to control the m‘ Wel s. After proving that
all of the weights are automatically bounded durl e |te ocess we also present
some deterministic convergence results for this %nmg method dlcatlng that the gradient
of the error function goes to zero(weak canv e) and elght sequence goes to a fixed
point(strong convergence), respectively &werical xample is provided to support the
theoretical analysis. é
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1. Introduction <) '\Q
Recurrent neural &s (RN ))}é a kind of networks that include one or more
fe@y

feedback connect| ese mechanisms allow RNN to learn to recognize and
generate not o ral patters,_but also spatial patterns [3]. As in the case of feedforward
neural networ gradientfnethods are proposed for training RNN [2] due to its simplicity,
either in an off-line(bat an online(incremental) manner. In batch training, weight
changes are accumulat r an entire presentation of the training data before being applied,
while online traini ates weights after the presentation of each training example. There
have many convergence results for the gradient methods for RNN. Ku and Lee [4]
mvestlgated yapunov convergence of the training process for a diagonal RNN with

mﬂmtel% raining samples by using an online gradient training algorithm. Kuan et al.

[5] stic process theory to establish some convergence results of probability nature

%\ e gradient training algorithm, based on the assumption that a very large number
of(or Sinfinitely many in theory) training samples. In particularly, the deterministic
convergence of the off-line gradient descent algorithm for the RNN with only finite number
of training samples have been analyzed in [6]and [8], under the condition that all of the
weights in the learning process are bounded. But generally, this condition is not easy to check
in practice. During the training iteration process, the weights might, though not necessarily,
become very large or even unbounded.

To overcome this difficulty, we introduce a penalty term into the error function, so as to
prevent the norm of network weights unbounded. For simplicity, we concentrate our attention
to a simple recurrent neuron. By the assumption that only the weights of the recurrent neuron,
rather than all the weights of the whole network are bounded, we show that the weights of the
network are actually bounded deterministically in the gradient descent learning process by
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adding a usual penalty term, which is proportional to the norm of the weights. In addition, we
give a convergence result of the gradient learning process, in which the above boundedness
result is applicable. Some techniques in Refs [9, 10] for the gradient method for training
feedforward neural networks have been exploited in the proof.

The remainder of this paper is organized as follows. The network architecture and the
gradient descent algorithm with a penalty term are described in the next section. Section 3
presents some lemmas and a convergence theorem. The detail proof of the theorem is
provided in section 4. Section 5 is devoted to a numerical example to support our theoretical
findings.

2. Network Structure and Learning Method with Penalty V
As shown in Figure 1, we consider a recurrent neuron with P external Ahp m&s and 1
. ’WP)T cRP1.
{1 eR be the
to form a (P+1)

output node. Denote the weight vector of the netw, r%y-w:( @ A
Let&! =(&!,---,&1) eR" be external input signal at ti &L i<J), awd
output at time j . For convenience, we concat Q{‘l d N

dimensional vector u’ as follows: x

<)

M)

F e 1. ,%@chture of P-1-1 Recurrent Neural Network

O

'& S —weu =Y w ) g @

i=1
be the in@lthe output node at time j. Then the outputs of the network are

Q ci=g(s'), j=12..,J ©)
@ g(t) is the given activation function. The initial condition is
¢"=0 @

We now describe the gradient descent algorithm for training this network. Let O’
denote the target output of the network at time j. Our error function with a penalty term has

the form

Let

E(w) =%Z[Oj -9(s")r +l||WIIZEZQJ-(S") +Allwll ®)

j=1
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Where g,(S’) =%[O" —g(S")?, 1>0 is the coefficient of the penalty term, and ||-|in

this paper stands for the Euclidean norm. Then starting with any initial value w’ , the weights
{w"} are updated iteratively by the gradient method as follows:

W =w" AW (6)
J - . .
AW" =-pE (W) :—U{Zg}(sm")(um*’ A pm"1)+2ﬂuwm] m=0,1-- (7)
j=1
where E, (W™) =%(W) , n isagiven learning rate, and
) i
i8] ©

—g(Sm’)[u””+W @
dw wen™ '\)
With initial conditions Q /\)
m,0 0

p =
3. Main results R

(10)

To analysis the convergence of the me Me sh I »ﬁe following assumptions.
(A) |g@®)]|, |g'(t)| and |g"(t)] Z) rmI & forall teR;
(A2) {w;}(m=0,1,2,---) are
Remark: We note that from (5 and As@tlon (A1) that|g; ()], [9;(®)| and |g](t)|

are also uniformly boyn any t wssumptlon (A2) says that |w;' | keep bounded
during the training p @35 his is often used in literature for a nonlinear iteration procedure

to guarantee the co nce % [7D

Theorem uppose that error function E(w) is given by (5), that the weight
sequence {w"} TS gener the algorithm (6) and (7) for any initial value w’eR"",
and that Assumptions ( d (A2) are valid, then there holds the following results:

@ EW™)< @ m=0,12,-;
(b) There gxists a’onstant E” > 0, such that

lim E(wé%’, lim || E,(W")||=0;
Q . m E(W ) )
re exists a constant M > 0, such that ||w" [|< n <M, m=0,12,-- ;

(d) Furthermore, if there exists a closed bounded region D < R"*satisfy{w"}. , D,
and the set b, ={w e D| E,,(w) = 0} contains only finite points. Then there existsw" € D, , such
that

lim w'=w",

The monotonicity of the error function sequence{E(w™)}is shown in Conclusion (a).
Conclusion (c) confirms that the weight sequence {w"}is bounded and its bound can be
controlled by A, which is an important outcome of adding the penalty. Conclusion (b)
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indicates that the convergence of E(w™)andE,(w™), which are called weak convergence.
The strong convergence of {w"}itself is guaranteed in Conclusion (d).

4. Proofs

We first present three useful lemmas for the convergence analysis. It indicates some
properties of the error function in the next lemma, which can be directly proved by induction
arguments and thus is omitted. Others, for convenience, we use C for a generic constant,
which may be different value even in the same equation. To simplify matters, we denote

AS™ I =gmti_g " AW" = W™ " 11

Lemmal. Suppose that (9)-(10) are satisfied, then

Z[Hg(sm' }(w )um (12)

k=0| I=j—k

Lemma 2. If Assumption (Al)-(A2) are valid, then ﬁc@ that
|AS™ P<C|lAaw" |7, m=0,1,... (13)

And there holds the following formula

AS™1 = AW™ [umJ+W p &”14_62 (14)
where %

-1 ja \
1 |:H Sml %1 @ (ASmJ -k (15)

5" = AW @g(sm@ —(wg)*JumI (16)
and ™ *isare GQ rbetw% ikgnd ™Ik,

mi _
%

k=1

Proof. By (11 (3)
ASm,j — Sm+l,j

=Aw" -.u™'F W'“*l[g

The use of the first

m+l i_

mJ 1] AWm umj +Wm+1[g(sm+1j 1) g(sm] 1)] (17)
aylor expansion and (17) to show
u™ g g (@ )AS" ]

)] |2:| AW" .um,j +W(l)n+1[gl(01m,j—l)ASm,j—l] |2 <C ” AW™ ”2 +C | Asm'j& |2

|AS™ P AW™ -u™ P<C |l Aw" |

We can prove by inductionon j that (13) holds.

Next, we begin to prove (14). Applying the second order Taylor expansion for (17), we get
the recursion formula of AS™!about j ,

Asmj AW umj +Wm+lgr(sm j—l)ASm -1 + ;Wmﬂ rr(em J—l)lASm j-1 |2 (18)

Where ™17 is a real number between S™*™*andS™I™. A combination of (12), (15)
and (16) leads to
AS™ = AW™ - [u™ + W] p™ ]+ 5™ + o
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The following lemma is a crucial tool for proving the strong convergence, which is
basically the same as Lemma 3.5.10 in [1]. Its proof is thus omitted.

Lemma 3. Let F:R™ — R"(m,n>1) be a continuous differentiable function on a bounded
closed regionQcR™, and Q,={z<Q|F(z) =0} contains finite points. If the sequence

(¥, cQ satisfy
i!im | 2 = 2" =0, lim |F(z“)|=0
Then there exists z” € Q, such that
lim =7 ‘\) ¢
Now, we embark on the proof of our main result. YY
Proof of Theorem 1. From (5) and the Taylor expansion, we have 6
E(Wm+1) _ E(Wm) \ L] @
J - .
= 29, (8™ ) =g, (S™I+ AU W™ P -l w" ) Q’Q V
j=1 V
J ) ) J
:Zg;(sm,J)ASm,J +lzgn(0m J)lASmJ | +ﬂ@ +AW ) A\’

wheree"” lies between gmib and Itfoll%}bm Lemma 2 that
E(Wm+1) E(w™)

—Zg (S™H[AwW" (u"“+w +5m‘ %Z(ZW +AW™) - Aw™ +Z5m‘
_i H(S™HAW™ - (U 1&" +AW )-Aw" +Z[g (S™N(SE™ + o)+ 6]

1
- 291@1 +w ?&Zﬂw }+/1||Awm I +Z[g;(sm"')(51"” +or )+ o]
j=1

(19)
where &™) =5 9] %AS”“ .
Employing ( ), conclude that
S g™ w200 — E, (") = —%Awm (20)
of Lemma 2 and Assumption (A1), (A2), we obtain that
2 oM = jil;%g}’(é?m’j) |AS™ < %COJC [l AW™ |P<C || Aw™ |2 (21)
> g (sm)er + 67 <Cllaw" | @22)
Then, a combinatiorji)f (19)-(22) leads to
EW™) ~EW") < (- ~C ~2) || aw" |} (23)
If the learning rate 5 is chosen to sa7t7isfy
O<n< c i 7 (24)
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We can derive

EW™)<EW"), m=12,.. (25)
Hence, Conclusion (a) has been proved.
Since the nonnegative sequence {E(w™)} monotonously decrease and is bounded below,

there must be a limit value E” >0, such that
linE W2 E (26)

m—o0

Letg= 1 C — 4, according to (23), it suffices to show

n °

0<EW™)<EW")-Allaw" |P<--- <E(W) —ﬂzrj‘,ll Aw*|f* Ysé)
Note that E(w™) >0, for anymeN we have : 6

O<Z||AW || [E(W) E(W””l)]< E \ & (28)

This implies the series of positive term ZH 5 conve@& hus

lim | A\N‘“@ (29)
The equality together with (7) derlv
lim || » _ I|m— N 0 (30)
Thus Conclusion (b) hold
By (5) and (25), we se%
W™ == 31)

@nclusion (c) is proved.
Conclusion (d) i ‘fborem 1 immediately results from a combination of Conclusion (b),
@vﬁ 3

Then let M =

equation (29) and

5. Numeri Xperiments
To ill the capacity of the learning algorithm used in this paper, a 2-dimensional
ication problem is considered. The tralnlng examples are
&' ={0,0}, 0" =0; & ={0,1}, 0* =1;
53 ={1, 1}, 0° =1; 5“ —{L, 0}, O* =1.
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Figure 2. Error function and norm of Flgvl;{f?03lth()err?;lstOfVY/\;el h met;nd
gradient with penalty, with parameter P 4

n=05 f=08 % @
We chose a RNN with 2-1-1 structure to tral \ ivation function

be g(x):l# the initial weight w be stoch % hose&ntjhl [ —0.5, 0.5]. The stop
+e
all

condition is when iteration steps are 5000, or rror is an 0.001. Others, we use
different value of A to training the network mpare with.
From Figure 2, we can see that t uare erg creases monotonically and the

corresponding gradient tends to zero of the algorithm in controlling the
weights is shown in Fig 3. W|th enalt the weights become larger and larger
during the iteration. After ad the penal ter the magnitude of the weight become
smaller obviously and finally tends to keep &

\@ Eﬁe\cf& on Error and Weight
n=08, B=05 B\ \@\ n=05,B=08 E lwiP
0002 2670483

A =0.000 A1=0.000 0.0013 125.3634
A=0.001 003 @.5700 A1=0.001 0.0558 35.1176
A=0.002 0.1404 629.6707 A1=0.002 0.0876 23.5590
1 =0.003 0.1668 21.1546 A1=0.003 0.1083 18.0018
A=0.004 0.1864 16.3868 A1=0.004 0.1247 14.6104
A =0.005 . 12.2963 A1=0.005 0.2019 13.3425
A =0.006 \u;1499 10.6067 A1=0.006 0.2146 11.2362
A=0.007 Q 0.1599 9.3162 4=0.007 0.2254 9.6970
A=0.0 0.1688 8.2975 A1=0.008 0.2348 8.5262
l l 0.1768 7.4728 A1=0.009 0.2430 7.6077
2 ‘@o 0.2504 6.8693 2=0010 0.1840 6.7916

Table 1 shows that the larger the coefficient A is, the smaller the weight becomes. Hence,
our approach provides a mechanism to effectively control the magnitude of the weight, which
is important for the neural networks.
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