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Abstract 

  
This paper investigates a gradient descent algorithm with penalty for a recurrent neural 

network. The penalty we considered here is a term proportional to the norm of the weights. Its 

primary roles in the methods are to control the magnitude of the weights. After proving that 

all of the weights are automatically bounded during the iteration process, we also present 

some deterministic convergence results for this learning methods, indicating that the gradient 

of the error function goes to zero(weak convergence) and the weight sequence goes to a fixed 

point(strong convergence), respectively. A numerical example is provided to support the 

theoretical analysis. 

Keywords: recurrent neural networks, gradient descent algorithm, penalty term, 

boundedness, convergence 

1. Introduction 

Recurrent neural networks (RNN) are a kind of networks that include one or more 

feedback connections. These feedback mechanisms allow RNN to learn to recognize and 

generate not only temporal patters, but also spatial patterns [3]. As in the case of feedforward 

neural networks, the gradient methods are proposed for training RNN [2] due to its simplicity, 

either in an off-line(batch) or an online(incremental) manner. In batch training, weight 

changes are accumulates over an entire presentation of the training data before being applied, 

while online training updates weights after the presentation of each training example. There 

have many convergence results for the gradient methods for RNN. Ku and Lee [4] 

investigated the Lyapunov convergence of the training process for a diagonal RNN with 

infinitely many training samples by using an online gradient training algorithm. Kuan et al. 

[5] use stochastic process theory to establish some convergence results of probability nature 

for the online gradient training algorithm, based on the assumption that a very large number 

of(or infinitely many in theory) training samples. In particularly, the deterministic 

convergence of the off-line gradient descent algorithm for the RNN with only finite number 

of training samples have been analyzed in [6]and [8], under the condition that all of the 

weights in the learning process are bounded. But generally, this condition is not easy to check 

in practice. During the training iteration process, the weights might, though not necessarily, 

become very large or even unbounded. 

To overcome this difficulty, we introduce a penalty term into the error function, so as to 

prevent the norm of network weights unbounded. For simplicity, we concentrate our attention 

to a simple recurrent neuron. By the assumption that only the weights of the recurrent neuron, 

rather than all the weights of the whole network are bounded, we show that the weights of the 

network are actually bounded deterministically in the gradient descent learning process by 
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adding a usual penalty term, which is proportional to the norm of the weights. In addition, we 

give a convergence result of the gradient learning process, in which the above boundedness 

result is applicable. Some techniques in Refs [9, 10] for the gradient method for training 

feedforward neural networks have been exploited in the proof. 

The remainder of this paper is organized as follows. The network architecture and the 

gradient descent algorithm with a penalty term are described in the next section. Section 3 

presents some lemmas and a convergence theorem. The detail proof of the theorem is 

provided in section 4. Section 5 is devoted to a numerical example to support our theoretical 

findings. 

 

2. Network Structure and Learning Method with Penalty   

As shown in Figure 1, we consider a recurrent neuron with P  external input nodes and 1 

output node. Denote the weight vector of the network by 1

0 1( , , , )T P

Pw w w w R   . 

Let 1( , , )j j j P

P R    be external input signal at time (1 )j j J  , and j R   be the 

output at time j . For convenience, we concatenate 1j   and j  to form a ( 1)P   

dimensional vector ju  as follows: 
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Figure 1. Architecture of P-1-1 Recurrent Neural Network 

Let  

                       1

0

1

P
j j j j

i i

i

S w u w w  



                              (2) 

be the input to the output node at time j . Then the outputs of the network are  

                      ( ), 1,2,...,j jg S j J                                (3) 

where ( )g t is the given activation function. The initial condition is 

                               
0 0                                      (4) 

   We now describe the gradient descent algorithm for training this network. Let jO  

denote the target output of the network at time j . Our error function with a penalty term has 

the form 

2 2 2

1 1

1
( ) [ ( )] || || ( ) || ||

2

J J
j j j

j

j j

E w O g S w g S w 
 

                   (5) 
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Where 21
( ) [ ( )]

2

j j j

jg S O g S  , 0   is the coefficient of the penalty term, and || || in 

this paper stands for the Euclidean norm. Then starting with any initial value 0w , the weights 

{ }mw  are updated iteratively by the gradient method as follows:  
1m m mw w w                                (6) 

, , , 1

0

1

( ) ( )( ) 2 , 0,1,
J

m m m j m j m m j m

w j

j

w E w g S u w p w m  



 
        

 
       (7) 

where
( )

( )
m

m

w

w w

E w
E w

w 





,   is a given learning rate, and  

,

m

m j j

w w
S S


 ,         ,

m

m j j

w w
u u


                      (8) 

, , , , 1

0( )[ ]
m

j
m j m j m j m m j

w w

d
p g S u w p

dw

 



                       (9) 

With initial conditions  

                                 ,0 0mp                                  (10) 

3. Main results  

To analysis the convergence of the method we shall need the following assumptions. 

(A1) | ( ) |g t , | ( ) |g t  and | ( ) |g t  are uniformly bounded for all t R ; 

(A2) 0{ }( 0,1, 2, )mw m   are bounded. 

Remark: We note that from (5) and Assumption (A1) that | ( ) |jg t , | ( ) |jg t  and | ( ) |jg t  

are also uniformly bounded for any t R . Assumption (A2) says that 0| |mw  keep bounded 

during the training process. This is often used in literature for a nonlinear iteration procedure 

to guarantee the convergence. (See, e.g. [7]) 

Theorem 1.  Suppose that the error function ( )E w is given by (5), that the weight 

sequence { }
m

w  is generated by the algorithm (6) and (7) for any initial value 0 1Pw R  , 

and that Assumptions (A1) and (A2) are valid, then there holds the following results:  

(a) 1( ) ( )m mE w E w  ,   0,1, 2,m  ; 

(b) There exists a constant 0E

 , such that  

*lim ( )m

m
E w E


 ,           lim || ( ) || 0m

w
m

E w


 ; 

(c) There exists a constant 0M  , such that 
( )

|| || , 0,1,2,
m

m E w
w M m


   ; 

(d) Furthermore, if there exists a closed bounded region 1PD R  satisfy 0{ }m

mw D

  , 

and the set 0 { | ( ) 0}wD w D E w   contains only finite points. Then there exists *

0w D , such 

that 
*lim m

m
w w


 . 

The monotonicity of the error function sequence{ ( )}mE w is shown in Conclusion (a). 

Conclusion (c) confirms that the weight sequence { }mw is bounded and its bound can be 

controlled by  , which is an important outcome of adding the penalty. Conclusion (b) 
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indicates that the convergence of ( )mE w and ( )m

wE w , which are called weak convergence. 

The strong convergence of { }mw itself is guaranteed in Conclusion (d). 

 

4. Proofs 

We first present three useful lemmas for the convergence analysis. It indicates some 

properties of the error function in the next lemma, which can be directly proved by induction 

arguments and thus is omitted. Others, for convenience, we use C  for a generic constant, 

which may be different value even in the same equation. To simplify matters, we denote 

               
, 1 , ,m j m j m jS S S   ,       

1m m mw w w                        (11) 

Lemma 1.  Suppose that (9)-(10) are satisfied, then   

 

1
, , ,

0

0

( ) ( )
jj

m j m l m k m j k

k l j k

p g S w u




  

 
  

 
                                 (12) 

Lemma 2.  If Assumption (A1)-(A2) are valid, then there is 0C   such that 

              
, 2 2| | || ||m j mS C w   ,    0, 1,...m  ; 1,2,...,j J                    (13) 

And there holds the following formula 

                 
, , , 1 , ,

0 1 2[ ]m j m m j m m j m j m jS w u w p                                (14) 

where 
11

, , 1 , , 2

1 0

1 1

1
( ) ( ) ( )( )

2

jj
m j m l m k m j k m j k

k l j k

g S w g S 


  

   

 
   

 
                  (15) 

11
, , 1 ,

2 0 0

1

( ) [(w ) (w ) ]
jj

m j m m l m k m k m j k

k l j k

w g S u


 

  

 
    

 
                     (16)  

and ,m j k  is a real number between 1,m j kS   and ,m j kS  . 

Proof. By (11), (2) and (3), we have 

 
, 1, , , 1 1, ,[ ]m j m j m j m m j m m j m jS S S w u w u u           

, 1 1, 1 , 1

0 [ ]m m j m m j m jw u w          , 1 1, 1 , 1

0 [ ( ) ( )]m m j m m j m jw u w g S g S            (17) 

The use of the first order Taylor expansion and (17) to show 

             , , 1 , 1 , 1

0 1[ ( ) ]m j m m j m m j m jS w u w g S         

where , 1

1

m j   lies between 1, 1m jS   and , 1m jS  . It results from Assumption (A1), (A2) and 

the Cauchy-Schwarz inequality that 
, 2 , 1 , 1 , 1 2

0 1| | | [ ( ) ] |m j m m j m m j m jS w u w g S        2 , 1 2|| || | |m m jC w C S      

Noting  

                    ,1 2 ,1 2 2| | | | || ||m m m mS w u C w       

We can prove by induction on j  that (13) holds. 

Next, we begin to prove (14). Applying the second order Taylor expansion for (17), we get 

the recursion formula of ,m jS about j , 

, , 1 , 1 , 1 1 , 1 , 1 2

0 0

1
( ) ( ) | |

2

m j m m j m m j m j m m j m jS w u w g S S w g S                 (18) 

Where , 1m j   is a real number between 1, 1m jS   and , 1m jS  . A combination of (12), (15) 

and (16) leads to  
, , , 1 , ,

0 1 2[ ]m j m m j m m j m j m jS w u w p          
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The following lemma is a crucial tool for proving the strong convergence, which is 

basically the same as Lemma 3.5.10 in [1]. Its proof is thus omitted. 

Lemma 3. Let : ( , 1)m nF R R m n  be a continuous differentiable function on a bounded 

closed region mR , and 0 { | ( ) 0}z F z    contains finite points. If the sequence 

1{ }
k

kz


   satisfy  
1lim || || 0, lim || ( ) || 0k k k

k k
z z F z

 
                  

Then there exists *

0z  , such that   

 *lim k

k
z z


 . 

   Now, we embark on the proof of our main result. 

Proof of Theorem 1.  From (5) and the Taylor expansion, we have  

    1( ) ( )m mE w E w   

1, , 1 2 2

1

[ ( ) ( )] (|| || || || )
J

m j m j m m

j j

j

g S g S w w 



     

, , , , 2

2

1 1

1
( ) ( ) | | (2 )

2

J J
m j m j m j m j m m m

j j

j j

g S S g S w w w 
 

          , 

where ,

2

m j  lies between 1,m jS   and ,m jS .  It follows from Lemma 2 that 
1( ) ( )m mE w E w   

, , , 1 , , ,

0 1 2 3

1 1

( )[ ( ) ] (2 )
J J

m j m m j m m j m j m j m m m m j

j

j j

g S w u w p w w w   

 

             

, , , 1 , , , ,

0 1 2 3

1 1

( ) ( ) (2 ) [ ( )( ) ]
J J

m j m m j m m j m m m m j m j m j m j

j j

j j

g S w u w p w w w g S   

 

              

, , , 1 2 , , , ,

0 1 2 3

1 1

( )( ) 2 || || [ ( )( ) ]
J J

m m j m j m m j m m m j m j m j m j

j j

j j

w g S u w p w w g S    

 

 
           

 
   

(19) 

where , , , 2

3

1
( ) | |

2

m j m j m j

jg S   . 

Employing (7), we conclude that 

, , , 1

0

1

1
( )( ) 2 ( )

J
m j m j m m j m m m

j w

j

g S u w p w E w w






                        (20) 

By virtue of Lemma 2 and Assumption (A1), (A2), we obtain that 

, , , 2 2 2

3 0

1 1

1 1
( ) | | || || || ||

2 2

J J
m j m j m j m m

j

j j

g S C JC w C w 
 

                     (21) 

                   , , , 2

1 2

1

( )( ) || ||
J

m j m j m j m

j

j

g S C w 


                          (22) 

Then, a combination of (19)-(22) leads to 

1 21
( ) ( ) ( ) || ||m m mE w E w C w



                             (23) 

If the learning rate   is chosen to satisfy 

                        
1

0
C




 


,                                   (24) 
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We can derive  
1( ) ( ), 1,2,...m mE w E w m                              (25) 

Hence, Conclusion (a) has been proved. 

Since the nonnegative sequence { ( )}mE w  monotonously decrease and is bounded below, 

there must be a limit value * 0E  , such that 

                      *l i m ( )
m

E w E


                                      (26) 

Let
1

C 


   , according to (23), it suffices to show 

1 2 0 2

0

0 ( ) ( ) || || ( ) || ||
m

m m m k

k

E w E w w E w w 



                    (27)  

  Note that (w ) 0mE  , for any m N , we have 

2
0 1 0

0

1 1
0 [ ( ) ( )] ( )

m
k m

k

w E w E w E w
 





                       (28) 

This implies the series of positive term 2

0

|| ||k

k

w




  convergence. Thus 

                            lim || || 0m

m
w


                                 (29) 

The equality together with (7) derives 

1
lim || ( ) || lim || || 0m m

w
m m

E w w
 

                        (30) 

Thus Conclusion (b) holds. 

By (5) and (25), we see that  
0

2 ,

1

1 ( ) ( )
|| || ( ) ( )

mJ
m m m j

j

j

E w E w
w E w g S

  

 
    

 
                   (31) 

Then let 
0( )E w

M


 ,  Conclusion (c) is proved. 

Conclusion (d) in Theorem 1 immediately results from a combination of Conclusion (b), 

equation (29) and Lemma 3. 

 

5. Numerical Experiments 

To illustrate the capacity of the learning algorithm used in this paper, a 2-dimensional 

linear classification problem is considered. The training examples are  

                  1 1{0, 0}, 0O   ;      2 2{0, 1}, 1O   ; 

                  3 3{1, 1}, 1O   ;      4 4{1, 0}, 1O   . 
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Figure 2. Error function and norm of 
gradient with penalty, with parameter 

0.5, 0.8    

Figure 3. Norms of weight, with and 
without penalty, with parameter 

0.5, 0.8    

We chose a RNN with 2-1-1 structure to training. Take the activation function 

be
1

( )
1 x

g x
e 




, the initial weight w  be stochastic chosen within [ 0.5, 0.5] . The stop 

condition is when iteration steps are 5000, or the error is small than 0.001. Others, we use 

different value of   to training the network and compare them with. 

From Figure 2, we can see that the square error decreases monotonically and the 

corresponding gradient tends to zero. The effectiveness of the algorithm in controlling the 

weights is shown in Fig 3. Without the penalty term, the weights become larger and larger 

during the iteration. After adding the penalty term, the magnitude of the weight become 

smaller obviously and finally tends to keep steady. 

Table 1. Effect of   on Error and Weight 

0.8, 0.5         E          2|| ||w                0.5, 0.8          E          2|| ||w  

0.000        0.0024       267.0193                 0.000         0.0013       125.3634  
0.001        0.1003       49.5700                  0.001         0.0558       35.1176  
0.002       0.1404       29.6707                  0.002        0.0876       23.5590  
0.003        0.1668       21.1546                  0.003         0.1083       18.0018  
0.004        0.1864       16.3868                  0.004         0.1247       14.6104  
0.005        0.1383       12.2963                  0.005         0.2019       13.3425  
0.006        0.1499       10.6067                  0.006         0.2146       11.2362  
0.007        0.1599       9.3162                  0.007         0.2254       9.6970  
0.008        0.1688       8.2975                   0.008         0.2348       8.5262  
0.009       0.1768       7.4728                   0.009         0.2430       7.6077  
0.010        0.2504      6.8693                   0.010         0.1840       6.7916  

Table 1 shows that the larger the coefficient   is, the smaller the weight becomes. Hence, 

our approach provides a mechanism to effectively control the magnitude of the weight, which 

is important for the neural networks. 
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