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Abstract :; Y’

ns has made
the efficient analysis and processing of human motion data ectivéln@se these databases
i i ture based on the
tions. Moreover, the

3D spatial-temporal characteristic should be extr om hugan
motion data should be re-expressed by sparse rep ese tatlon«%é ize the projection from
high dimensional data to a low-dimensional s ce. Th nt motions should then be
recognized and classified to obtain the auto ecogn ;band automatic retrieval of 3D
human motions.
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1. Introduction

Currently, the analysis o huma '\n data lacks a complete and effective analysis
and processing techniqu refore, ge-scale 3D human motion databases cannot be
applied to the field o ital media efficiently, quickly, automatically, and intelligently.

3D human motj ta coﬂg any semantics, such as object, event, behavior, and
scenario. Thm@a erlstlcs of magnanimity, non-structure, high-dimension, and multistage
greatly challe manti rehen5|on

In recent years, the ination of compressed sensing theory and variable selection
method (henceforth Sbie selection in this application when high-dimensional data (e.g.,
image) are analyz@as been applied to form a more effective “sparse representation” of
media data, which Y¥iave become a research hotspot in the fields of computer vision and
machine lea$among others. Compressed sensing adopts the priori knowledge that “data
are spar can be compressed” to reconstruct signal. David Donoho and Emmanuel

Stanford University and Terence Tao from University of California, Los
r\% conducted several representative studies involving stochastic matrix, signal
restoration, and sparse measurement, among others [1-2].

The analysis of 3D human motion data to recognize actions is a challenging problem.
Matching multi-dimensional spatio-temporal movement patterns against large-scale 3D
human motion databases is difficult to achieve efficiently. 3D human motion data involves
context such as appearance, background, viewpoint, event, behavior and scenario, and motion
recognition typically requires interpretation of unstructured, high-dimension and multistage
feature sequences. Until now, several motion features have been proposed: [3] introduce the
Energy-based Least Square Twin Support Vector Machine (ELS-TSVM) algorithm for
human action recognition which can handle unbalanced datasets' problem. The combined
saliency of motion and appearance based on kernel histogram [4] is used in human action
recognition. [5] have extended the method of selecting the most discriminative features using
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the AdaBoost algorithm to the human-action recognition task. [6] builds Gaussian mixture
model(GMMSs) based on the views of each object and then accomplishes 3D retrieval and
recognition based on the distance between GMMs.

In the course of data analysis, when the sample feature dimensions are far greater than the
sample numbers, the conventional approach is unable to forecast and identify the data
precisely. Tibshirani of Stanford University and Breiman of University of California,
Berkeley, put forward least absolution shrinkage theory and selection operator theory,
respectively, nearly at the same time to pose 11-norm constraints on the characteristic
coefficient, prompting the greatest sparseness of the selected feature to guarantee result
stability and improve interpretability [7-8]. The variable selection method repregenteds by
Lasso has become the main means to analyze the high-dimensional data Mtics.
Currently, related research focuses on how to design a better target optimi at@(unction,
more interpretable regularization factors, and more effectlve solution algorl%

In consideration of the advantages of compressed se n'd var ction in data
processing, Wright and Ma Yi from the University of Illin . algn introduced

them into face recognition and proposed the new idking of ondycting face recognition
3 many le features, finding a
rom high- n3|onal features and then

through I1-norm constraints [10]. As media data
way to search for an effective sparse representatiQn

to study the theory and method of seman erstarad of media data has become a
development tendency of the current comf |5|on and rn recognition field applied to
visional word selection [11], image ion nd image restoration [13], among
others. In terms of recognizing t W0 archers from the NEC California
Laboratory and the research g%) of. Tho - Huang from the University of Illinois,
Urbana Champaign, collaborate

apply.sp representation to visual object recognition,
winning them the first prize imthe PAS '\ﬁal Obiject Classification Challenge [14].

In this paper, we mtro,@ne basi ods and approaches of motion semantics based
on the sparse repres aeg echanism 0f the 3D spatial-temporal features (SRSF) and focus
on solving the rapid e&y is arkdg%retability problems of 3D human motion data.

2. Extractio Mol&@ata Features

Regard the capture an motion data M as the human posture sequence obtained
through sampling;& te time point. Every sampling point is a frame and the posture of

every frame is det ed by 16 articulation points jointly. In this way, at random frame time
i, the huma tyur is expressed as: F, = (p”,r®,r®, .., r%®y, in this equation: p® 1 pP°®

and rY1 R resent the place and direction of Root articulation point respectively, i.e.

tra%@quantlty and rotation quantity; r'”? R® j 2..16 represent the direction

(rota guantity) of non-Root articulation point. According to the interrelation of all
articulation points of human skeleton, at random frame time i, the place of random non-Root
articulation point N, of human skeleton can be obtained through formula (1) through 3D

transformation formula:

() _ (root) o (root) (grandparent) 5 (grandparent) (parent) o (parent) _ (j)
e R R ()T, R P, 1)

In this formula, p{” represents the world coordinate of articulation N, at time i;
7,0 R represent the translation and rotation transformational matrix of Root

articulation point at time respectively which are created by p®,r® ; 1, represents the

translation transformational matrix of N, (N, is the random node from the root node
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and N, node) generated by the translation quantity of the local coordinate system of its parent

articulation point at initial time; R/’ represents the rotation transformational matrix of
articulation point N, (value of N, is the same as above) which is generated by r* ; p(”

represents at initial time, the translation quantity of N, under the local coordinate system of its

parent articulation point.

This article extracts the frames with same local spatial feature at single articulation point to
combine and form a space set on the basis of extraction of spatial-temporal feature to extract a
keyspace which can represent transformation law of motion space, thus realizing reductiop of

the first step for original motion data. While based on the independence of spacial e of
every articulation point, the index lists will be established for 16 articulation poi human
body which are for calculating the local similarity of every articulatio int: Then the

calculated amount will be reduced greatly comparing wit

D algorithfn, der to obtain
arison of%i)n similarity, the
mple, “adecision tree can be get

through learning and training of the original mot d@ en decision tree; the
nodes of decision tree are properties of the articulati points.%g yer is higher, the impact
of this node on the motion matching result is é(er. In this way, we can learn the impact
degree of every articulation point on overal I@ n motio s parameterizing the weight of
articulation point’s impact on the motior%en cond imilarity calculation for the motion
example Q and index list of the artic r&g{ poi %

base. If the result is not similar; d be passed-and conduct similarity calculation for

motion B directly. Only whe similarity of the articulation point with larger weight is

within range of a valve-valug,can we com e subsequent articulation point. Large parts
of meaningless calcula:cio% be avo@he process of retrieval.

rgest weight of motion A in motion

2.1. Calculation of}&}dimen ianal Space
We calculam orld coordipate” of every articulation point and get a 51-dimensional

data through la 1. ving the Root articulation point, 16 articulation points, 48-
dimensional data will be ned.
The motion is expre as:
M,= (F,F,, .., F...F.)
%, Fi= (pil’piz""’pij""‘pile) (2)
Q Py = (X,y.2)

A%Qormulas, n is frame number of motion data; Pij is the world coordinate of the j
articulation point of the i frame.

We utilize this 48-dimensional data to generate spatial alteration of every articulation
point. Firstly, define the spacial setss, and s, respectively for upper half and bottom half

of human body, s,,,,.S, ? S,,.i 1,2,..m; S, 2 S, . j 1,2,..,m;marespacial number

ki down

of the spacial sets. Now we will divide the upper half and bottom half into equal spacial sets
ands,, s, is independent space of upper and bottom spacial sets. Regard Root as benchmark

and make the articulation points above Root nodes correspond tos  and the articulation
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points below Root nodes correspond tos, . When the articulation points of upper limb, the

down

spacial transformation will correspond to the value of s, .
Several partition rules will be defined below:

1, N,in front of N ; 1, N, leftto N ;
front (N, N ;)= left (N, N ;) =
0, N, behind of NJ. 0, N, rightto Nj
1, N, above N 1, N, distance from N ;> A
high(Ni,Nj): far(Ni,Nj):
0, N, below N ; 0, N, distance from N ; A e
Define the spacial transformation of Mtion

B = (b,b,,....b,)¢, b, = (5,,,8,,,-.-, ;1) - b; IS the spacial transformati@ rticulation
point i;s; represents spacial transformation of frame j of.articulatio
represents spacial transformation of articulation point a @u imb;

i0

i
perdim
The Table 1 is the spacial rules of spacial tran@u n ofs,; ted using the above
definition rules. x
Table 4, %Rulé
4GBt Ruéa)

i. Assumes,

. Front \@ph Far
' (NN POV N ADNLN,) | (NN,
S, = Sut 2 L hg 1 1
L R W\/ ! !
. R M.
s, =5 AN 0 S\ 0 0 0
\) d
While rule of=ffont, | ann is obtained through 48-dimensional data of formula (1). As
the calculation rules ar g different nodes of the same frame, the calculation amount is

human body from initial motion data. Every locality of this spacial transformation directs

small. Therefore we ate all articulation points and obtain the spacial transformation of
at every artia*lgign éoint and is relatively independent.

2.2.Spa Qpresentation of Motion

@ analysis and processing of motion data, we use a n-dimensional vector m € R" to
represént a motion sequence. The vector here can be obtained through arranging all
articulation point data in sequence and can be a feature vector of motion. In this way, assume

that we have the y sequences of different roles of a motion, such asm ,m,,..m e R" .Fora

new motion sequence m € R".

y
m=> gm 3)
i=1
In this formula, g, is linear representation coefficient to be written as matrix form:
myxl = Tyxmxmxl (4)
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X is coefficient vector. Then we will present the sparse representation of motion based on
this compactness representation. Under the practical circumstance, what stored in the
database is the multi-roles of all motions. In this section, we will give the global
representation of the motion sequence to be recognized in the overall database.

Assume there are k motions in database, the No. i motion has y; motions of different roles.
For the No. i motion, it will extract yi n-dimensional feature vectors which are

m,,m,,..m e R".The first subscript i represents the No. i motion and the second subscript j
is its No. j motion sequence Then we will adopt matrix to represent these
vectors:T, = [m,m,,..m ]e R""" . Thus, correspond a matrix T, to every motio qu nce.

If there are k motion sequences, there will be k matrix: T;T,;...; Connect?a;e matrix
series to get a large matrix of all motions in the overall database: 6

T=[T1;T2;..Tk]e R"” ﬁ @
Now we are considering the global representatiop-q aotion W to be recogmzed.
i u

Assume the to-be-recognized motion comes from e and its feature is f,

otionseq
then put this motion sequence in the global databise ough e@?@):

f_Zﬂm _ﬁm + B, m@f‘) (6)
The contributions made by the sa %OIIO %@é listed as the above equation and
.”?3 +0-m

different people makes 0 contrib o n we
F=0- m,,+ ..+ 0 Myt Mg T J+1l+...+0~m (7)
The above formula is t bal rep@%{on of the motions to be recognized in the data

yu1 (8)

re¥are numerous motion types in the database, namely k is
entation given by equation (8) is sparse. As there are only yi

imensional vector x andy, /y~1/k " 1, namely n & n. In

other words, the n elements occupy small parts in vector x. So far, we have shown the
sparse representat the motion to be recognized.

For the nput when it is represented by global motion linear, only one motion will
make great tributions to different sequences of juese and contributions made by the rest
motions @ arly zero (o is inexact as there will be errors).

base. It is easy to wr\ ix form:
We point 0@ when
relatively lar li

nonzero elements in t

2.3. ion Recognition based on Sparse Representation

In the course of practical motion recognition operation, a database containing multi-roles
motion sequence is given and input a motion sequence to be recognized. It requires deciding
what kind of motion in the database this sequence belongs to. But in practical situation, as the
motions are multiple in the database, namely n is very large. While considering the
complexity of calculation, the valuation of dimension degree of motion features will not be
very high, namely m is relatively small, then under normal circumstances, m < n or even m «
n. Now the equation is a indefinite equation, i.e. the unknown number (far) more than number
of equations and the equation is unable to obtain a unique solution. In this case, it require
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adding certain limiters to make solution problems of equation become a optimization
problem. The common limiter is minimization of ¢, form, i.e. least square method.

However both theory and experiment prove that least square method is not favorable for
the sparse representation. In fact, the reference [15] has further proven that the limiter given
by "0 norm minimization is optimal, i.e. Do not transform the solution of equation (8) to the
next optimization problem:

arg r;tin ||ﬂ||0 subjectto X g =y 9

As it is an NP-hard problem which cannot be solved directly. Based on the compression
sensing theory raised by Donoho, if the signal is sparse enough, then th&\solufion

of ¢ minimization problem is equal to solution of ¢ minimization problem. nigue
sparsest solution can be obtained through minimizing ¢ norm and transforr t following

lasso problem: 6 .

arg mm—”y— X ﬂ

(10)

The compressional sampling theory can prove that xa)tlon problem given by
equation (10) can approach equation (9) p&‘n ab|I|ty of 1, i.e. the error
probability of these two optimizations app ate 0. Th e, what we solve in fact is the

¢ norm optimization problem of equatj ) So @utlon of optimization problem of ¢
m|n|m|zat|0n can be obtained thr g@ ing L blem.

3. Experimental Results an Analy %

To compare the recog eff|C|e he classifier based on spatial-temporal features
and sparse represent SF) over mon motions, we adopt common 25 motion types
to make analy5|s as ¢ n, the most representative retrieval method based on
clustering hier trleval ( T) will be applied as reference. The results are shown
in Figure 1 be ppar. he retrieval of common motion is quicker and preciser. Table
2 shows the time compa&etween 2 retrieval methods. Table 3 indicates the retrieval

precision of 2 method ddition, the speed and efficiency of CIT depend on the scale of
the database. With ion of database scale, the time for retrieval will increase greatly, but
the recognition ef cy of this method is irrelated to scale of database basically. Because

calculation xity, the recognition speed will then be faster.

Q)O

the sparse @%;entation has greatly reduce the dimension degree of motion data and
CCiyple
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Figure 1. Comparison of the Performance o n |on&/lﬁ od with SRSF
Table 2. Rec ion Ti x

Recognltlonkhg@econd) \V
Motion Motion ﬁgsmtlon b)\ jon recognition by
clips CIT F

N A
N=200 ) 7| N=800¢ N, N=200 N=800
A(52) 41,83255 | 45467s Y| 0.7189s | 0.8134s
B(101) 201155 | 555(Bs | 0.8235s | 0.9102s

C(163) CJ| 1.9456 135 | 1.2381s | 1.3456s
R&gdx\ 20945& 6.5984s | 1.3453s | 1.5035s

(-\'Q T%@ Recall and Precision
Motidg,_/ | Re Precision
clips (XQ
SRSF CIT SRSF
walk A0 0.96 0.88 0.95
run AL HO75 0.95 0.85 0.97
ju 71052 0.91 0.71 0.90
b(% 0.49 0.89 0.45 0.88
V - - - -
e@malyzes the direct original data processing and compares the two methods of
con g retrieval and processing after data dimensional degree reduction through
traditional ISOMAP dimensionality reduction and sparse representation. The results show

that our recognition efficiency is far higher that direct processing and the time for training is
less than the traditional dimensionality reduction.

Table 4. Training Time

Original motion feature 65.1145s | 63.2135s 80.9145s 97.139%4s
ISOMAP D-data 9.4985s | 10.2571s 12.6590s 14.6914s
Data by SRSF 5.9981s | 7.4510s 9.1240s 10.1198s
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