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Abstract 

The emergence of a large number of databases for capturing 3D human motions has made 

the efficient analysis and processing of human motion data to effectively use these databases 

a new challenge. To reduce high-dimension complexity, a dimensional feature based on the 

3D spatial–temporal characteristic should be extracted from human motions. Moreover, the 

motion data should be re-expressed by sparse representation to realize the projection from 

high dimensional data to a low-dimensional subspace. The different motions should then be 

recognized and classified to obtain the automatic recognition and automatic retrieval of 3D 

human motions. 
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1. Introduction 

Currently, the analysis on 3D human motion data lacks a complete and effective analysis 

and processing technique. Therefore, the large-scale 3D human motion databases cannot be 

applied to the field of digital media efficiently, quickly, automatically, and intelligently.  

3D human motion data contain many semantics, such as object, event, behavior, and 

scenario. Their characteristics of magnanimity, non-structure, high-dimension, and multistage 

greatly challenge semantic comprehension. 

In recent years, the combination of compressed sensing theory and variable selection 

method (henceforth feature selection in this application when high-dimensional data (e.g., 

image) are analyzed) has been applied to form a more effective “sparse representation” of 

media data, which have become a research hotspot in the fields of computer vision and 

machine learning, among others. Compressed sensing adopts the priori knowledge that “data 

are sparse and can be compressed” to reconstruct signal. David Donoho and Emmanuel 

Candes from Stanford University and Terence Tao from University of California, Los 

Angeles, conducted several representative studies involving stochastic matrix, signal 

restoration, and sparse measurement, among others [1-2]. 

The analysis of 3D human motion data to recognize actions is a challenging problem. 

Matching multi-dimensional spatio-temporal movement patterns against large-scale 3D 

human motion databases is difficult to achieve efficiently. 3D human motion data involves 

context such as appearance, background, viewpoint, event, behavior and scenario, and motion 

recognition typically requires interpretation of unstructured, high-dimension and multistage 

feature sequences. Until now, several motion features have been proposed: [3] introduce the 

Energy-based Least Square Twin Support Vector Machine (ELS-TSVM) algorithm for 

human action recognition which can handle unbalanced datasets' problem. The combined 

saliency of motion and appearance based on kernel histogram [4] is used in human action 

recognition. [5] have extended the method of selecting the most discriminative features using 
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the AdaBoost algorithm to the human-action recognition task. [6] builds Gaussian mixture 

model(GMMs) based on the views of each object and then accomplishes 3D retrieval and 

recognition based on the distance between GMMs. 

In the course of data analysis, when the sample feature dimensions are far greater than the 

sample numbers, the conventional approach is unable to forecast and identify the data 

precisely. Tibshirani of Stanford University and Breiman of University of California, 

Berkeley, put forward least absolution shrinkage theory and selection operator theory, 

respectively, nearly at the same time to pose 11-norm constraints on the characteristic 

coefficient, prompting the greatest sparseness of the selected feature to guarantee result 

stability and improve interpretability [7-8]. The variable selection method represented by 

Lasso has become the main means to analyze the high-dimensional data of statistics. 

Currently, related research focuses on how to design a better target optimization function, 

more interpretable regularization factors, and more effective solution algorithms [9]. 

In consideration of the advantages of compressed sensing and variable selection in data 

processing, Wright and Ma Yi from the University of Illinois, Urbana Champaign, introduced 

them into face recognition and proposed the new thinking of conducting face recognition 

through l1-norm constraints [10]. As media data have many extractable features, finding a 

way to search for an effective sparse representation from high-dimensional features and then 

to study the theory and method of semantic understanding of media data has become a 

development tendency of the current computer vision and pattern recognition field applied to 

visional word selection [11], image annotation [12], and image restoration [13], among 

others. In terms of recognizing the real world, researchers from the NEC California 

Laboratory and the research group of Prof. Thomas S. Huang from the University of Illinois, 

Urbana Champaign, collaborated to apply sparse representation to visual object recognition, 

winning them the first prize in the PASCAL Visual Object Classification Challenge [14]. 

In this paper, we introduce the basic methods and approaches of motion semantics based 

on the sparse representation mechanism of the 3D spatial–temporal features (SRSF) and focus 

on solving the rapid analysis and interpretability problems of 3D human motion data. 

 

2. Extraction of Motion Data Features 

Regard the captured human motion data M as the human posture sequence obtained 

through sampling at discrete time point. Every sampling point is a frame and the posture of 

every frame is determined by 16 articulation points jointly. In this way, at random frame time 

i, the human posture is expressed as: (1) (1) ( 2 ) (1 6 )
( , , , ..., )

i i i i i
F p r r r= , in this equation: (1) 3

i
p PÎ  

and (1) 3

i
r RÎ  represent the place and direction of Root articulation point respectively, i.e. 

translation quantity and rotation quantity; ( ) 3
, 2 ...1 6

j

i
r R j?  represent the direction 

(rotation quantity) of non-Root articulation point. According to the interrelation of all 

articulation points of human skeleton, at random frame time i, the place of random non-Root 

articulation point
j

N  of human skeleton can be obtained through formula (1) through 3D 

transformation formula:                 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0
... ( )

j ro o t ro o t g ra n d p a ren t g ra n d p a ren t p a ren t p a ren t j

i i i i i
p T R T R t T R p=  (1) 

In this formula, ( )j

i
p represents the world coordinate of articulation

j
N at time i; 

( ) ( )
,

ro o t ro o t

i i
T R  represent the translation and rotation transformational matrix of Root 

articulation point at time respectively which are created by (1) (1)
,

i i
p r ; ( )

0

k
T represents the 

translation transformational matrix of
k

N  (
k

N is the random node from the root node 
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and
j

N node) generated by the translation quantity of the local coordinate system of its parent 

articulation point at initial time; ( )k

i
R represents the rotation transformational matrix of 

articulation point
k

N  (value of
k

N  is the same as above) which is generated by k

i
r ; ( )

0

j
p  

represents at initial time, the translation quantity of
j

N under the local coordinate system of its 

parent articulation point. 

This article extracts the frames with same local spatial feature at single articulation point to 

combine and form a space set on the basis of extraction of spatial-temporal feature to extract a 

keyspace which can represent transformation law of motion space, thus realizing reduction of 

the first step for original motion data. While based on the independence of spacial feature of 

every articulation point, the index lists will be established for 16 articulation points of human 

body which are for calculating the local similarity of every articulation point. Then the 

calculated amount will be reduced greatly comparing with DTW algorithm. In order to obtain 

contributions made by the all index lists nodes during comparison of motion similarity, the 

way of a serial of machine learnings can by adopted, for example, a decision tree can be get 

through learning and training of the original motion data of data driven decision tree; the 

nodes of decision tree are properties of the articulation points. The layer is higher, the impact 

of this node on the motion matching result is greater. In this way, we can learn the impact 

degree of every articulation point on overall human motion, thus parameterizing the weight of 

articulation point’s impact on the motion. Then conduct similarity calculation for the motion 

example Q and index list of the articulation point with largest weight of motion A in motion 

base. If the result is not similar, A could be passed and conduct similarity calculation for 

motion B directly. Only when the similarity of the articulation point with larger weight is 

within range of a valve-value can we compare the subsequent articulation point. Large parts 

of meaningless calculations can be avoided in the process of retrieval.  

 

2.1. Calculation of Three-dimensional Space 

We calculate the world coordinate of every articulation point and get a 51-dimensional 

data through formula 1. Removing the Root articulation point, 16 articulation points, 48-

dimensional data will be obtained.  

The motion is expressed as:  

1 2
( , , ..., , ..., )

s i n
M F F F F=  

1 2 1 6
( , , . . . , , . . . , )

i i ji i i
F p p p p=  

( , , )
i j

p x y z=  

(2) 

In these formulas, n is frame number of motion data;
i j

p  is the world coordinate of the j 

articulation point of the i frame.  

We utilize this 48-dimensional data to generate spatial alteration of every articulation 

point. Firstly, define the spacial sets
u p

S and 
d o w n

S  respectively for upper half and bottom half 

of human body, , , 1, 2 , ... ;
d o w n k i u p

S S S i m? , 1, 2 , ..., ;
l j d o w n

S S j m? m are spacial number 

of the spacial sets. Now we will divide the upper half and bottom half into equal spacial sets 

and ,
k i l j

S S is independent space of upper and bottom spacial sets. Regard Root as benchmark 

and make the articulation points above Root nodes correspond to
u p

S  and the articulation 
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points below Root nodes correspond to
d o w n

S . When the articulation points of upper limb, the 

spacial transformation will correspond to the value of
k i

S . 

Several partition rules will be defined below:   
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Define the spacial transformation of motion 

1 2
( , , . . . , )

n
B b b b ¢= ,

1 2 1 6
( , , ..., )

i i i i
b s s s= .

i
b is the spacial transformation of articulation 

point i;
i j

s  represents spacial transformation of frame j of articulation point i. Assume
a j

s  

represents spacial transformation of articulation point a of the upper limb: 

The Table 1 is the spacial rules of spacial transformation of
a j

s  created using the above 

definition rules.  

Table 1. Space Rules 

aj
s

 

Front

1
( , )

a ra
N N  

Left

1
( , )

a ra
N N  

High

1
( , )

a ra
N N  

Far

1
( , )

a ra
N N  

1a j k
s s  1 1 1 1 

2a j k
s s  0 1 1 1 

… … … … … 

a j k m
s s  0 0 0 0 

 

While rule of , ,fro n t le ft h ig h is obtained through 48-dimensional data of formula (1). As 

the calculation rules are among different nodes of the same frame, the calculation amount is 

small. Therefore we calculate all articulation points and obtain the spacial transformation of 

human body from the initial motion data. Every locality of this spacial transformation directs 

at every articulation point and is relatively independent. 

 

2.2. Sparse Representation of Motion 

During analysis and processing of motion data, we use a n-dimensional vector 
n

m R
 
to 

represent a motion sequence. The vector here can be obtained through arranging all 

articulation point data in sequence and can be a feature vector of motion. In this way, assume 

that we have the y sequences of different roles of a motion, such as
1 2
, , ...

n

y
m m m R  . For a 

new motion sequence 
n

m R . 

1

y

i i

i

m m



   (3) 

In this formula,
i

 is linear representation coefficient to be written as matrix form: 

1 1y y m m
m T x

  
  (4) 

 

 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 
Vol.9, No.9 (2014) 

 
 

Copyright ⓒ 2014 SERSC   5 

X is coefficient vector. Then we will present the sparse representation of motion based on 

this compactness representation. Under the practical circumstance, what stored in the 

database is the multi-roles of all motions. In this section, we will give the global 

representation of the motion sequence to be recognized in the overall database.  

Assume there are k motions in database, the No. i motion has yi motions of different roles. 

For the No. i motion, it will extract yi n-dimensional feature vectors which are 

1 2
, , ...

n

y
m m m R . The first subscript i represents the No. i motion and the second subscript j 

is its No. j motion sequence. Then we will adopt matrix to represent these 

vectors:
1 2

[ , , ... ] i
n y

i y
T m m m R


  . Thus, correspond a matrix 

i
T  to every motion sequence. 

If there are k motion sequences, there will be k matrix: 
1 2
; ; ...;

k
T T T . Connect these matrix 

series to get a large matrix of all motions in the overall database:    

[ 1; 2; ... ]
n y

T T T T k R


   (5) 

Now we are considering the global representation of a motion sequence to be recognized. 

Assume the to-be-recognized motion comes from No. i motion sequence and its feature is f, 

then put this motion sequence in the global database through equation (6):  

, 1 ,1 ,

1

. . .

j

j j

y

i j i j y j y

i

f m m m  



     (6) 

The contributions made by the same motion will be listed as the above equation and 

different people makes 0 contribution, then we will have:  

1,1 1, 1 1 ,1 2 ,2 , 1 ,1 ,
0 ... 0 ... 0 ... 0

i j j k
j y j j y j y j k y

F m m m m m m m  
  

               
(7) 

The above formula is the global representation of the motions to be recognized in the data 

base. It is easy to write as matrix form: 

1 1n n y y
f T x

  
  (8) 

We point out that when there are numerous motion types in the database, namely k is 

relatively large, the linear representation given by equation (8) is sparse. As there are only yi 

nonzero elements in the y-dimensional vector x  and / 1 / 1
i

y y k , namely 
i

n n . In 

other words, the nonzero elements occupy small parts in vector x. So far, we have shown the 

sparse representation of the motion to be recognized. 

For the motion input, when it is represented by global motion linear, only one motion will 

make greater contributions to different sequences of juese and contributions made by the rest 

motions are nearly zero (o is inexact as there will be errors). 

 

2.3. Motion Recognition based on Sparse Representation 

In the course of practical motion recognition operation, a database containing multi-roles 

motion sequence is given and input a motion sequence to be recognized. It requires deciding 

what kind of motion in the database this sequence belongs to. But in practical situation, as the 

motions are multiple in the database, namely n is very large. While considering the 

complexity of calculation, the valuation of dimension degree of motion features will not be 

very high, namely m is relatively small, then under normal circumstances, m < n or even m ≪ 

n. Now the equation is a indefinite equation, i.e. the unknown number (far) more than number 

of equations and the equation is unable to obtain a unique solution. In this case, it require 
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adding certain limiters to make solution problems of equation become a optimization 

problem. The common limiter is minimization of
2
 form, i.e. least square method.  

However both theory and experiment prove that least square method is not favorable for 

the sparse representation. In fact, the reference [15] has further proven that the limiter given 

by `0 norm minimization is optimal, i.e. Do not transform the solution of equation (8) to the 

next optimization problem:   
'

0
a rg m in     su b je c t to  X y



    (9) 

As it is an NP-hard problem which cannot be solved directly. Based on the compression 

sensing theory raised by Donoho, if the signal is sparse enough, then the solution 

of
0

minimization problem is equal to solution of 
1

minimization problem. The unique 

sparsest solution can be obtained through minimizing
1
norm and transform to the following 

lasso problem:  

2
'

2
1 1

1
a rg m in

2

i
nK

ji

j i

y X b


 

 

     (10) 

   The compressional sampling theory can prove that optimization problem given by 

equation (10) can approach equation (9) in a limit with probability of 1, i.e. the error 

probability of these two optimizations approximate 0. Therefore, what we solve in fact is the 

1
 norm optimization problem of equation (10). So the solution of optimization problem of

1
 

minimization can be obtained through solving Lasso problem.  

 

3. Experimental Results and Analysis 

To compare the recognition efficiency of the classifier based on spatial-temporal features 

and sparse representation (SRSF) over common motions, we adopt common 25 motion types 

to make analysis. While as comparison, the most representative retrieval method based on 

clustering hierarchical retrieval tree (CIT) will be applied as reference. The results are shown 

in Figure 1 below. Apparently the retrieval of common motion is quicker and preciser. Table 

2 shows the time comparison between 2 retrieval methods. Table 3 indicates the retrieval 

precision of 2 methods. In addition, the speed and efficiency of CIT depend on the scale of 

the database. With expansion of database scale, the time for retrieval will increase greatly, but 

the recognition efficiency of this method is irrelated to scale of database basically. Because 

the sparse representation has greatly reduce the dimension degree of motion data and 

calculation complexity, the recognition speed will then be faster. 
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Figure 1. Comparison of the Performance of Conventional Method with SRSF 

Table 2. Recognition Time 

 

Motion 

clips 

Recognition time(second) 

Motion recognition by 

CIT 

Motion recognition by 

SRSF 

N=200 N=800 N=200 N=800 

A(52) 1.6325s 4.5467s 0.7189s 0.8134s 

B(101) 2.0115s 5.5578s 0.8235s 0.9102s 

C(163) 1.9456s 5.3413s 1.2381s 1.3455s 

D(260) 2.0945s 6.5984s 1.3453s 1.5035s 

Table 3. Recall and Precision 

Motion 

clips 

Recall Precision 

CIT SRSF CIT SRSF 

walk 0.79 0.96 0.88 0.95 

run 0.75  0.95 0.85 0.97 

jump 0.52 0.91 0.71 0.90 

bunch 0.49 0.89 0.45 0.88 

Table 4 analyzes the direct original data processing and compares the two methods of 

conducting retrieval and processing after data dimensional degree reduction through 

traditional ISOMAP dimensionality reduction and sparse representation. The results show 

that our recognition efficiency is far higher that direct processing and the time for training is 

less than the traditional dimensionality reduction.   

Table 4. Training Time 

Motion data 
Training time(second) 

Walk run jump bunch 

Original motion feature 65.1145s 63.2135s 80.9145s 97.1394s 

ISOMAP D-data 9.4985s 10.2571s 12.6590s 14.6914s 

Data by SRSF 5.9981s 7.4510s 9.1240s 10.1198s 
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