
International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.8 (2014), pp.75-82

http://dx.doi.org/10.14257/ijmue.2014.9.8.07

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2014 SERSC

Reliability Analysis of COTS-based Software System

Zhang Nan
1
 and Wei Jiamin

2

1
Harbin University of Commerce,harbin,China

2
 China Mobile Group Design Institute Co., Ltd.

Email:zhangnan@hrb.edu.cn, weijiamin@cmdi.chinamobile.com

Abstract

With more emphasis on reuse of software applications, the commercial-off-the-shelf

(COTS) based software systems have emerged. As a result, reliability analysis of COTS-

based software system has gained prominence. The focus of this paper is to provide an

overview for the state of the art of COTS-based software system reliability analysis. In

this paper, we first describe the definition of COTS and reliability. Then, we discuss

approach and structure of COTS-based software system reliability.

Keywords: COTS-based, Software reliability, State-based, Path-based.

1. Introduction

With the development of plug-and-play reusable software, component-based software

development (CBSD) has generated tremendous interest in the last decade [1]. In

particular, some software vendors have commenced to successfully sell and license COTS

components, which have led to the concept of the COTS-based software system [2].

These COTS-based software systems move organizations from application development

to application assembly. Current, constructing an application involves the use of

prefabricated pieces, perhaps developed at different times, by different people, and

possibly with different uses in mind. The ultimate goal, once again, is to be able to reduce

development budgets, times, and efforts, while improving the flexibility, reliability, and

reusability of the final application due to the reuse of software components already tested

and validated [3]. Undoubtedly, a COTS-based software system is one of the leading

directions in the software development.

Reliability is usually defined to be the probability of execution without failure for some

specified interval of natural units or time [4]. Reliability is a fundamental attribute of

software systems, which is also an important index to scale systems’ quality. Focusing on

safety, reliability analysis aims at the quantification of the probability of failure of the

system and its protective barriers. Reliability of tradition software system is based on the

non-homogeneous Poisson process in which a software system was considered as black-

box. However, the reliability of COTS-based software system considers the architecture

of software system namely while-box. The study on the reliability of COTS-based

software systems is currently one of the active fields attracting much attention from

researchers and practitioners, which is focused on connectivity reliability [5]. With the

growing emphasis on using of COTS, there is a need for modeling approaches that are

capable of considering the architecture of the software and estimating the reliability.

However, there are some questions no answer.

Rest of this paper is organized as follows Section 2 gives the some definitions of COTS.

Section 3 describes the reliability. Section 4 provides the approach for COTS-based

system reliability analysis. In Section 5, structural analysis of reliability model is given.

Paper is concluded with a summary and the description for future work in Section 6.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

mailto:zhangnan@hrb.edu.cn

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.8 (2014)

76 Copyright ⓒ 2014 SERSC

2. COTS

What is a COTS? First of all, we need to define what we understand by a COST. The

term COTS is very generic; it can refer to very broad and levels of software, e.g., software

that provides a specific functionality or a tool used to generate code. COTS may be one of

the most diversely defined terms in current software development.

Vigder’s definition [6]: the COTS component software product is sold in many copies

with minimal changes; customer access to source code as well as internal documentation

is usually unavailable; customers have no control over specification, schedule and

evolution; limitations, performance, or resource consumption, may never have been

collected.

Oberndorf’s definition [7]: The main characteristics of COTS are: it exists a priori; it is

available to the general public and it can be bought (or leased or licensed).

Software Engineering Institute’s definition [8]: a COTS component is defined as sold,

leased, or licensed to the general public; offered by a vendor trying to profit from it;

supported and evolved by the vendor, who retains the intellectual property rights;

available in multiple, identical copies; and used without source code modification.

Basili and Boehm’s definition [9]: COTS software has the following characteristics:

the buyer has no access to the source code; the vendor controls its development and it has

a nontrivial installed base (that is, more than one customer; more than a few copies).

Due to market strategies and further variability, there are no widely agreed on

standards in the COTS products market. Thus, the definition of COTS products is not a

single unified.

3. Reliability

Reliability is usually defined as the probability that a component, or a system,

will deliver its intended functionality and quality for a specified period of time, and

under specified conditions, given that the system was functioning properly at the

start of this time period [10]. Since, software reliability focus on how software is

used, software usage information is an important part of reliability evaluation. This

includes information on the environment in which software used, as well as the

actual frequency of usage of different functions that the software system offers. The

usage is quantified through operational profiles. Next, we will give the

mathematical expression.

Let and be time to failure of a system and distribution function of system

lifetime, respectively. According the definition of reliability, we have

The software reliability can be measured in many ways. A metric that is

commonly used to describe software reliability is failure intensity. Failure intensity

is defined as the number of failures experienced per unit time period, which can be

computed for all experienced failures, or for some specified category of failures of a

given type or severity. Failure intensity is a good measure for reflecting the user

perspective of software quality. The relationship between reliability and failure

intensity is:

where is failure intensity.

In general, mean time to failure (MTTF) is well approximated by the inverse of

the failure intensity. Following, we will give the MTTF mathematical expression.

According the definition of MTTF, we get

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.8 (2014)

Copyright ⓒ 2014 SERSC 77

where is density function of system lifetime.

To increase the reliability as fast as possible, testing is done by finding faults as

quickly as possible. The reliability of COTS components is done by black-box

testing. Black-box testing only requires a functional description of the program and

is done only considering the input/output description of COTS components, nothing

about the implementation of the COTS is assumed to be known. Generally, the

reliability of COTS can be given by vendor.

4. Approach of COTS-based System Reliability Analysis

Since a COTS-based software system is composed of many COTS components,

the COTS-based software system reliability is evaluated through the relationship

between the COTS-based components and the reliability of each individual COTS-

based component. This method involves the use of specific frequencies of each

component. Therefore, it is no need that a system error and system failure rate is

proportional to the number of assumptions. There are two approaches that are used

to analysis the reliability of COTS-based software system, i.e., path-based approach

and state-based approach [11].

4.1. Path-based Approach

The path-based approach considered a sequence of components executed along each

path and computed the path reliability by multiplying their reliabilities. Then, the software

system reliability is estimated by averaging path reliabilities over all paths [12]. The

approach that used to find the possible execution paths of the program is by either

experimentally, testing or algorithmically.

4.2. State-based Approach

The state-based approach used the control flow graph (CFG) to describe the

architecture of software system. The CFG indicates the system structure, branches in

program code, and decision points, thus representing the interaction between components

and possible execution paths [13]. The state based approach assumes that the transfer of

control between components has been considered as Markov process [11, 13], which

means that current components behavior at any given time is independent of the past

behavior. In state based approach, software system architecture has been modeled as a

continuous time Markov chain (CTMC), discrete time Markov chain (DTMC), or semi-

Markov process (SMP).

The state-based approach can be further classified as irreducible Markov chain and

absorbing Markov chain [11]. The class of irreducible approach is well suited for

continuously operating software applications, such as in real time control systems, where

it is either difficult to determine what constitutes a run or there may be very large number

of such runs if it is assumed that each cycle consists a run. The class of absorbing

approach indicates applications that operate on demand for which software runs that

correspond to terminating execution can be clearly identified.

According to the solving methods, the state-based approach can be classified into

composite and hierarchical [13]. Table 1 shows the classified of solving methods of

stated-based. The composite method combines the architecture of the software with the

failure behavior into a composite model, which is solved to predict reliability of the

application. The hierarchical method is to solve first the architectural model and then to

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.8 (2014)

78 Copyright ⓒ 2014 SERSC

superimpose the failure behavior on the solution of the architectural model in order to

predict reliability.

Table 1. Classified of Solving Methods of Stated-based

Model Solving

irreducible CTMC composite or hierarchical

absorbing CTMC composite or hierarchical

irreducible DTMC composite or hierarchical

absorbing DTMC composite or hierarchical

irreducible SMP composite or hierarchical

absorbing SMP composite or hierarchical

4.3. The Comparison of Path-based and State-based Approach

The path-based approach assumes each component is independent of each other, which

is an experimental method. Thus, the accuracy of software system reliability is heavily

dependent on the initial conditions of experimental process. If the input data of software

system is not comprehensive and full, it may interpose final test results. Moreover, the

path based approach provides only an approximate estimate for application reliability. If

the majority of path exists in the presence of loops and the number of cycles is very large,

the final reliability of the system may be lower than the actual circumstances, particularly

in an infinite loop system, which is difficult to handle.

The state based approach takes into account the state of the infinite loop system. The

state based approach depends on the level of information available and considers the

different types of failure modes. Thus, it can be used to the entire development lifecycle,

especially testing stage. In the state based approach, the time-varying failure intensity

function represents the component failure behavior. Furthermore, hierarchical approach is

conducive to sensitivity analysis and predictive analysis of software development.

5. Structural Analysis of Reliability Model

5.1. Common Model

This main purpose of the following discussion is to focus attention on the common

structure in which the existing COTS-based software system reliability models have been

developed. We classified the structural into four categories namely scope, approach,

architecture and model.

Krishnamurthy and Mathur model [14] involves computing the path reliability

estimates based on the sequence of software component executed for each test run,

averaging them over all test runs to get estimates reliability of software system.

Scope: COTS-based software system.

Approach: the path-based approach.

Architecture: in the simulation, testing and experimental of the program behavior, a

sequence of components along different paths is observed by the component traces

collected. is multiply of each component reliability of software systems.

Model: the Reliability of software system is given by

where TS is a test case.

Littlewood model [15] is the general component-based software system model.

Scope: COTS-based software system

Approach: irreducible SMP of the state-based approach

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.8 (2014)

Copyright ⓒ 2014 SERSC 79

Architecture: software architecture of continuously running application can be

described by an irreducible SMP. The model assumed the each component failed

independently and a finite number of components of software system. The software

considered the transfer of control between components is described by the probability .

The failure rate of each component is a Poisson process with parameter .

Model: the failure rate is given by

where is the probability of program transits from component to component ,

is finite mean, is the probability of steady state, is constant failure rate of each

component, and is the failure probability of component calls component .

Cheung model [16] considered the component’s utilization and their reliabilities.

Scope: COTS-based software system.

Approach: absorbing DTMC of the state-based approach.

Architecture: Cheung model assumed the software flow graph of a terminating

application has a single entry and a single exit. The transfer of control among components

can be described by an absorbing DTMC with a transition probability matrix. The

component fail independently and the transition probability is .

Model: the Reliability of software system is given by

where is probability from to .

Laprie model [17] is a case of Littlewood model.

Scope: COTS-based software system.

Approach: CTMC of the state-based approach.

Architecture: the transfer of control between components is described by a CTMC. is

constant failure rate of each component. The term can be considered as the equivalent

failure rate of component .

Model: the failure rate of system is given by

where is the probability of steady state.

Gokhale model [18] combined the architecture of software system and the reliability of

components by testing the software system application using the regression test suite.

Scope: COTS-based software system.

Approach: absorbing DTMC of the state-based approach.

Architecture: the software system terminating application is described by an absorbing

DTMC. The transition probabilities between component is . The failure behavior of

each component of software system application is assumed by enhanced non-

homogeneous Poisson process model. Time-dependent failure intensity is computed

by block coverage measurements.

Model: the Reliability of software system is given by

where is the expected number of visits to components .

Kubat model [19] assumed the case of terminating software applications components

designed for K different tasks.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.8 (2014)

80 Copyright ⓒ 2014 SERSC

Scope: COTS-based software system.

Approach: DTMC and SMP of the state-based approach.

Architecture: the transitions between components of software system follow a DTMC

such that with probability task will call component and with probability

task will call component . The probability is constant failure rate of each

component. The each task is an SMP.

Model: the failure rate of software system is given by

where is the arrival rate of task . is the expected number of visits in

component by task .

5.2. Example

In this section, we demonstrate the potential of a COTS-based software system through

an example. As the study of reliability analysis of the COTS-based software system is in

the early stage, the data of COTS-based software system is not available from the vendor.

We only use the application reported in literate [16] as the example for illustration. This

application has been used extensively to illustrate architecture-based reliability in the

recent past. The architecture of the application is shown in Figure 1.

Figure 1. Architecture of the Application

To simplify computation, let the reliability of the components be constants as follows

[16]: R1=0.999, R2=0.980, R3=0.990, R4=0.970, R5=0.950, R6=0.995, R7=0.985,

R8=0.950, R9=0.975, R10=0.985. According to the Cheung model [16], we can compute

the reliability of software system. The reliability of the program is, therefore, 0.8299.

6. Conclusions

This paper provided and overview of the state-of-the-art research in the area of COTS-

based software systems reliability analysis. First, various definitions for COTS and

reliability are presented. Then, the paper presents reliability analysis for COTS-based

software applications. The benefit of COTS-based software application is evident in the

software system. However, many questions related to the COTS-based software systems

are still unanswered. In further, to evaluation the overall application reliability existing

work take some important considerations are reliability of COTS component, COTS

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.8 (2014)

Copyright ⓒ 2014 SERSC 81

components’ operational profile and operational profiles of COTS-based software

systems.

References

[1] F. Q. Yang, H. Mei and K. Q. Li, “Software Reuse and Software Component Technology”, CHINESE

Journal of Electronics, vol. 27, no. 2, (1999).

[2] D. Carney and F. Long, “What Do You Mean by COTS?”, IEEE Software, vol. 17, no. 2, (2000).

[3] M. Morisio, C. B. Seaman and V. R. Basili, “COTS-based Software Development: Processes and Open

Issues”, Journal of Systems and Software, vol. 61, no. 3, (2002).

[4] J. D. Musa, “Software Reliability Engineering, More Reliable Software Faster and Cheaper”, New York:

McGrwa-Hill, (2004).

[5] N. F. Schneidewind, “Methods for Assessing COTS Reliability, Maintainability, and Availability”,

Proceedings of the Software Maintenance, (1998) November 16-20, CA, USA.

[6] M. Vigder, M. Gentleman and J. Dean, “COTS Software Integration: State of the Art”, Technical Report

NRC No. 39190, (1996).

[7] P. Oberndorf, “COTS and Open Systems”, http://splc.sei.cmu.edu/library/assets/cotsopensystems.pdf,

(1998).

[8] L. Brownsword, T. Oberndorf and C. Sledge, “Developing New Processes for COTS Based Systems”,

IEEE Software, vol. 17, no. 4, (2000).

[9] V. Basili and B. Boehm, “COTS-Based Systems Top 10 List”, IEEE Computer, vol. 34, no. 5, (2001).

[10] S. L. Ho, M. Xie and T. N. Goh, “A Study of the Connectionist Models for Software Reliability

Prediction”, Computer and Mathematics with Applications, vol. 46, no. 7, (2003).

[11] S. S. Gokhale, “Architecture-Based Software Reliability Analysis: Overview and Limitation”, IEEE

Transactions on Dependable and Secure Computing, vol. 4, no. 1, (2007).

[12] C. J. Hsu and C. Y. Huang, “An Adaptive Reliability Analysis using Path Testing for Complex

Component-based Software Systems”, IEEE Transactions on Reliability, vol. 60, no. 1, (2011).

[13] S. S. Gokhale and R. T. L. Michael, “A Simulation Approach to Structure-based Software Reliability

Analysis”, IEEE Transactions on Software Engineering, vol. 31, no. 8, (2005).

[14] S. Krishnamurthy and A. P. Mathur, “On the Estimation of Reliability of a Software System using

Reliabilities of its Components”, Proceedings of the Eighth International Symposium on Software

Reliability Engineering, (1997) November 2-5, IN, USA.

[15] S. S. Gokhale, “Architecture-based Software Reliability Analysis Overview and Limitations”, IEEE

Transactions on dependable and secure computing, vol. 4, no. 1, (2007).

[16] W. L. Wang, P. Dai and M. H. Chen, “Architecture-based Software Reliability Model”, Journal of

Systems and Software, vol. 2, no. 79, (2006).

[17] J. C. Laprie and K. Kanoun, “X-Ware Reliability and Availability Modeling”, IEEE Transactions on

Software Engineer., vol. 15, no. 5, (1992).

[18] S. S. Gokhale, “An Analytical Approach to Architecture based Software Reliability Prediction”,

Proceedings of the Third International Computer Performance and Dependability Symposium, (1998)

September 7-9, NC, USA.

[19] K. G. Popstojanova and K. S. Trivedi, “Architecture-based Approach to Reliability Assessment of

Software Systems”, Performance Evaluation, vol. 8, no. 45, (2001).

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

http://splc.sei.cmu.edu/library/assets/cotsopensystems.pdf

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.8 (2014)

82 Copyright ⓒ 2014 SERSC

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

