International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.8 (2014), pp.75-82
http://dx.doi.org/10.14257/ijmue.2014.9.8.07

Reliability Analysis of COTS-based Software System

Zhang Nan' and Wei Jiamin?

'Harbin University of Commerce,harbin,China
2 China Mobile Group Design Institute Co., Ltd.
Email:zhangnan@hrb.edu.cn, weijiamin@cmdi.chinamobile.com

Abstract
With more emphasis on reuse of software applications, the commercial-off-thg-shélf
(COTS) based software systems have emerged. As a result, reliability analysi TS-
based software system has gained prominence. The focus of this paper j ovide an

overview for the state of the art of COTS-based software system reli nalysis. In
this paper, we first describe the definition of COTS ﬁ%hablh n, we discuss
approach and structure of COTS-based software systegg lit

Keywords: COTS-based, Software reliability, se

1. Introduction

d,

With the development of plug-and- pT sable so crz component-based software
development (CBSD) has gener endo rest in the last decade [1].
particular, some software vendors téﬁ uccessfully sell and license COTS
components, which have le concept e COTS-based software system [2].
These COTS-based software ms mev
to application assembly. ~€urrent, ¢o ing an application involves the use of
prefabricated pieces, 9@ deve t different times, by different people, and
possibly with diffe in mind. ultimate goal, once again, is to be able to reduce
development bud \t mes,,a orts, while improving the flexibility, reliability, and
reusability o application dde to the reuse of software components already tested

® ly, a COTS-based software system is one of the leading
lopment.
ined to be the probability of execution without failure for some
specified interva tural units or time [4]. Reliability is a fundamental attribute of
software system ich is also an important index to scale systems’ quality. Focusing on
safety, reli ﬂuy analysis aims at the quantification of the probability of failure of the
system anditSprotective barriers. Reliability of tradition software system is based on the
non-h neous Poisson process in which a software system was considered as black-
ever, the reliability of COTS-based software system considers the architecture
of are system namely while-box. The study on the reliability of COTS-based
software systems is currently one of the active fields attracting much attention from
researchers and practitioners, which is focused on connectivity reliability [5]. With the
growing emphasis on using of COTS, there is a need for modeling approaches that are
capable of considering the architecture of the software and estimating the reliability.
However, there are some questions no answer.

Rest of this paper is organized as follows Section 2 gives the some definitions of COTS.
Section 3 describes the reliability. Section 4 provides the approach for COTS-based
system reliability analysis. In Section 5, structural analysis of reliability model is given.
Paper is concluded with a summary and the description for future work in Section 6.

ganizations from application development

and validate
directions in the softwar
Reliability is usua

ISSN: 1975-0080 IJMUE
Copyright © 2014 SERSC

mailto:zhangnan@hrb.edu.cn

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.8 (2014)

2. COTS

What is a COTS? First of all, we need to define what we understand by a COST. The
term COTS is very generic; it can refer to very broad and levels of software, e.g., software
that provides a specific functionality or a tool used to generate code. COTS may be one of
the most diversely defined terms in current software development.

Vigder’s definition [6]: the COTS component software product is sold in many copies
with minimal changes; customer access to source code as well as internal documentation
is usually unavailable; customers have no control over specification, schedule and
evolution; limitations, performance, or resource consumption, may never have been
collected.

Oberndorf’s definition [7]: The main characteristics of COTS are: it exists a priori; it is
available to the general public and it can be bought (or leased or licensed). K)

Software Engineering Institute’s definition [8]: a COTS component is deﬁ% sold,
leased, or licensed to the general public; offered by a vendor trying tQ”prefiy from it;

supported and evolved by the vendor, who retains theAintellect rty rights;
available in multiple, identical copies; and used without code ation.
characteristics:

Basili and Boehm’s definition [9]: COTS softwa the f
* i lopment and it has

the buyer has no access to the source code; the v @ controls(its
mer; n% n a few copies).

a nontrivial installed base (that is, more than one cU
Due to market strategies and further vaqwlty, th e no widely agreed on
standards in the COTS products market. he de 1&% of COTS products is not a
single unified. &% @
AN

3. Reliability Q

Reliability is usually defin€t as the@)ablllty that a component, or a system,
will deliver its intended tionali uality for a specified period of time, and
under specified condi , given N‘ﬁhe system was functioning properly at the
start of this tlme [10 e, software reliability focus on how software is
used, software nfor ifgs an important part of reliability evaluation. This
includes m@ n on the“edvifonment in which software used, as well as the

actual frequ of u dlfferent functions that the software system offers. The
usage is quantified gh operational profiles. Next, we will give the R(t)
mathematical exp

Let X and F(Ime to failure of a system and distribution function of system

lifetime, r%gi ely. According the definition of reliability, we have
Q R()=PX>t)=1—-F(t)

% software reliability can be measured in many ways. A metric that is
comionly used to describe software reliability is failure intensity. Failure intensity
is defined as the number of failures experienced per unit time period, which can be
computed for all experienced failures, or for some specified category of failures of a
given type or severity. Failure intensity is a good measure for reflecting the user
perspective of software quality. The relationship between reliability and failure
intensity is:

R =exp (-if)

where & is failure intensity.

In general, mean time to failure (MTTF) is well approximated by the inverse of
the failure intensity. Following, we will give the MTTF mathematical expression.
According the definition of MTTF, we get

76 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.8 (2014)

MTTF = E[X] =[t(t)dt = j R(t)dt
o o

where f(t) is density function of system lifetime.

To increase the reliability as fast as possible, testing is done by finding faults as
quickly as possible. The reliability of COTS components is done by black-box
testing. Black-box testing only requires a functional description of the program and
is done only considering the input/output description of COTS components, nothing
about the implementation of the COTS is assumed to be known. Generally, the
reliability of COTS can be given by vendor.

4. Approach of COTS-based System Reliability Analysis °

Since a COTS-based software system is composed of many COTS,co ents,
the COTS-based software system reliability is evaluated through m tionship

between the COTS-based components and the reliability\ of each_ i idual COTS-
based component. This method involves the use o ific fr cies of each
component. Therefore, it is no need that a sy, stemn failure rate is

proportional to the number of assumptions. Th are tw ches that are used
to analysis the reliability of COTS-based softw g syste / path-based approach

and state-based approach [11]. . %
4.1. Path-based Approach \

The path-based approach co 9@# a seq f components executed along each
path and computed the path m@(by multl g their reliabilities. Then, the software
system reliability is estimated aver ath reliabilities over all paths [12]. The
approach that used to fi he pos tlon paths of the program is by either
experimentally, testlng rithmi

4.2, State- based ach %
The statd appro, ed the control flow graph (CFG) to describe the
architecture of Softwar m. The CFG indicates the system structure, branches in

program code, and d% points, thus representing the interaction between components

and possible exec aths [13]. The state based approach assumes that the transfer of
control betweem%oonents has been considered as Markov process [11, 13], which
means thatcuirrent components behavior at any given time is independent of the past
behavior. %’fe based approach, software system architecture has been modeled as a
contin@me Markov chain (CTMC), discrete time Markov chain (DTMC), or semi-

ocess (SMP).

M%state-based approach can be further classified as irreducible Markov chain and
absorbing Markov chain [11]. The class of irreducible approach is well suited for
continuously operating software applications, such as in real time control systems, where
it is either difficult to determine what constitutes a run or there may be very large number
of such runs if it is assumed that each cycle consists a run. The class of absorbing
approach indicates applications that operate on demand for which software runs that
correspond to terminating execution can be clearly identified.

According to the solving methods, the state-based approach can be classified into
composite and hierarchical [13]. Table 1 shows the classified of solving methods of
stated-based. The composite method combines the architecture of the software with the
failure behavior into a composite model, which is solved to predict reliability of the
application. The hierarchical method is to solve first the architectural model and then to

Copyright © 2014 SERSC 77

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.8 (2014)

superimpose the failure behavior on the solution of the architectural model in order to
predict reliability.

Table 1. Classified of Solving Methods of Stated-based

Model Solving
irreducible CTMC composite or hierarchical
absorbing CTMC composite or hierarchical
irreducible DTMC composite or hierarchical
absorbing DTMC composite or hierarchical

irreducible SMP composite or hierarchical
absorbing SMP composite or hierarchical
4.3. The Comparison of Path-based and State-based Approach

The path-based approach assumes each component is independent of e t% which
is an experimental method. Thus, the accuracy of softwar system is heavily
dependent on the initial conditions of experimental pro the i ta of software
system is not comprehensive and full, it may inte . Moreover the
path based approach provides only an appromm‘ t|on reliability. If
the majority of path exists in the presence of Ioop Ad the f cycles is very large,
the final reliability of the system may be low n the ac cumstances particularly
in an infinite loop system, which is diffieul ndle.

The state based approach takes into nt the ?ZA the infinite loop system. The
state based approach depends on t %el of i tion available and considers the
different types of failure mode t can t%ﬁ to the entire development lifecycle,
especially testing stage. In ate based appreach, the time-varying failure intensity

function represents the com nen fallure ior. Furthermore, hierarchical approach is
conducive to sensmwt |s and e analysis of software development.

5. Structural |s of lability Model
5.1. Commo@

This main purpose 0 @followmg discussion is to focus attention on the common
structure in which th ng COTS-based software system reliability models have been

architecture and :

Krishn thy "and Mathur model [14] involves computing the path reliability
estimatesa‘%f on the sequence of software component executed for each test run,
averagj m over all test runs to get estimates reliability of software system.
OTS-based software system.
oach: the path-based approach.

Architecture: in the simulation, testing and experimental of the program behavior, a
sequence of components along different paths is observed by the component traces
collected. R, is multiply of each component reliability of software systems.

Model: the Reliability of software system is given by

developed. We ‘cl@[d the structural into four categories namely scope, approach,

E"-t"'tc TS Rtn:

BE =
|'TS|

where TS is a test case.

Littlewood model [15] is the general component-based software system model.
Scope: COTS-based software system

Approach: irreducible SMP of the state-based approach

78 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.8 (2014)

Architecture: software architecture of continuously running application can be
described by an irreducible SMP. The model assumed the each component failed
independently and a finite number of components of software system. The software
considered the transfer of control between components is described by the probability Fii.
The failure rate of each component is a Poisson process with parameter .

Model: the failure rate is given by

T :’L] Bj 1 T By
o ZE TEE] Pl]mlj ZE T]Pl]ml]

where p;; is the probability of program transits from component i to component j, m;
is finite mean, m; is the probability of steady state, 4; is constant failure rate€f each
component, and v; is the failure probability of component i calls compon V

Cheung model [16] considered the component’s utilization and their reli %’

Scope: COTS-based software system. @

Approach: absorbing DTMC of the state-based appr

Architecture: Cheung model assumed the softw a terminating
application has a single entry and a single exit. The“tvansfer of Eriﬁ,a‘mong components
can be described by an absorbing DTMC wi % ransi ablllty matrix. The
component fail independently and the transitio oablllty

Model: the Reliability of software s;s:g&en by

where S(1.n) is probabilit o@& to &

Laprie model [17] is a ca |ttlewoo

Scope: COTS-based software system.

Approach: CTMC of ate- ba oach

Architecture: the fr of contr ween components is described by a CTMC. 4; is
constant failure ratg ch compqxent The term m;4; can be considered as the equivalent

failure rate of.eegiponent i.
Model: th @) re rate o@st is given by
E T Ay
where T; js @bability of steady state.
Gokhale | [18] combined the architecture of software system and the reliability of
compone testing the software system application using the regression test suite.

oOTS-based software system.
oach: absorbing DTMC of the state-based approach.
Architecture: the software system terminating application is described by an absorbing
DTMC. The transition probabilities between component is Fii. The failure behavior of

each component of software system application is assumed by enhanced non-

homogeneous Poisson process model. Time-dependent failure intensity % () is computed
by block coverage measurements.
Model: the Reliability of software system is given by

2 +E _vjpjl}tl
oo [
i=1 0

where V; is the expected number of visits to components j.

Kubat model [19] assumed the case of terminating software applications components
designed for K different tasks.

A (D) dt)

Copyright © 2014 SERSC 79

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.8 (2014)

Scope: COTS-based software system.

Approach: DTMC and SMP of the state-based approach.

Architecture: the transitions between components of software system follow a DTMC
such that with probability g, (k) task k will call component i and with probability p,(k)
task k will call component j . The probability 4 is constant failure rate of each
component. The each task is an SMP.

Model: the failure rate of software system is given by

K n
:':I'-s — Z ri_ [-l _ l_I[Ri(k}]zjn:-_vj':L{.:'Fji':k}'Fqi':k}]
=1

k=1
where r; is the arrival rate of task i. Vj(k) is the expected number of)Qs)i-n

component i by task k. Y

5.2. Example
In this section, we demonstrate the potential of a CO ed) ystem through

an example. As the study of reliability analysis of 39 are system is in
the early stage, the data of COTS-based software is not¢avai

e from the vendor.
We only use the application reported in literate [s the

e for illustration. This

application has been used extensively to il te arch% -based reliability in the
ure 1.

recent past. The architecture of the appllcat@l shown

N

Q Figure 1. Architecture of the Application

%implify computation, let the reliability of the components be constants as follows
[16]: R1=0.999, R2=0.980, R3=0.990, R4=0.970, R5=0.950, R6=0.995, R7=0.985,
R8=0.950, R9=0.975, R10=0.985. According to the Cheung model [16], we can compute
the reliability of software system. The reliability of the program is, therefore, 0.8299.

6. Conclusions

This paper provided and overview of the state-of-the-art research in the area of COTS-
based software systems reliability analysis. First, various definitions for COTS and
reliability are presented. Then, the paper presents reliability analysis for COTS-based
software applications. The benefit of COTS-based software application is evident in the
software system. However, many questions related to the COTS-based software systems
are still unanswered. In further, to evaluation the overall application reliability existing
work take some important considerations are reliability of COTS component, COTS

80 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.8 (2014)

components’ operational profile and operational profiles of COTS-based software
systems.

References

[1] F.Q.Yang, H. Mei and K. Q. Li, “Software Reuse and Software Component Technology”, CHINESE
Journal of Electronics, vol. 27, no. 2, (1999).

[2] D. Carneyand F. Long, “What Do You Mean by COTS?”, IEEE Software, vol. 17, no. 2, (2000).

[3] M. Morisio, C. B. Seaman and V. R. Basili, “COTS-based Software Development: Processes and Open
Issues™, Journal of Systems and Software, vol. 61, no. 3, (2002).

[4] J. D. Musa, “Software Reliability Engineering, More Reliable Software Faster and Cheaper”, New York:
McGrwa-Hill, (2004).

[51 N. F. Schneidewind, “Methods for Assessing COTS Reliability, Maintainability, and Av: Iab|I|ty”,
Proceedings of the Software Maintenance, (1998) November 16-20, CA, USA. &2

[6] M. Vigder, M. Gentleman and J. Dean, “COTS Software Integration: State of the Art”, Techqical Report

zs

NRC No. 39190, (1996).
[7]1 P. Oberndorf, “COTS and Open Systems”, http://splc.sei.cmu.edu/library/assets/c@w tems.pdf,

(1998). °

[8] L. Brownsword, T. Oberndorf and C. Sledge, “Developing N@\ esses fo Based Systems”,
IEEE Software, vol. 17, no. 4, (2000).

[9] V. Basili and B. Boehm, “COTS-Based Systems Top 10 EE Co pw. 34, no. 5, (2001).

[10] S. L. Ho, M. Xie and T. N. Goh, “A Study of theectionis %{? for Software Reliability
Prediction”, Computer and Mathematics with Appllcatlo Tvol. 46, ﬁx

[11] S. S. Gokhale, “Architecture-Based Software Relia ty Analy rview and Limitation”, IEEE
Transactions on Dependable and Secure Cogp I 4, no? %?

[12] C. J. Hsu and C. Y. Huang, “An Adaptl iability An using Path Testing for Complex
Component-based Software Systems”, IE sactlo liability, vol. 60, no. 1, (2011).

[13] S. S. Gokhale and R. T. L. Michael, ulatio to Structure-based Software Reliability
Analysis”, IEEE Transactlons on ngmeer& - 31, no. 8, (2005).

[14] S. Krishnamurthy and A. P. r, On the Estimation of Reliability of a Software System using

Reliabilities of its Components” roceedifigs
Reliability Engineering, (1
[15] S. S. Gokhale, “Archlt

the Eighth International Symposium on Software
SA.
ellablllty Analysis Overview and Limitations”, IEEE

Transactions on d nd secure computing, vol. 4, no. 1, (2007).

[16] W. L. Wang, P &V M. H. Chan, “Architecture-based Software Reliability Model”, Journal of
Systems and So ol. 2, 06).

[17] J. C. Lapr Kanoun, aré Reliability and Availability Modeling”, IEEE Transactions on
Software E er., Vo

| 5, (1992)
[18] S. S. Gokha e, “An Wal Approach to Architecture based Software Reliability Prediction”,
Proceedings of the B& ternational Computer Performance and Dependability Symposium, (1998)

September 7-9, N .
[19] K. G. Popstoj aYand K. S. Trivedi, “Architecture-based Approach to Reliability Assessment of
Software Systems?,”Performance Evaluation, vol. 8, no. 45, (2001).

Q)Q

Copyright © 2014 SERSC 81

http://splc.sei.cmu.edu/library/assets/cotsopensystems.pdf

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.8 (2014)

82 Copyright © 2014 SERSC

