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Abstract Z

Most existing mobility management deployments su 15;0&4 Pv6, V6 and 3GPP
utilize centralized mobility anchors in the hlerarchlc |t re. Centralized

mobility schemes are subject to restrictions o SP (Single Point Of

Failure) and network scalability, etc. As an alt pative t tralized approaches,
DMM (Distributed Mobility Management) nisms ave en actively and widely
studied these days. In DMM, functlons.of hor‘r% re efficiently distributed to

partially distributed mobility

access routers. This paper suggests %\ work
management mechanism and perf ulatlons under various traffic
environments for verification n Iuatlo e suggested scheme. Performance
indexes such as Tx/Rx UDPA% nd-to-en a transfer delay, binding delay, CPU
utilization, WLAN throughput aré analyz %\d compared among MIPv6, PMIPv6 and
the suggested DMM scherr@flmulat ts show that the DMM scheme suggested in
this paper is useful fer ility m ment research in wireless environment.

Keywords: Pa%%)lstqbutédlg\oblhty Management, Simulation
1. Introdu

Conventional soluti
specific anchor node

IP mobility are usually based on the main idea that the
ains the up-to-date binding information between HoA (Home
Address) and Co e-of-Address) of the MNs (Mobile Nodes). In these schemes, data
traffic is dellve rough tunneling between the anchor node and MNs or between the
anchor no ARs (Access Routers). Therefore, the anchor node should not only
manage t ding information of all MNs in a centralized fashion but also perform
enca s@% and de-capsulation of all data traffic transmitted and received by all MNs.
Aﬁ ample, in MIPv6 (Mobile IPv6) and PMIPv6 (Proxy MIPv6) protocols, all
signgling messages and data traffic converge on a HA (Home Agent) or LMA (Local
Mobility Anchor) node functioned as an anchor node [1-4]. Centralized mobility solutions
are subject to several problems and limitations such as a bottleneck and SPOF (Single
Point Of Failure), network scalability, and sub-optimal routing paths [5].

During the recent years, a new trend in mobile network evolution for solving the
centralized mobility drawbacks is to flatten mobility architecture by confining mobility
support in the access network, named DMM (Distributed Mobility Management), which
would keep the rest of the network unaware of the mobility events and their support [6].
Distributed mobility solutions have attracted great interest of researchers and are being
actively standardized by the IETF dmm (Distributed Mobility Management) and
netext(Network-Based Mobility Extensions) working groups [7-8].

In this paper, the network-based partially distributed mobility management scheme is
suggested and evaluated by simulations under various traffic environments. The
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simulation results show that the developed models for DMM are useful for mobility
management studies in wireless network environment. The rest of this paper is organized
as follows. After explaining the background on distributed mobility management in
Section 2, this paper describes the operation of the suggested partial DMM scheme in
Section 3. Several simulation results for verification and performance evaluation of the
partial DMM are stated in Section 4 and final conclusion is discussed in Section 5.

2. Distributed Mobility Management Overview

MIPv6 [1] is a typical host-based IPv6 mobility solution, which requires client
functionality in the IPv6 stack of a MN. Unlike MIPv6, where the MN signals its
location changes to the HA (Home Agent), PMIPv6 [2], which is an archetypal

and the LMA does the same function as the HA. Both MIPv6 and P
on centralized mobility approach in which a central bility a
LMA, manages all data packets as well as signaling %

by the MN and the CN. Figure 1 iIIustrates@ s‘an Ing sections in

and a LMA (Local Mobility Anchor) node. The MAG acts as a proxE f

centralized mobility management approaches, PMIRV6 3G/LTE.

PMIPV6 & é‘l_—@
CN MN

3G/LTE & \ ﬂ
& i’
>

Figure 1 ‘%aths @d QTunneIs in Centralized Mobility Management

link ’ﬁ/erelesslmk Z] tunneling

Approaches
As stated in [5 d [9], centralized mobility solutions do not process data and
control messa parately and are subject to several problems and limitations:

longer routing pdths, network scalability, signaling message overhead and longer
associate over delay, more complex network deployment, higher vulnerability
of a al SPOF(Single Point Of Failure), and lack of flow-based mobility

ent granularity.

rﬂ%olve the problems and limitations and efficiently support mobile users, the
netext (Network-based Mobility Extension) working group and dmm (Distributed
Mobility Management) working group in IETF (Internet Engineering Task Force)
have studied and proposed various distributed mobility management solutions. They
distribute the mobility functions to access routers while bringing them closer to a
MN so that the MN is served by the closest network. By topologically distributing
mobility anchors, MNs are able to be managed in a decentralized way and mobile
data traffic can also be distributed.

Development and deployment of DMM mechanism can be divided into two main
categories: i) partially distributed by removing the data path constraint towards the
anchor, but maintaining a centralized control plane, and ii) fully distributed by
eliminating any centralized role in the architecture and distributing both routing and
control functions among access routers.
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In general, volume of user data traffic is much higher than that of control
signaling traffic. Therefore, by separating the control and data planes and applying a
distributed architecture to the data plane only, cost-effective DMM can be achieved.
On the other hand, fully distributed mobility needs the introduction of special
mechanism in order to identify the anchor node that manages mobility signaling and
data forwarding of a particular MN. In most cases, this also requires the absolute
distribution of mobility context database (e.g., for binding information) between
every element of the distributed anchor system.

In this paper, the network-based partially distributed mobility management
solution is suggested and the simulator for model verification and performance
evaluation of the suggested mechanism is implemented and extensive simulations

under various traffic environments are performed. x).

3. Network-based Partial DMM Mechanism

The DMM (Distributed Mobility Management) sc o and si ion models
developed in this paper have been adapted on the basis IPv6 protocol. The detailed
operation of the scheme is explained in this se o erfw evaluation and
comparison with other protocols are described in sectlﬂ)

3.1. Initial Attachment Procedure

Figure 2 shows the initial attachment'@ss that is rmed when a MN enters the
DMM domain. Once a MN enters a etwonrk, ’s WLAN MAC layer will do a
scan procedure to find an AP (Ac oint) ‘K;onnected. In Figure 2, each MAAR
(Mobility Anchor and Access‘Riu node ha P function. When a MN finds an AP,
it will start the procedure to assBeiate with thie.new AP. During this association procedure,

the AP (MMAR) node getsthe MN’s edia Access Control) address as a MN_ID
(MN’s Identification) v d will e the MN’s Home Agent.

MAAR’s WLA 1nk layer protess informs the DMM process in IP layer about
MN’s association ehve N_ID value. DMM process in MAAR node allocates
a HNP(Horm%rk Prefix) for a MN and sends a PBU(Proxy Binding Update)
message tha des { , HNP} information to a CMD(Central Mobility Database)

“ANP allocated in each MAAR node is the sub-space of the

the BCE(Bindi ache Entry) table and then replies with a PBA(Proxy Binding
Acknowledg%nt) message to the MAAR. After receiving the PBA message, the MAAR
node crea A (Router Advertisement) message that includes the allocated HNP and
sends he MN. The MN configures an IPv6 address by using the received HNP
n%\ on and starts to use it.
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< MN moves to MAAR1 > MN : Mobile Node
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1. detect MN's gttachment (get CMD : Central Mobility|Databage
MN_ID(MN_ MAC addr) through MN_ID: MN’s Identifier
association pfocedure) HNP : Home Network Prefix
2. reserve HNP] for MN HoA : Home Address |
BUL: Binding Update Lfist
3. send PBU to CMD BCE: Binding Cache Eptry

PBU {MN-ID, (H NPl,MAARliip)}}

4. create BCH
BCE in CMD

‘MNJD‘ (HNP1, MAARL_ip) ‘ ‘

5. reply with HBA

6. finalize HNP1 for MN

7. unicast RA msg to MN
q

RA {HNP1} \4% ,@

8. cpnfigure IPv6 address

(MN_HoA1)

9. tY/rx data packet to CN (No encapsulation, no spdcial handling in MAAR) /‘v
< > IP1 flow with oAl
°

Figure 2. Initial Attachm(;\@ ocess df\the Partial DMM

3.2. Handover Procedure % \Q)
o@% area »

When a MN is moving aw, ed by one MAAR node and entering a
new area covered by another AR, an@wdover process is performed as shown in
r

-

Figure 3 and the on-goin sion is ed to the second MAAR in order to avoid
session termination wh N ge N&%f the range of the first MAAR.

When the MN e new AR domain, initial attachment process is performed
as described in theg™prévious %nd the MN gets the new IPv6 address which will be
used for neication sessiorfs to be started from now on. In the meantime, the on-
going sessiorkeeps usi @gold IPv6 address that was gotten from the previous MAAR
node that the MN visitel%hen the session started.

After detecting th proach of the MN, the new MAAR allocates a new HNP and
creates a PBU n@ge that includes the MN_ID and the allocated HNP and sends it to
the CMD. When CMD receives the PBU, it uses the MN_ID as a key to search the
BCE table%matched entry is updated and becomes the form of {MN_ID : (old_HNP,
old_MA ip) : (new_HNP, new_MAAR_ip)}. After updating the BCE entry, the CMD
repli s@ e new MAAR with the PBA message that contains the information about old
%s, {MN_ID : (old_HNP, old_MAAR_ip)}. At the same time, The CMD sends to
the ®ld MAAR the PBU message with the information of {MN_ID : (old_HNP,
new_MAAR_ip)}.

When receiving the PBA message, the new MAAR node inserts the information of
{MN_ID : (old_HNP, old_MAAR_ip)} into the BU(Binding Update) list and establishes
a tunnel to the old MAAR. The entry in the BU list is removed when the MN goes far
away from the MAAR node. In the meantime, the old MAAR node that is receiving the
PBU message from the CMD node updates the BCE table entry by using the information
of {MN_ID : (old_HNP, new_MAAR_ip)} and establishes a tunnel to the new MAAR
and replies to the CMD with the PBA message.
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‘E MAAR1L MAAR2 MAAR3 < CN1 cN2 CN3
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PBU {MN-ID, (H NPZ,MAARZ_ip)}} >
4. update BCE
BCE in CMD

‘MNJD‘ (H\P{{AAR% (HNP2, MAAR2_ip) ‘
5. reply witN PBA \‘ \

y y \
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et}
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A

C

ast RA msg to\MN
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IP Network

IP1 data

Figure 4. Data Flows after Handover in Partial DMM Scheme
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Check whether source address of the packet is allocated by this MAAR node.
If so, do a normal routing.
If not, search the source address in the BU(Binding Update) list.
If found, get the next_hop address and encapsulate and
send the packet to the next_hop.
(tunneling to the original MAAR node)
If not, search the destination address of the packet in the BCE(Binding Cache Entry) table.
If found, get the next_hop address and encapsulate and
send the packet to the next_hop.
(tunneling to the current MAAR node)
If not, do a normal routing.

Figure 5. Data Forwarding Rule in a MAAR Node

3.3. Revisiting the Previous MAAR Node Y°
If the MN revisits the MAAR node to which it connected before, inform in the
BCE table and the BU list becomes entangled in a loop. To solve this reelrsive,problem,
AAR, the

MAAR node checks whether the BCE table already has Wfofimation abgutjthe MN and, if
found, deletes the information and then performs thf er pr upe described in the

previous section. Xx)

4. Model Verification and Perform @Eva[ua%

when establishing the association relationship between MN %
d

on
In order to evaluate the proposed di&t!@#} d mobilitﬁﬂ nagement scheme and verify

the developed simulator, multiple atio s\%’%performed under various traffic
environments. DMM’s perform ncg?&ompari} t of MIPv6 and PMIPve6.

DMM network model fou%t: on is developed by using the OPNET [10] and is

illustrated in Figure 6. The currefit versio he OPNET supports MIPv6 protocol only.
The simulation codes an de m PMIPv6 and partial DMM protocols are
developed in this pap&t\)/vork for MIPv6 and PMIPv6 protocols have the
exactly same topol DMM“protocol and the CMD and MAAR nodes are replaced
with the HA an odesaj v6 and with the LMA and MAG nodes in case of
PMIPVS. @
In the Fig , SeV I\@AR nodes are placed across the network and two MNs have
been set to follow the (trajectories across MAARs. MNOL1 is initially attached to the
MAAR2 and mov (@ng the MAAR3 through MAARY in a clockwise direction and
then go back to @iginal starting point via MAAR2. MNO?2 is attached to the MAAR5
at startup and, theiturns clockwise from MAAR5 to MAARS again and then its original
position. %MNS are moving at a speed of 60Km/h, they continually transmit and
receive U@ ata traffic to and from CNs at an average rate of 20 packets/sec. Average
pa t@gth is 1024 bytes. Since Wi-Fi is the most widely deployed wireless access
te%ogy nowadays, IEEE 802.11g WLAN(Wireless Local Area Network) technology
with¥he rate of 11 Mbps is used as a data link layer protocol in our simulation model.
Packet latency in the Internet cloud is assumed to be 10 msec.

Figure 7 depicts the WLAN AP connectivity of MNO1 and MNO2 during simulation.
The Y-axis value means the connected AP BSS-1D number and corresponds to the suffix
of the MAAR node name. The Y-axis value of -1 means no connection to any AP. From
the figure, it is confirmed that each MN establishes a connection to a MAAR node while
it is moving around during the simulation period.
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Figure 10 shows binding (reg| ela ance in each protocol. Binding
delay is the period of time from th ent a message is sent to the moment
a BA or PBA message is ;@ in respo y the originator of the BU or PBU
message. In MIPv6, a BU mess sent N and goes to a HA through the WLAN
network. On the other hant, both P ages sent by a MAG router to a LMA in
PMIPv6 and sent by, a route CMD node in DMM do not visit the wireless
network to reach thei inations, Therefore, binding delay in MIPv6 is usually higher
than that of PMIP, DMh@other conditions are the same even though it is very
hard to not ' fferenceNp) odr simulation results because packet latency in the
Internet clo muchabidger than the propagation and transmission delay in wireless
network. The main cau inding delay except the latency in the Internet is the delay at
the HA to perform AD (Duplicate Address Detection) procedure. In the HA, the
delivery of the essage is delayed by (DupAddrDetectTransmits * Neighbor
solicitation inter to model the time it would take to perform DAD as stated in the
RFC4862 h%yv this expression, DupAddrDetectTransmits (default value = 1) means the
number hbor solicitation messages to be sent while performing DAD. Neighbor

mterval(default value = uniform[1000..1500] ms) is the time, in milliseconds,
b%z\ etransmitted Neighbor Solicitation messages and is used by Address Resolution

ighbor Unreachability Detection algorithms.

For comparison of CPU utilizations of CMD, LMA and HA in DMM, PMIPv6, and
MIPV6 respectively, simulation results are shown in Figure 11. CPU utilization models
the IP packet forwarding delays and application processing delays in the node. The more
packets to be forwarded, the higher CPU utilization to be achieved. In the result graphs,
CPU utilization of CMD node in DMM protocol is much lesser than those of HA in
MIPv6 and LMA in PMIPv6 because data packets in DMM are distributed across all
MAARs while all data traffics in PMIPv6 and MIPVv6 are transmitted by way of a LMA
and a HA respectively.

132 Copyright © 2014 SERSC



0200 —_—

“ 001, 0018 0026 070_18
0018
e

HADD ARDZ T
ARD3 pppa ARDS pnge
A

MIPv6 CPU Utilization [%]
o ©
B g
VAR N
| \ \
'—-p—-\ |
ol |
l-L o | |
L
|
|
|
|
|
|
|
[
| |
|
|
|
|
|
|
|
|

RO7

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.8 (2014)

[26]

o1s0
P4
0.100 ¥
Lo040_
0050 0076 gz 0840
0,000

6’ 3
F &
ik ‘r"c’ \r‘(’&

PMIPv6 CPU Utilization

0" &
\-“V(D ‘;3‘0

0 T T ——

DD2E DDEE -
i b

\
(’Q
‘x\?

%]

]
e
0
=}
-
/
|
/
|

—0090
——0090__

- 0003 t 00257 7 —
0000 =" {\ ﬂ

el

O b

3 o o o
S ;s@ &
oF

DMM CPU Utilization
e
i

0078 g3
N 1‘\
& &
o p?q'
o qs"

- ‘}Yy

(a) MIPv6 HA and ARs

(b) PMIPv6 LMA and MAGs

(c) DMM CMD and MAARs

Figure 11. CPU utilizations in MIPv6, PMIPv6 and partial DMM

WLAN throughput in the whole network and WLAN load in a MN is depiste in

Figure 12 and Figure 13 respectively. WLAN throughput represents the total
bits (in bits/sec) forwarded from wireless LAN layers to higher layers in a

of the network. MN’s WLAN load means the traffic vol
LAN MAC by its higher layers in a MN node. The th
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5. Cog@mn

@wost conventional centralized mobility management mechanisms including
MIPY6 and PMIPv6, signaling messages and data traffic are concentrated on the
anchor node such as a HA in MIPv6 and a LMA in PMIPv6. To solve these
bottleneck and SPOF (Single Point Of Failure) problems, distributed mobility
management mechanisms have been actively and widely studied in and around the
IETF dmm (Distributed Mobility Management) and netext (Network-Based Mobility
Extensions) working groups

After extensive and comprehensive studying about centralized and distributed
mobility managements, the network-based partial DMM scheme is suggested in this
paper and simulation models and programs have been developed on the basis of
PMIPvV6 protocol and verified by simulations under various traffic environments.

The simulation results for performance comparison of DMM, PMIPv6 and MIPv6
protocol include Tx/Rx data traffic, End-to-end packet transfer delay, binding delay,
CPU utilization, WLAN throughput and load, etc. and show that the developed
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models for DMM are useful for mobility management studies in wireless network
environment.
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