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Abstract 

With the development of computer technology, more and more intelligent algorithms in the 

solution of different problems in many aspects of society are extensively used. Calculation of 

the minimum values of the function optimization and finding the optimal solution of 

combinatorial optimization problems in certain space are the two typical problems. In the 

fields of science and engineering, many optimization problems are constrained with different 

conditions. Due to the existence of constraints, the optimization problems are more difficult 

than the unconstrained optimization problem. Therefore, research on how to make the 

objective function find the optimal solution in the feasible region is of great significance As 

an important intelligent algorithm, particle swarm optimization (PSO) is widely used in the 

calculation of the optimal solution of the constraint problems. But due to the disadvantages of 

the PSO, its search efficiency is quite low when the particle is close to the optimal value. On 

the other side, it is easy to search the local optimal solution but difficult to get the global 

optimal solution. So, it is necessary to modify the algorithm to improve the performance. In 

the paper, we modify the algorithm and propose a modified algorithm (M-PSO). With the 

simulation, the results show the validity of the algorithm. 

Keywords: intelligent algorithm, M-PSO, constraints, application. 

1. Introduction 

With the development of computer technology, more and more intelligent algorithms in the 

solution of different problems in many aspects of society are extensively used. At the same 

time, supercomputer with rapid development provides the hardware support to realize an 

intelligent algorithm. Intelligent algorithms are often used to solve the general optimization 

problem, which can be divided into two kinds: (1) calculate the minimum values of the 

function optimization, and (2) find the optimal solution of the combinatorial optimization 

problems in a solution space. There are many optimization algorithms, the classical 

algorithms include linear programming, dynamic programming, and so on. Improved local 

search algorithm consists of hill climbing method and steepest descent method. Optimization 

algorithm can also be divided as guided search algorithm and system dynamic evolution 

method. The former one includes simulated annealing [1-3], genetic algorithm [4-6], tabu 

search [7-8], while the latter one includes neural network, chaos search algorithm.  

Particle swarm optimization (PSO) is proposed by Kennedy and Eberhart as a new bionic 

optimization algorithm. It originates from the study of the foraging behavior of the birds.  It 

has fast convergence performance on some issues and requires fewer parameters [9-11]. It has 

the disadvantage of slow convergence speed at later evolution, may not find the optimal 

solution for complex problems, and not high accuracy. In order to avoid the defects, many 

studies have been done to improve the performance [12-20]. 
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(1) Hybrid PSO (HPSO) [21] 

In the hybrid model, the new particle swarm produced by the iteration would select based 

on the fitness value. Position and velocity of half particles with high fitness degree would 

substitute that of half particles with lower fitness degree. The individual extreme would be 

maintained unchanged. HPSO improves the convergence speed and maintain the global 

convergence ability. It has better performance than the PSO in the majority of function 

optimization problems. However, it is somewhat limited in solving complex optimization 

problem with high dimensional, nonlinear, and large number of local extreme values. 

(2) Stochastic PSO (SPSO) [22] 

The basic idea is to use the stop evolution particles to improve the global search ability. 

Velocity would lose the memory by removing previous velocity item. It weakens the ability 

of global search while it also makes at least one particle in each generation locate at historical 

best position. New particles are generated randomly to replace stopping particles. This 

method improves the global searching ability. The algorithm also improves that the PSO 

algorithm cannot guarantee the global convergence. 

(3) The synergy PSO algorithm [23-24] 

The basic idea of synergy PSO algorithm is that N  independent particle swarms search 

along D directions in space. The specific approach is: select partition factor N  and particle 

number M  in particle swarm.  Input vector with D  dimensions (velocity and position vector) 

into N  particle swarms. The first ND mod particle swarms has velocity and position vector 

of particles with /D N dimensions. The latter ( m o d )K D N  particle swarms has velocity 

and position vector of particles with ND / dimensions. In each iteration, the N particle 

swarms update the status independently with no shared information. 

In the calculation of fitness value, the particle with optimum position in each particle 

swarm would splice together as a D  dimension vector, which is taken into the calculation of 

the fitness value. Synergistic PSO algorithm can jump out of the local extreme to achieve 

higher convergence precision 

(4) Hybrid PSO [25] 

A particle is given a crossover probability, which is given by the user himself. In each 

iteration, some amount of particles would be selected and put into a pool based on the hybrid 

probability. Random hybrid would be happened in the pool among the particles and produce 

the same number of progeny particles, which are used to substitute the parent particles to 

keep the particles number constant. Progeny particle's position is determined by the parent 

particle's position. The crossover may happen in different subgroup and the same subgroup. 

The hybrid algorithm has a higher convergence speed than that of PSO. Search accuracy is 

relatively high for some nonlinear optimization problems. But due to more referred 

parameters to adjust, number of iteration steps will increase. So there are certain requirements 

for the user’s experience 

In this paper, we propose a modified PSO (M-PSO) to avoid the disadvantages of the PSO. 

The main contribution is the proposition of the new algorithm. The remainder of the paper is 

shown as the following: Description of the original PSO are listed in Section 2. Modified 

PSO is shown in Section 3. Application is shown in section 4. And the conclusion is 

described in Section 5. 
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2. PSO 
 

2.1. Standard PSO Algorithm 

Particle swarm optimization (PSO), which is a kind of evolutionary algorithm, is also 

based on the group. Each potential solution of optimization problems can be seen as a particle 

in the searching space. Each particle has a speed to determine their flight direction and 

distance, and then the particles will follow the current optimal particle to search in the 

solution space. The PSO algorithm is initialized as a group of random particles and the 

particles will fly at a certain speed in the space. The optimal solution will be found according 

to the iteration. In each iteration, the particle will update the value by following two extreme 

values. One is the optimal solutions found by particle itself, and the other is the optimal 

solution found in the whole space. 

Make some assumption: n represents the dimensions of space; ),...,,(
21 imiii

xxxx   means 

the current position of particle i ; ),...,,(
21 imiii

pppP   represents the optimal position found 

by particle i ; g represents the optimal particle in the space; ),...,,(
21 imiii

vvvv   is the 

velocity of particle i . The velocity and position would be updated by the equation (1). 
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Where, k is the number of iteration steps; 
21

, cc  is the learning factor; )(rand , )(Rand  

are the random number in interval ]1,0[ ; k

i
  is the inertia weight. 

Another important kinds of PSO algorithm is particle swarm optimization algorithm with 

convergence factors (CPSO), and the velocity will update with the following: 

))()()()((
21

1 k

ig

k

i

k

i

k

i

k

i
xPRandcxprandcvv 



      (2) 

Here, we call the  as the convergence factor, and 





42
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                                                   (3) 

4,
21

  cc                                                     (4) 

In some condition, the CPSO has a better performance than that of PSO. 

 

2.2. Discrete Particle Swarm Optimization Algorithm (DPSO) 

(1) Optimization design Model for discrete variables 

Optimization design model for nonlinear constraints discrete variables can be summarized 

as follows: 

 
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Where, 
i

x : the discrete variable i ; 
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i

D  is the solutions set of discrete design variables i ; 

mii
dd

,1,
; : the upper and lower limits of i ; m is the number of discrete solutions, 

while m may be different for each discrete variable; 

c
N : the number of  constraints function; 

i
D : discrete design variable; 

i
D : Objective function; 

i
D : performance constraint function. 

(2) Penalty function method 

Penalty function method is widely used in the genetic algorithm and the traditional 

gradient algorithm to solve the constraint problem. But there are fewer examples of using the 

penalty function method to solve the discrete variables. Here, the PSO method is combined 

with a penalty function method to solve the nonlinear constrained discrete variable problem. 

That is to say the point in the space would be eliminated when it is not meeting the demand of 

constraint conditions.  

For the expansion function based on PSO algorithm, the form would be described as the 

following: 

)()()()( XrGXsXfXF                                    (6) 

Where, s  means the discrete penalty factor and r is the constraints penalty factor. 

Here, the expansion function )( XF  is composed of an objective function )( Xf , discrete 

penalty function )( Xs  and constraint penalty function )( XrG . )( Xf would be replaced by 

)( XF , and optimization problem with constraint discrete variables would be transformed 

into problem with unconstrained continuous variables. 

The penalty function in the following would be adopted by equation (6). 
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Where, 
ji

d
,

 and 
1, ji

d are the discrete variable; 
*

i
x is the continuous variable between  

ji
d

,
 

and 
1, ji

d . 

The exterior penalty function would be adopted as the penalty function for constraint 

functions. 


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)](,0max[)(                                               (8) 

Due to the introduction of discrete penalty function, expanding function )( XF  becomes 

highly continuous function with non-convexity. If solving the problem with traditional 

gradient optimization method, global optimal function, even local optimal solution, would not 

be obtained. The reason is the gradient method is not suitable for solving continuous non 

convex problem. PSO is very suitable for solving continuous problem with non-convexity to 

obtain the global optimum. Then, the optimization design problem with nonlinear constraints 

discrete variables is transformed to the following: 
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
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2.3. Flow Chart of PSO 

①The swarm parameter would be initialized and size of the space would be determined. 

Position and velocity of each particle would be given. 

② Corresponding calculation of fitness value for each particle. 

③ For each particle, compare the fitness value and individual extreme value. If the fitness 

value is bigger than individual extreme value, the fitness value would be adopted to replace 

the individual extreme value. 

④ Compare the fitness value with global extreme value. If the fitness value is bigger than 

global extreme value, the global extreme value would be replaced. 

⑤ With corresponding formula, velocity and position of each particle would be updated. 

⑥ The calculation would be finished if the results meet the demand of end conditions 

(error is adaptable, or gets the maximum cycle number), otherwise repeat step 2. 

 
Begin

Initialization of velocity and 

velocity of each particle

Calculation of fitness value 

of each particle

Calculation of best position of 

each individual particle

Calculation of best position in 

the whole space

Velocity optimization

Position optimization

Satisfy or not?

Results output

Yes

No

 

Figure 1. Flow Chart of PSO 

3. Modified PSO 
 

3.1. Trust Region combined Inertia Weight 

In the search process, if a particle finds an optimal position, other particles would quickly 

move closer to it. In some problem with complex objective function, particles may not find 
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the global optimal solution and just get the local optimal solution. In order to avoid premature 

convergence in the local search, trust region algorithm combined with PSO is used in the 

calculation to adjust the inertia weight. When the particles began to search, inertia weight 

would be adjusted to strengthen the global search capability. When the function is decreasing 

at a certain value, the inertia weight should be adjusted to strengthen the local search ability. 

F  is the objective function and some parameters would be defined: (1)
t

i
F is the objective 

function of particle i  after t  times of iteration; (2) 
1-t

i
F s the objective function of particle i  

after 1-t  times of iteration; (3) 
1-t

g
F is the global optimal objective function value of all the 

particles after 1-t  times of iteration. Then the actual reduction of particle i  is
1-t

i

t

i
F-F  and 

1-t

g

t

i
F-F is the predicted reduction. If we define 

k
r  as the following: 

1

1

k
r
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
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t

i

t

i

t

i

ff

ff
                                                         (10) 

Then, we can judge whether the inertia weight is suitable based on the approximation 

degree of 
k

r to 1. That is to say that we can adjust the weight with the inertia described as the 

following: 

(1) Give some constants as  ,
1

 ,
2

 )1.0( , and   <
1

 <
2

 . Generally,  is 

approximately to 0, and 
2

  is approximately to 1. 

(2) If 
4

3
r

k
 , we can think that there is the good approximation between the actual 

reduction and predicted reduction. This means objective function value of the particle has a 

good decline in the original direction and longer search step would make the better 

performance. Then, in order to improve the search ability in a new region, we should enlarge 

the radius of the trust region of inertia weight  . It is  
max

1
,2min 

k

i
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i



. 

(3) If 
4

1
r

k
 , we can think that there is the bad approximation between the actual 

reduction and predicted reduction. We should strengthen the local search ability. Decrease the 

radius of the trust region of inertia weight  . That is  
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1
,2max 

k
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(4) If
4

3
r

4

1

k
 , we can think that there is the good approximation between the actual 

reduction and predicted reduction. Inertia weight algorithm has a balance in the global search 

ability and local search ability. Then we would keep the original radius constant. That is 
k

i

t

i
 

 1  

Based on the inertias described above, iterative formula of particle swarm optimization 

algorithm can be updated as the following: 
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Where, t

i
f is the objective function of particle i after t times iteration; 1t

i
f is the objective 

function of particle i after 1t  times iteration; 1t

g
f  is the global optimal objective function 

of all the particles after 1t  times iteration. 1


t

i

t

i
ff  is the actual reduction of particle 

i after t  times iteration; 1


t

g

t

i
ff  is the predicted reduction of particle i after t  times 

iteration; 

 

3.2. Processing of Constraints 

1
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Based on the traditional constraint optimization method and combined with the equation 

(15), constraint optimization method is modified. When it exceeds the feasible region, it 

should be processed with the following. 

(1)When
4

1
r

k
 , )1( tx

i
 exceeds the feasible domain. Due to 

the ))(())1(( txftxf
ii

 , the direction is a descent direction, and there is high probability 

of smaller value than ))(( txf
i

on the vector. So in order not to waste particles exercise, 

particle would not return to the last generation. In this condition, we will select an arbitrary 

position between the last generation position and the current position. And the particle would 

move by the following path: 

)1()1()()2(  txtxtx
iii

                                 (16) 

Where, )1,0( . The particle will move until it returns to the feasible region 

 (2) When 
4

1


k
r  and )1( tx

i
 exceeds the feasible domain, we think the particles have 

worse declining performance. In this condition, there is lower possible to have a lower value 

than ))(( txf
i

, then the particle would return to the last generation position. 

The calculation method is described as the following: 

(1) If 
4

1
r

k
 , )1(  txx

ic
, then 

cic
xtxx )1()(   , )1,0(   
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(2) If 
4
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k
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3.3. Flow Chart of Modified Algorithm 

 
Set the parameters:

particles size: M

iteration weight: ω  

accelerating factor: c1, c2

maximum velocity: νmax

Set the initial velocity and position

Compare the fitness value of each particle with 

the best position fitness value pbest

Set the input and output variables

Simulation and iteration

Update the velocity and position

Fitness value calculation

Is velocity less than vmax

Set the velocity as the 

boundary value

Output result  and finish 

the calculation

Yes

No

Better or not?

Yes

No

Replace the value Pbest with 

current value

Keep the value Pbest with no 

change

Compare the fitness value of each particle with 

the fitness value of global best position gbest

Better or not?

Keep the value Pbest with 

no change

Yes
No

Replace the value Pbest with 

current value

No

Is the results meet the demand ?

Yes Calculate the xi(t+2)

Is the results meet the demand ?

Yes

No

 

Figure 2. Flow Chart of Modified PSO 

4. Application 

We will take the optimization design of pressure vessel as the example. The calculation 

results would be compared with the CARLOS [26] and HE [27] methods.  
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Figure 3. Sketch Map of the Pressure Vessel 

As shown in Figure 3, the problem can be described as the design variables of )(
1

Rx , 

)(
2

Lx , )(
3 s

tx , )(
4 h

tx . The aim of the problem is design the vessel with least material. 
1

x , 

2
x  are the continuous variable, and 

3
x , 

4
x  are discrete variable.  

Firstly, we should establish the mathematics model as the following: 

Calculate the ),,, (
4321

xxxxX  and get the )(min Xf . 

3

11

2
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2

1321
84.19166.3778.1622.0)( xxxxxxxxxXf     (17) 

And the constraints are described as the following: 
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With the experiments, the initial parameters would be adopted as the table 1 shows.  

Table 1. Initial Parameters 

Items Value  

The initial constraint penalty factor 6000 

The initial discrete constraint penalty factor 130 

Modified coefficient 1.002 

Maximum times of iteration 150 

Number of the particles 50 

Maximum inertia coefficient 1.4 

Minimum inertia coefficient 0.3 
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Table 2. Results Comparison 

Items KANNAN CARLOS Modified PSO  

Radius of the vessel 58.29 40.32 42.23 

Length of the vessel 43.36 200 258.822 

Thickness of the vessel 1.125 0.8125 0.934 

Thickness of the hemispherical 

head wall 

0.625 0.4375 0.573 

Constraint 
1

g  0 -0.04 -0.012 

Constraint 
2

g  -1.110 -0.120 -0.112 

Constraint 
3

g  -0.82 -0.17 -0.0.38 

Constraint 
4

g  -1.11 0.07 0.001 

Vessel weight )( xf  7198.2 6288.7445 6938.323 

 

With random optimization for 10 times, we can get the results in the calculation as shown 

in Table 2. This means the modified PSO algorithm is effective. 

 

5. Conclusion 

With the development of computer technology, more and more extensive application of 

intelligent algorithms in the solution of different problems in many aspects of society. PSO is 

an effective algorithm to solve the constraint problems. However, it has also disadvantages in 

the calculation, so many papers have been published to improve the performance, such as 

Hybrid PSO (HPSO), stochastic PSO (SPSO), the synergy PSO algorithm, and Discrete 

particle swarm optimization algorithm (DPSO).  

In the paper, we propose a modified PSO. In order to avoid premature convergence in the 

local search, trust region algorithm combined with PSO is used in the calculation to adjust the 

inertia weight. When the particles began to search, inertia weight would be adjusted to 

strengthen the global search capability. When the function is decreasing at a certain value, the 

inertia weight should be adjusted to strengthen the local search ability. Constraint 

optimization method is modified. When it exceeds the feasible region, some methods would 

be used to solve the conditions. 

Comparison of the application shows the validity of the modified PSO. 
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