International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014), pp.73-86
http://dx.doi.org/10.14257/ijmue.2014.9.7.07

Speech Intelligibility Enhancement Using Convolutive Non-negative
Matrix Factorization with Noise Prior

Jian Zhou', Xianyong Fang', Liang Tao" and Li Zhao®

'Key Laboratory of Intelligent Computing and Signal Processing of Ministry of
Education, Anhui University, 230601 Hefei, China
’Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Ed&aa}'en,
Southeast University, 210096 Nanjing, China

230099140@seu.edu.c 62 )
Abstract 6 ’

We propose a convolutive non-negative matr' agforization” wet d to improve the

intelligibility of speech signal in the context of ad 0|se ent. The noise bases
are prior learned with Non-negative Matrix Facto atlon M algorithm. A modified
convolutive NMF with sparse constraint is t rlved.t xtract speech bases from noisy
speech. The divergence function is selec an object nctlon to get a multiplicative
update of speech base and its correspon elgh T ghts of prior learned noise bases
are also updated in the update ru enln ents are conducted to assess the
intelligibility performance of s p eS|zed % the proposed algorithm. Experimental

results indicate that the propo ethod 15 effective to improve the intelligibility of the
noisy speech in various noise-gontexts and |Pg erforms conventional algorithms.

Keywords: Speec V’Il@blhty enhancement, Non-negative Matrix Factorization,
Speech base Iearnm

1. Introdu.

During the last few @s many speech enhancement algorithms have been proposed for
processing of noisy in stationary or non-stationary environment. And much progress
has been made in [@pect of improving speech quality (e.g., SNR improvements or comfort
of the enhanced speech) by these algorithms. However, considerably smaller progress has
been made i fgning algorithms that can improve speech intelligibility [1].

Qual%@intelligibility are two dimensions used to measure the perception of a speech
sig quality is a subjective measure which reflects on individual preferences of
Iis(% it is relevant to the signal-to-noise ratio (SNR) improvements or comfort of the
listenef. However, intelligibility is an objective measure which predicts the percentage of
words that can be correctly identified by listeners. It has strong relation to the understanding
of the underlying message or content of speech signal [1].

Generally, improving the intelligibility of noisy speech rather than the quality is much
more important in adverse environment since semantic information retrieval becomes the
dominating purpose of speech communication. In [2], Kim proposed an algorithm that can be
optimized for a specific acoustic environment and improve speech intelligibility. The
proposed method decomposes the input signal into time-frequency (T-F) units and makes
binary decisions, based on a Bayesian classifier, as to whether each T-F unit is dominated by
the target signal or the noise masker. However, this method may fail in lower SNR
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environment wherein the speech energy dominated T-F unit is easily classified as the noise
dominated unit by the supervised learning approach.

Individual sources identification from complex mixtures in adverse noisy context is a
powerful ability of human beings. For example, if a violin section plays in unisono, all the
sounds arriving from the same musical instrument are perceived as a single source. This
remarkable ability is attributed to the human auditory perceptual system [3,4]. According to
perceptual principles, a collection of sensory elements likely arise from the same source are
grouped and perceived while others are discarded. These sensory elements can be T-F units
where the object speech dominates in the joint time-frequency domain [5].

In order to understanding the perception principle of the brain, Lee and Seung proposed a
parts-based presentation which is confirmed by psychological and physiological gvi [6].
For example, the lateral occipital complex (LOC), a cortical region critical for @m object
recognition, has been shown to primarily code the shape, rather than the sur@ perties, of
an object [7]. Certain computational theories such as co tional audi cene analysis
(CASA) also rely on such representations [3, 8]. As an K‘gi g appro or data analysis,
NMF has been successfully used in such applicatj %nusic t&;c)iption, blind source
separation and et al. [9-12]. Q

In parts-based representation, linear combinationS of bas%? ors is forced to be non-
subtract, since negative basis components ar@ically.m@&in ess in such applications as
image and audio processing. The non-nedati atrix factqrization (NMF) proposed by Lee
and Seung is a parts-based algorithm wi %ﬂsis d o@si ion is confined to a non-negative
space, e.g., NMF approximately eéqa es a QS\egative matrix v __into a product of
two non-negative matrix B aﬂdg§ e basis vedfors B describe the spectral characters of
the components, whereas, their eights‘@rovide their temporal evolution. In audio
processing, Vv is usually the@nt time@ cy (magnitude or power) spectrogram with m
frames and n frequeney \

In some tasks suc %s eech sjighal processing, a frequency component of speech often
spans multiple s of owever, conventional NMF is ignoring potential
dependencies uccessiyve cetumns of v . In order to capture the temporal dependency
of the frequenc tterns%' the signal, Smaragdis proposed a convolutive NMF (cNMF)

in separating monophonic mixtures of known speakers [13].
NMF algorithm proposed in [13] is that speech bases of each

rior in the separating task. This is, however, usually impossible in
enhancement since the speech signal of specific speaker cannot be

which is utilized succe

single-chan

s problem, we propose a novel convolutive NMF algorithm to conduct speech
inte enhancement. Firstly, the noise bases are prior learned using the conventional
cN&%ﬂew update rules are then derived using the divergence object function with
sparseness constraint. Estimated clean speech bases are learned using the proposed algorithm
thereafter. The estimated speech is reconstructed using the learned phoneme bases and its
corresponding weights. The object function is selected according to perceptual principle. The
algorithm allows making the spectrum of the residual noise similar to that of the speech signal
in the given frame. It expects to comprise most speech sensory parts, leading to the enhanced
speech more intelligible.

The remainder of this paper is organized as follows. The next section describes non-
negative matrix factorization and its convolutive version. Section 3 presents a novel
convolutive NMF algorithm for the purpose of speech intelligibility enhancement. In section
4 we apply the proposed convolutive NMF to do speech intelligibility enhancement. The
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performance is also compared with other classic speech enhancement algorithms. The paper
concludes with section 5.

2. Convolutive Non-negative Matrix Factorization

Given an M x N non-negative matrix v e U "*" | the goal of NMF is to find non-
negative matrix B e~ "** and H < , such that v ~ BH . R is the rank of the
factorization and generally chosen to be smaller than m (or N ), or akin to
(M + N)R < MN , which result in the extraction of some latent features whilst reducmg

some redundancies in the input data. To find B and H such that the reco fion
error is minimized, two error cost functions have been proposed |n 51 e cost

0 RxN

function is the squared Euclidean distance  which

L(V,B,H)=1/2I V - BHI? and the other is the dlvﬁeofunc
as

his defmed

D(V,B,H)=ll V®In(V %BH) - (1)

where ® and % denote the element-wise mct a |on respectively, [},

denotes I, -norm. The divergence is lowe ded b o WhICh is attained if and

only if v =BH . The divergence s to ck Leibler divergence when
> V,=>(BH), =1.The use of %enc

eg\x functlon is motivated by the fact
i i

that the divergence is less |ve to la ergy observations than the Euclidean
distance [10]. This enables the use of po ectrogram as the observation.

In order to find a Ioc mum \&Y the cost function, Lee and Seung proposed
a very appealing multi ve upda orithm described as follows [14],

H M (B) W% (BY) B H ), (2)

BQ (V(\@ 6 (BTH™H(H™)), ©)
where T isth trix t @ose operator, and q is the iteration index.

In the aforementio ndard NMF, each object is composed of a single spectrum
which is calculated the duration of the spectrogram frame. It is however a weak
model since it do@take into account the relative positions of each spectrum thereby
discarding oral information. For example, the frequency spectrum component of a

‘% example, phoneme) often spans several successive frames.

speech objﬁC
In or apture this time-varying auditory object of speech, a convolution version
of% roposed by Smaragdis in [13] as follows,

t—

V = z B(t)H, (4)

0 M xR [ RxN

where v e U """ is the input we wish to decompose, B(t) e and H e are

t—
the bases and weights matrix respectively. The function (.) denotes a column shift
operator that moves its arguments by t spots to the right; as each column is shift off to

the right the leftmost columns are zero padded. And consequently (3 shifts to the left.

From Eq.(4), one can find that the convolution NMF is essentially a summation of
convolution operations between corresponding elements from a set of two-dimensional
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bases B and a set of weights H . When T =1, it degenerates to the standard NMF. All
the jth column of B(t),t =0,1,....T —1 consists of a two-dimensional auditory object

which we also refer to as a basis. With this convolutive NMF, the temporal continuity
possessed by many audio signals can be captured and represented more effectively in
the joint time-frequency domain, especially for speech signals whose frequencies vary
with time [15].

Multiplicative updates rules are also derived in [13] to conduct convolution NMF
based on extend Kullback-Leibler divergence, which can be rewritten in matrix form as:

p<«

H =H'® (B'(p)'V%A")% (B (p) E)), °(5)
B (p)=B (p)® (V%A )H")) % (= (H““ D)
where A = z B(t): and = isan M x N matrix Whosaﬁ%ments t to unity.
3. A Novel Convolutive NMF Algo «@éech Intelligibility
Enhancement 0\

In this section, we first give an mtrodx to the ;@ model. The proposed novel
convolutive NMF algorithm is then d and @ in detail.

3.1. Signal Model \

We assume that the noisy speech v(l ampllng time index i consists of speech
s(i) and additive nmse@) For jai e-frequency analysis of v(i), we apply the

K -point STFT, tha
Q)(u)exp(— 5, ()

where 1 e z is the sub ed time index, k = 0,1,... ,K -1 is the frequency bin, and
L is the window Ier@ he quantity R is the number of samples that successive

L-1

frames are shift d h(x) is a unit-energy window function, that is h(u)=1.
From the li \%y of Eq.(7), we have that
(A,k)=S(2,k)+ N (4,k), (8)

h@( k) and N (2,k) are the STFT coefficients of speech s(i) and additive noise
n(i), respectively. We further assume that s(i) and n(i) are zero mean and statistically
independent, which leads to a power relation, where the noise is additive, that is,

IV (4K F=1S (A, K) [+ 1N (2, k) [ (9)
Eq. (9) can be rewritten in matrix form as follow:
V =S+N (10)

3.2. Derivation of the Proposed Algorithm

Since matrix v, s and N are non-negative, we can decompose Vv with convolutive
NMF,
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F .1

T-1 to T-1 . R | |
= %B(t)H = E[B B M (11)

’ ’ [H’]

The fact that some of the eigenvalues of the clean signal may be zero indicates that
the energy of the clean signal vector is distributed among a subset of its coordinates, e.g,
the signal is confined to a subspace of the noisy Euclidean space, while the uncorrelated
noise fills in the entire vector space of the noisy signal. In order to utilize this character

in the convolutive NMF, we give an addition of the sparseness constrainf\on )M ®
Combining Eq.(1) with sparseness constraint on H°* results in the followi ective

Ik
where the left term of the objective functiog XSpon
convolutive NMF, the right term is an additional constfaint yoan H° that enforces
sparsity by minimizing the L, -norm of its}%ments Th ameter 4 controls the
t

tradeoff between sparseness and accurate ructio
The extended objective function of ) intro a scaling problem: The right
term is a strictly i mcreasmg functlon |t is possible that the object can

decreased by scaling B up a n. ThigSittation does not alter the left term but
will cause the right term t&rease resulting in the elements of B(t)° growing
without bound and H°® toward 0 avoid this scaling problem, normalizing
B(t)" is performed f@r object rr&s (t)° to be scaled to the unit L, -norm,

function, 6
G(V,A,HS):IIV®In(V%A)—V+Al+4§Hik,© (12)
h

e conventional

S

&Q‘% (13)

where the matrix B is ucted from the jth of B(t)® at each time step. Since the
noise can be estima ﬁbr example by VAD algorithm from the noisy speech, the noise
bases B" can be d from these roughly noise signal. The remainder problem need

to tackle is stimates®, H® andH" . When this problem is approached, the enhanced
speech can@ onstructed by,

t—

?O S=Y B ()H’ (14)
t=0
We first derive the update rules for B®. According to Eq.(11), we have the

derivative A, with respectto B, (t),

t— t—

w BN, ~ B, ()h", B ()
oB (1) I B

oA

(15)

where B (t) = ol B I /8B, ().

Now, we have the derivative of G with respective to Bfm 1),
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t— t— s V
{1 B Ih® =B, ()h', Ban(1)}(1- A—)
G (V,A,H?) m K
' 16
aB. (1) Z I B:I* (19)
The gradient descent update for H can be derived as,
oG
B,.(t)=7 + B, ., (1) (17)

5 () 9B (1)
Let the element-wise step size be

B,, (t)

s =
By () t— >

s s s s
. h nern,k|| Bn”+ an(t)h nk an(t)

2
~ I BI?A

m .k
then substitute Eq.(18) into Eq. (17), we get the follo \ﬁult

B,.(t) as Q
z nk(l+an(t)mGB <:S mk)anN,V
B, ., (1) =" ‘\,

where t =0,..., T -1 Slmlla I ve an mpdate for H®

e aG
e T M T @ :
Using the gradient Q Q
Ele 4%
1- B oo (t
e ( VAT DB e (1)
Setting the

%h WV A %\amn(t

Boa(t)

i=1
We get t@%owing multiplicative rules for H*®,

Q Z an(t)(V /Xi,k)h;k
th=

A+ Z an(t)

i=1

The update rules for H" can be derived similarly as follows,

M — te
> Boa()(V,, [ Aik)h],
h' ==

jk

3 Bua(l)

78

Yx)(.ls)
%ﬁ)update rules of

(19)

(20)
(21)

(22)
(23)

(24)
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4. Numerical Simulation Experiment

In this section, we study numerically the performance of the proposed algorithm in
the context of speech intelligibility enhancement and perform comparisons to the
conventional enhancement algorithms.

4.1. Corpus and Power Spectra

In order to evaluate the performance of the proposed method, 30 clean utterances
obtained from IEEE speech database were used in the experiments [16]. Half of the
utterances are from male speakers and half are from female speakers. Three{types of
noise recordings including Gaussian white noise, babble noise and F16 fig é!rJX}zoise

taken from NOISEX-92 database were used as noise maskers [17]. A ent of
the same length as the speech signal was randomly cut out of the noi dings and
appropriately scaled to reach the desired SNR level. m%spect oisy speech
and noise signals are computed respectively.

A fixed 32-ms frame size was used with 50%-owenap be W(%}f)ames. The discrete
Fourier transform (DFT) was applied on each f the ﬁgsh(o the DFT is equal to
the frame size which has length of 256 sample points. CN ositive frequencies are
retained and phases were discarded b)./ t he squ%values of the DFT spectra,

resulting in power spectrogram matri =/ corres Oml g to noisy signal and N,
corresponding to pure noise signalé)Q k ii\ isCrete frequency index and I is the
4.2. Noise Base Training \%

frame index.

The scNMF algorimr@osed b wragdis was used to find noise basis. The pure
noise signal which \Nge contained Tt the noisy speech was processed prior similarly
as the noisy speec% t its%&%pectra. The noise bases were got after 50 iterations.

The sparse c@' t parame is set to zero which indicates that there is no
sparseness co int. T e@nber of objects in noise is set as the same as that in the
clean speech. Figure 1%\% 10 bases which trained in the F16 fighter jet noise. In
Figure 1, the top pan ots the spectrum of F16 noise and the bottom panel plots 10
bases which are | from successive 23 frames.

: 0.5 1 15 2

Time (s)

2 3 4 5 6 7 8 9 10

Figure 1. F16 Fighter Jet Noise Spectrum and its 10 bases Learned using

scNMF Proposed in [13]. The Top Panel Plots the Spectrum of F16 Noise

and the Bottom Panel Plots 10 bases which are Learned from Successive
23 Frames
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Figure 2. Noisy Speech and Spe KZ f -5dB

The top panel plots the noisy speech corrupted by F16 et noise at SNR of -5

dB. The bottom panel plots 10 phoneme earned @19 the proposed convolutive
NMF algorithm.

4.3. Speech Intelligibility Enh n

We use the algorithm des ] sectlo 3 estlmate the speech phoneme patterns
from the noisy signal. The noise bases |n the above section were used as fixed
noise bases. The ObjeCtI functl 2) was used with sparseness constraint

respectively. We s with 40 iterations to get a local minimum of the
objective fun g. (14) to reconstruct the enhanced speech where

B (t) con3|st the e&@ed phoneme bases and H® is the corresponded weights

matrix.
Qe

2 =0.15 . Eq. (1 and f ere used to update w_ (t) , h; and h]
e then

@)
%V 0 —&WMMMWWWW: MMWWWWW " MWW«W W g
Q> L W
0] 0.5 1 1.5 2 25
Time (s)
(b)
2 13 T T T
0 o
2 r r r r
0] 0.5 1 1.5 2 25
Time (s)
©)
1 T T T
1 r r r r
0] 0.5 1 1.5 2 25

Time (s)

Figure 3. Reconstructed Speech with Learned Speech Bases at SNR of -5
dB
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Figure 3 (a) shows the original clean speech, Figure 3 (b) shows the noisy speech
corrupted by F16 fighter jet noise at SNR of -5 dB. Figure 3 (c) shows the reconstructed
speech using the learned phoneme bases and their weights. Figure 2 shows the base
phoneme bases extracted from noisy speech corrupted by F16 fighter jet noise at SNR
of -5 dB. In Figure 2, The top panel plots the noisy speech corrupted by F16 fighter jet
noise at SNR of -5 dB. The bottom panel plot 10 phoneme bases learned using the
proposed convolutive NMF algorithm. As can be seen from Figure 2, the speech bases
learned from the noisy speech captured the phoneme characteristic. Compared with the
noise bases in Figure 1, each base is the frequency spectrum component of a speech
object, containing little of noise signal. o

Figure 3 shows the enhanced speech reconstructed using the proposed al rWrom
noisy speech which contaminated by F16 fighter jet noise. Figure 3 g%wws the
original clean speech signal, Figure 3 (b) shows the n0|sy speech @t d by F16
fighter jet noise at SNR of -5 dB. Figure 3(c) shows oﬂstru ch using the
learned phoneme bases and their weights. From Flgur ca find\that the noise has
been cleaned mostly while the speech compone been r@ﬂ}g&d Although some
speech components have been removed, we w nfirm t the reconstructed
speech have a better intelligibility than the ng'&s eech.

- e»

4.4. Performance Evaluation

In order to show the effectivene % he (@a&j algorithm, we compare it with
scNMF and statistic method whi ery I for normal speech enhancement.
Specifically, power subtractuaq%g od p In [18] and optimal gain modification
based method proposed in [19] re bo‘t d to enhance the noisy speech for further
comparison.

Figure 4 shows the rums 0 enhanced speech using different algorithms.
Figure 4 (a) plots t ?pp trum he clean speech. Figure 4 (b) plots the spectrum of
the noisy speech ted b’ﬁ@ ighter jet noise at SNR of -5 dB. Figure 4(c) plots
the spectrum estimat ean speech enhanced using the proposed algorithm.

Figure 4 (d) phets the @um of the estimated clean speech enhanced using the
algorithm proposed by agdis. Figure 4(e) plots the spectrum of the estimated clean
speech enhanced b power subtraction, and Figure 4(f) plots the spectrum of the
estimated clean s@enhanced by the statistic like algorithm proposed by Cohen [19].
From Figure A4, can find that, compared with scNMF and power subtraction
algorithm, ectrum of the estimated clean speech enhanced by the proposed
algorithb ins more speech content. Compared with the statistic algorithm proposed

by more noise has been subtracted and more spectrum components have been
ret using the proposed algorithm
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Figure 4. Spectrums of Enhanc ee ing Different Algorithms. (a)
Clean Speech. (b) Noisy Speezﬁgrru F16 Fighter Jet Noise at SNR
of -5 dB. (c) Speech Enh sing t oposed Algorithm. (d) Speech
Enhanced using the rithm, P%o ed by Smaragdis. (e) Speech
Enhanced by the Algorithm Pr d by Cohen [19], and (f) Speech

. I;@ced % ower Subtraction
Ten listeners w'gs}ruited te%he listening tests with half of each gender. In the

identification uli W&@Ia ed to the listeners monaurally through Sennheiser
HD 250 Line cwcu% headphones at a comfortable listening level. The three
e

processing conditions i d the noise corrupted speech (denoted as UN), noisy
speech processed usj proposed algorithm (denoted as pscNMF), synthesized
speech using the entional sparseness constraint convolutive NMF algorithm
(denoted as scr\?@r synthesized speech using the power subtraction algorithm
(denoted a . In addition, the algorithm proposed by Cohen in [19] (denoted as
OMLSA)

Iso evaluated for its ability to improve speech intelligibility. The
rithm minimizes the mean-square error of the log-spectra based on a
atistical model associated with the speech presence uncertainty. The noise
is estimated by recursively averaging past spectral power values, using a
smoothing parameter that is adjusted by the speech presence probability in subbands. In
this paper, the parameters of OMLSA were the same as that in [19].

Table 1. Word Identification Rates of Different Stimuli with Different SNRs

Performance (%)

SNR(dB) Noise UN pscNMF  cNMF OMLSA PS
GWN 53.82 58.74 57.77 49.50 47.38

-10 Babble 57.87 64.57 56.83 49.23 44.01
F16 51.23 59.22 50.51 48.38 40.51
GWN 60.82 69.33 65.81 49.31 59.09
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-5 Babble 65.10 70.05 64.35 57.80 54.91
F16 59.26 68.08 59.35 50.27 59.29
GWN 68.86 75.59 75.36 62.09 71.82
0 Babble 72.85 73.12 71.92 68.95 66.44
F16 69.25 75.32 67.95 66.12 71.51

The duration of each sentence was approximately two seconds. The experiments were
performed in a sound-proof room. Prior to the sentence test, each subject listened to a
set of noise-masked sentences to become familiar with the testing procedure. Five-
minute breaks were given to the subjects every 30 minutes. A total of 30 sentWre
used per condition in each trial (a total of ten trials). The order of the co was
randomized across subjects. Listeners were asked to write down the w g@ heard,
and intelligibility performance was assessed by countlng number f@ identified
correctly.

Table 1 shows the word identification rates of speech and its
enhanced version using different algorithms in t no ise xts with different
SNR levels. As can be seen from Table 1, the n|t|o he estimated clean
speech using pscNMF has substantial hlg entlflcatlon than the unprocessed
noisy speech and that obtained using othe ch enha ment algorithms in different

SNR levels.
@

Improving speech intelllg |s a keyA su%when conducting speech enhancement
in low SNR environment. ventlonalag ch enhancement algorithms fail to tackle
this problem. In this p e pr a sparseness constraint based non-negative
matrix factorization” Ithm&% pplied it to conduct speech intelligibility

5. Conclusion

enhancement. EXxp tal res how that the intelligibility of the speech enhanced
using the propo N gorith sédsubstantially higher than that of the unprocessed
noisy speech hat of t gco ventional speech enhancement algorithms. Extensive

comparisons demonstrat, the system has gained the state-of-the-art performance in

speech intelligibility ement.
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