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Abstract 

We propose a convolutive non-negative matrix factorization method to improve the 

intelligibility of speech signal in the context of adverse noise environment. The noise bases 

are prior learned with Non-negative Matrix Factorization (NMF) algorithm.  A modified 

convolutive NMF with sparse constraint is then derived to extract speech bases from noisy 

speech. The divergence function is selected as an objective function to get a multiplicative 

update of speech base and its corresponding weight. The weights of prior learned noise bases 

are also updated in the update rule. Listening experiments are conducted to assess the 

intelligibility performance of speech synthesized using the proposed algorithm. Experimental 

results indicate that the proposed method is very effective to improve the intelligibility of the 

noisy speech in various noise contexts and it outperforms conventional algorithms. 

 

Keywords: Speech intelligibility, Speech enhancement, Non-negative Matrix Factorization, 

Speech base learning 

 

1. Introduction 

During the last few decades, many speech enhancement algorithms have been proposed for 

processing of noisy speech in stationary or non-stationary environment. And much progress 

has been made in the aspect of improving speech quality (e.g., SNR improvements or comfort 

of the enhanced speech) by these algorithms. However, considerably smaller progress has 

been made in designing algorithms that can improve speech intelligibility [1]. 

Quality and intelligibility are two dimensions used to measure the perception of a speech 

signal. The quality is a subjective measure which reflects on individual preferences of 

listeners, it is relevant to the signal-to-noise ratio (SNR) improvements or comfort of the 

listener. However, intelligibility is an objective measure which predicts the percentage of 

words that can be correctly identified by listeners. It has strong relation to the understanding 

of the underlying message or content of speech signal [1]. 

Generally, improving the intelligibility of noisy speech rather than the quality is much 

more important in adverse environment since semantic information retrieval becomes the 

dominating purpose of speech communication. In [2], Kim proposed an algorithm that can be 

optimized for a specific acoustic environment and improve speech intelligibility. The 

proposed method decomposes the input signal into time-frequency (T-F) units and makes 

binary decisions, based on a Bayesian classifier, as to whether each T-F unit is dominated by 

the target signal or the noise masker. However, this method may fail in lower SNR 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

http://dx.doi.org/10.14257/ijbsbt.2014.6.1.01


International Journal of Multimedia and Ubiquitous Engineering 

Vol.9, No.7 (2014) 

 

 

74   Copyright ⓒ 2014 SERSC 

environment wherein the speech energy dominated T-F unit is easily classified as the noise 

dominated unit by the supervised learning approach. 

Individual sources identification from complex mixtures in adverse noisy context is a 

powerful ability of human beings. For example, if a violin section plays in unisono, all the 

sounds arriving from the same musical instrument are perceived as a single source. This 

remarkable ability is attributed to the human auditory perceptual system [3,4]. According to 

perceptual principles, a collection of sensory elements likely arise from the same source are 

grouped and perceived while others are discarded. These sensory elements can be T-F units 

where the object speech dominates in the joint time-frequency domain [5]. 

In order to understanding the perception principle of the brain, Lee and Seung proposed a 

parts-based presentation which is confirmed by psychological and physiological evidence [6]. 

For example, the lateral occipital complex (LOC), a cortical region critical for human object 

recognition, has been shown to primarily code the shape, rather than the surface properties, of 

an object [7]. Certain computational theories such as computational auditory scene analysis 

(CASA) also rely on such representations [3, 8]. As an emerging approach for data analysis, 

NMF has been successfully used in such applications as music transcription, blind source 

separation and et al. [9-12].  

In parts-based representation,  linear combinations of basis vectors is forced to be non-

subtract, since negative basis components are physically meaningless in such applications as 

image and audio processing. The non-negative matrix factorization (NMF) proposed by Lee 

and Seung is a parts-based algorithm where basis decomposition is confined to a non-negative 

space, e.g., NMF approximately decomposes a non-negative matrix 
m n

V  into a product of 

two non-negative matrix B  and H . The basis vectors B  describe the spectral characters of 

the components, whereas, their weights H  provide their temporal evolution. In audio 

processing, V  is usually the joint time-frequency (magnitude or power) spectrogram with m  

frames and n  frequency bins. 

In some tasks such as speech signal processing, a frequency component of speech often 

spans multiple columns of V . However, conventional NMF is ignoring potential 

dependencies across successive columns of V . In order to capture the temporal dependency 

of the frequency patterns within the signal, Smaragdis proposed a convolutive NMF (cNMF) 

which is  utilized successfully in separating monophonic mixtures of known speakers [13]. 

The drawback of the cNMF algorithm proposed in [13] is that speech bases of each 

speakers must be got prior in the separating task. This is, however, usually impossible in 

single-channel speech enhancement since the speech signal of specific speaker cannot be 

captured quietly in the adverse noise environment. 

To tackle this problem, we propose a novel convolutive NMF algorithm to conduct speech 

intelligibility enhancement. Firstly, the noise bases are prior learned using the conventional 

cNMF. New update rules are then derived using the divergence object function with 

sparseness constraint. Estimated clean speech bases are learned using the proposed algorithm 

thereafter. The estimated speech is reconstructed using the learned phoneme bases and its 

corresponding weights. The object function is selected according to perceptual principle. The 

algorithm allows making the spectrum of the residual noise similar to that of the speech signal 

in the given frame. It expects to comprise most speech sensory parts, leading to the enhanced 

speech more intelligible. 

The remainder of this paper is organized as follows. The next section describes non-

negative matrix factorization and its convolutive version. Section 3 presents a novel 

convolutive NMF algorithm for the purpose of speech intelligibility enhancement. In section 

4 we apply the proposed convolutive NMF to do speech intelligibility enhancement. The 
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performance is also compared with other classic speech enhancement algorithms. The paper 

concludes with section 5. 

 

2. Convolutive Non-negative Matrix Factorization  

Given an M N  non-negative matrix 
M N

V , the goal of NMF is to find non-

negative matrix 
M R

B  and 
R N

H , such that V B H . R  is the rank of the 

factorization and generally chosen to be smaller than M  (or N ), or akin to 

( )M N R M N  , which result in the extraction of some latent features whilst reducing 

some redundancies in the input data. To find B  and H  such that the reconstruction 

error is minimized, two error cost functions have been proposed in [14]. One cost 

function is the squared Euclidean distance which is defined as 
2

( , , ) 1 / 2
F

L  V B H V B H‖ ‖  and the other is the divergence function which is defined 

as 

1
( , , ) ( ,)D ln   V B H V V B H V B H‖ ‖%                                           (1) 

where   and %  denote the element-wise product and division, respectively, 
1

·‖‖  

denotes 
1

l -norm. The divergence is lower bounded by zero, which is attained if and 

only if V B H .  The divergence reduces to Kullback-Leibler divergence when 

, ,

( ) 1
i j i j

i j i j

  V B H . The use of divergence as cost function is motivated by the fact 

that the divergence is less sensitive to large-energy observations than the Euclidean 

distance [10]. This enables the use of power spectrogram as the observation. 

In order to find a local minimum value of the cost function, Lee and Seung proposed 

a very appealing multiplicative update algorithm described as follows [14], 
1

(( ) ) (( ) ) ,
q q q T q T q q

 H H B V B B H%                                                   (2) 

1 1 1 1
( ( ) ( ( ) ) ,

q q q T q q q T   
 B B V H B H H%                                              (3) 

where T  is the matrix transpose operator, and q  is the iteration index.  

In the aforementioned standard NMF, each object is composed of a single spectrum 

which is calculated over the duration of the spectrogram frame. It is however  a weak 

model since it does not take into account the relative positions of each spectrum thereby 

discarding temporal information. For example, the frequency spectrum component of a 

speech object (for example, phoneme) often spans several successive frames.  

In order to capture this time-varying auditory object of speech, a convolution version 

of NMF is proposed by Smaragdis in [13] as follows, 
1

0

( ,)

T t

t

t

 



 V B H                                                                                         (4) 

where 
M N

V  is the input we wish to decompose, ( )
M R

t


B  and 
R N

H  are 

the bases and weights matrix respectively.  The function ( .)

t 

denotes a column shift 

operator that moves its arguments by t  spots to the right; as each column is shift off to 

the right the leftmost columns are zero padded. And consequently ( .)

t 

 shifts to the left. 

From Eq.(4), one can find that the convolution NMF is essentially a summation of 

convolution operations between corresponding elements from a set of two-dimensional 
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bases B  and a set of weights H . When 1T  , it degenerates to the standard NMF. All 

the j th column of ( ) , 0 ,1, .. . , 1t t T B  consists of a two-dimensional auditory object 

which we also refer to as a basis.  With this convolutive NMF, the temporal continuity 

possessed by many audio signals can be captured and represented more effectively in 

the joint time-frequency domain, especially for speech signals whose frequencies vary 

with time [15]. 

Multiplicative updates rules are also derived in [13] to conduct convolution NMF 

based on extend Kullback-Leibler divergence, which can be rewritten in matrix form as:  

1
( ( ( ) ) ) ( ( ( ) ) ) ) ,

p

q q q T q q T
p p




 H H B V Λ B Ξ% %                                        (5) 

1 1 1
( ) ( ) ( ( ( ) ( ) ) ( ( ) ) ) ,

p p

q q q q T q T
p p

 

  
 B B V Λ H Ξ H% %                               (6) 

where 
1

0

( )

T t

t

t

 



 Λ B H  and Ξ  is an M N  matrix whose elements are all set to unity. 

 

3. A Novel Convolutive NMF Algorithm for Speech Intelligibility 

Enhancement 

In this section, we first give an introduction to the signal model. The proposed novel 

convolutive NMF algorithm is then derived and described in detail.  

 

3.1. Signal Model 

We assume that the noisy speech ( )v i  at sampling time index i  consists of speech 

( )s i  and additive noise ( )n i . For joint time-frequency analysis of ( )v i , we apply the 

K -point STFT, that is, 
1

0

2
( , ) ( ) ( ) ( ) ,

L
j k

V k v R h exp
K

 
   





                                               (7) 

where     is the sub-sampled time index, 0 ,1, , 1k K    is the frequency bin, and 

L is the window length. The quantity R  is the number of samples that successive 

frames are shifted and ( )h   is a unit-energy window function, that is 
1

2

0

( ) 1

L

h









 .      

From the linearity of Eq.(7), we have that 

( , ) ( , ) ( , ) ,V k S k N k                                                                        (8) 

where ( , )S k  and ( , )N k  are the STFT coefficients of speech ( )s i  and additive noise 

( )n i , respectively. We further assume that ( )s i  and ( )n i  are zero mean and statistically 

independent, which leads to a power relation, where the noise is additive, that is, 

 
2 2 2

| ( , ) | | ( , ) | | ( , ) |V k S k N k                                                               (9) 

Eq. (9) can be rewritten in matrix form as follow: 

 V S N                                                                                               (10) 

 

3.2. Derivation of the Proposed Algorithm 

Since matrix V , S  and N  are non-negative, we can decompose V  with convolutive 

NMF, 
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1 1

0 0

( ) [ ( ) ]( )

t

sT Tt

t

t t

t t t



 



 

 

 


 






 

 
s

H
V Λ B H B B

H
ò

ò

                                       (11) 

The fact that some of the eigenvalues of the clean signal may be zero indicates that 

the energy of the clean signal vector is distributed among a subset of its coordinates, e.g , 

the signal is confined to a subspace of the noisy Euclidean space, while the uncorrelated 

noise fills in the entire vector space of the noisy signal.  In order to utilize this character 

in the convolutive NMF, we give an addition of the sparseness constraint on 
s

H . 

Combining Eq.(1) with sparseness constraint on 
s

H  results in the following objective 

function, 

1 ,

,

( , , ) ( ) ,
s s

j k

j k

G ln H     V Λ H V V Λ V Λ‖ ‖%                            (12) 

where the left term of the objective function corresponds to the conventional 

convolutive NMF, the right term is an additional constraint on 
s

H  that enforces 

sparsity by minimizing the 
1

L -norm of its elements. The parameter   controls the 

tradeoff between sparseness and accurate reconstruction. 

The extended objective function of Eq.(12) introduces a scaling problem: The right 

term is a strictly increasing function of its argument, so it is possible that the object can 

decreased by scaling 
s

B  up and 
s

H  down. This situation does not alter the left term but 

will cause the right term to decrease, resulting in the elements of  ( )
s

tB  growing 

without bound and 
s

H  tends toward zero. To avoid this scaling problem, normalizing 

( )
s

tB  is performed for each object matrix ( )
s

j
tB  to be scaled to the unit 

2
L -norm, 

         , 1, , ,

s
s

j

j
s

j

j R  
B

B
B‖ ‖

                                                                        (13) 

where the matrix 
s

j
B  is constructed from the j th of ( )

s
tB  at each time step. Since the 

noise can be estimated for example by VAD algorithm from the noisy speech, the noise 

bases 
n

B  can be learned from these roughly noise signal. The remainder problem need 

to tackle is to estimate
s

B , 
s

H  and
n

H . When this problem is approached, the enhanced 

speech can be reconstructed by,  
1

0

( )

tT

s s

t

t





 S B H                                                                                      (14) 

We first derive the update rules for
s

B .  According to Eq.(11), we have the 

derivative 
,i j

  with respect to 
,

( )
s

m n
B t , 

,

2

,

( ) ( )
,

( )

t t
s

s s s
m ni k n n k m n n k

s s

m n n

h B t h t

B t

B

 

 




B

B

‖ ‖

‖ ‖
                                                 (15) 

where ( ) / ( )
s

s
m n

j m n
B t B t  B‖ ‖ . 

Now, we have the derivative of G  with respective to
,

( )
s

m n
B t , 
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,

,

2

,

( ) ( )} (1 )
( , , )

( )

t t
s

s s s m k
m n

n n k m n n ks

m k

s s

km n n

V
h B t h t

B t

B
G

 

 







B

V Λ H

B

{ ‖ ‖

‖ ‖
                 (16) 

The gradient descent update for H  can be derived as, 

, ,( )

,

( ) ( )
( )

s

m n
m n m nsB t

m n

G
B t B t

B t



 


                                                             (17) 

Let the element-wise step size be 

( )

,

2

1 ,

( )
,

( ) ( )

s

m n

s

m n

t tB t
s

s s sN
m n

n k m k n m n n k

k m k

B t

h V B t h B t


 










B

B

‖ ‖

‖ ‖

                                         (18) 

then substitute Eq.(18) into Eq. (17), we get the following multiplicative update rules of 

,
( )

m n
B t  as 

1

, , ,

1

,

1

, ,

1

(1 ( ) ( ) ) ( )

( ) ,

( ( ) ( ) )

tN
s s

s
m n m n

n k m k m k m n

k

m n tN
s s

s
m n m n

n k m k m k

k

h B t V B t B t

B t

h V B t B t













 



 





                                  (19) 

where 0 , , 1t T   .Similarly, we derive a new update for 
s

H , 

,
, ,

,

.s

j k

s s

j k j k sh

j k

G
h h

h



 


                                                                                (20) 

Using the gradient 

,
, ,

1,

(1 / ) ( ) .

M t
s

m n
i k i ks

ij k

G
V B t

h







   


                                                            (21) 

Setting the learning rate to 

,

,

,

1

.

( )

s

j k

s

j k

Mh
s

m n

i

h

B t









 

                                                                                 (22) 

We get the following multiplicative rules for 
s

H , 

, ,
, ,

1

,

,

1

( ) ( / )

.

( )

M t
s

s
m n i k

i k j k

s i

j k M
s

m n

i

B t V h

h

B t

















                                                                  (23) 

The update rules for 
n

H  can be derived similarly as follows, 

, ,
, ,

1

,

,

1

( ) ( / )

( )

M t
n

m n i k
i k j k

n i

j k M

m n

i

B t V h

h

B t















ò

ò

                                                                   (24) 
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4. Numerical Simulation Experiment 

In this section, we study numerically the performance of the proposed algorithm in 

the context of speech intelligibility enhancement and perform comparisons to the 

conventional enhancement algorithms. 

 

4.1. Corpus and Power Spectra 

In order to evaluate the performance of the proposed method, 30 clean utterances 

obtained from IEEE speech database were used in the experiments [16]. Half of the 

utterances are from male speakers and half are from female speakers. Three types of 

noise recordings including Gaussian white noise, babble noise and F16 fighter jet noise 

taken from NOISEX-92 database were used as noise maskers [17]. A noise segment of 

the same length as the speech signal was randomly cut out of the noise recordings and 

appropriately scaled to reach the desired SNR level.  Power spectrums of noisy speech 

and noise signals are computed respectively. 

A fixed 32-ms frame size was used with 50% overlap between frames. The discrete 

Fourier transform (DFT) was applied on each frame, the length of the DFT is equal to 

the frame size which has length of 256 sample points. Only positive frequencies are 

retained and phases were discarded by taking the square values of the DFT spectra, 

resulting in power spectrogram matrix 
,k l

V  corresponding to noisy signal and 
,k l

N  

corresponding to pure noise signal where k  is the discrete frequency index and l  is the 

frame index. 

 

4.2. Noise Base Training 

The scNMF algorithm proposed by Smaragdis was used to find noise basis. The pure 

noise signal which was also contained in the noisy speech was processed prior similarly 

as the noisy speech to get its power spectra. The noise bases were got after 50 iterations. 

The sparse constraint parameter   is set to zero which indicates that there is no 

sparseness constraint. The number of objects in noise is set as the same as that in the 

clean speech. Figure 1 shows 10 bases which trained in the F16 fighter jet noise.  In 

Figure 1, the top panel plots the spectrum of F16 noise and the bottom panel plots 10 

bases which are learned from successive 23 frames. 
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F
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q
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z
)
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Figure 1. F16 Fighter Jet Noise Spectrum and its 10 bases Learned using 
scNMF Proposed in [13]. The Top Panel Plots the Spectrum of F16 Noise 
and the Bottom Panel Plots 10 bases which are Learned from Successive 

23 Frames 
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Figure 2. Noisy Speech and Speech bases at SNR of -5 dB 

The top panel plots the noisy speech corrupted by F16 fighter jet noise at SNR of -5 

dB. The bottom panel plots 10 phoneme bases learned using the proposed convolutive 

NMF algorithm. 

 

4.3. Speech Intelligibility Enhancement 

We use the algorithm described in section 3 to estimate the speech phoneme patterns 

from the noisy signal. The noise bases trained in the above section were used as fixed 

noise bases. The objective function Eq.(12) was used with sparseness constraint 

0 .1 5  . Eq. (19), (23) and (24) were used to update
,

( )
m n

w t , 
,

s

j k
h  and 

,

n

j k
h  

respectively. We did the update rules with 40 iterations to get a local minimum of the 

objective function. We then used Eq. (14) to reconstruct the enhanced speech where 

( )
s

tB  consists of the estimated phoneme bases and 
s

H  is the corresponded weights 

matrix. 
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Figure 3. Reconstructed Speech with Learned Speech Bases at SNR of -5 
dB 
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Figure 3 (a) shows the original clean speech, Figure 3 (b) shows the noisy speech 

corrupted by F16 fighter jet noise at SNR of -5 dB. Figure 3 (c) shows the reconstructed 

speech using the learned phoneme bases and their weights.  Figure 2 shows the base 

phoneme bases extracted from noisy speech corrupted by F16 fighter jet noise at SNR 

of -5 dB. In Figure 2, The top panel plots the noisy speech corrupted by F16 fighter jet 

noise at SNR of -5 dB. The bottom panel plot 10 phoneme bases learned using the 

proposed convolutive NMF algorithm. As can be seen from Figure 2, the speech bases 

learned from the noisy speech captured the phoneme characteristic. Compared with the 

noise bases in Figure 1, each base is the frequency spectrum component of a speech 

object, containing little of noise signal. 

Figure 3 shows the enhanced speech reconstructed using the proposed algorithm from 

noisy speech which contaminated by F16 fighter jet noise. Figure 3 (a) shows the 

original clean speech signal, Figure 3 (b) shows the noisy speech corrupted by F16 

fighter jet noise at SNR of -5 dB. Figure 3(c) shows the reconstructed speech using the 

learned phoneme bases and their weights. From Figure 3, we can find that the noise has 

been cleaned mostly while the speech components have been retained. Although some 

speech components have been removed, we will confirm later that the reconstructed 

speech have a better intelligibility than the noisy speech. 

 

4.4. Performance Evaluation 

In order to show the effectiveness of the proposed algorithm, we compare it with 

scNMF and statistic method which is very powerful for normal speech enhancement. 

Specifically, power subtraction method proposed in [18] and optimal gain modification 

based method proposed in [19] were both used to enhance the noisy speech for further 

comparison. 

Figure 4 shows the spectrums of the enhanced speech using different algorithms. 

Figure 4 (a) plots the spectrum of the clean speech. Figure 4 (b) plots the spectrum of 

the noisy speech corrupted by F16 fighter jet noise at SNR of -5 dB. Figure 4(c) plots 

the spectrum of the estimated clean speech enhanced using the proposed algorithm.  

Figure 4 (d) plots the spectrum of the estimated clean speech enhanced using the 

algorithm proposed by Smaragdis. Figure 4(e) plots the spectrum of the estimated clean 

speech enhanced by the power subtraction, and Figure 4(f) plots the spectrum of the 

estimated clean speech enhanced by the statistic like algorithm proposed by Cohen [19]. 

From Figure 4, we can find that, compared with scNMF and power subtraction 

algorithm, the spectrum of the estimated clean speech enhanced by the proposed 

algorithm retains more speech content. Compared with the statistic algorithm proposed 

by Cohen, more noise has been subtracted and more spectrum components have been 

retained using the proposed algorithm. 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol.9, No.7 (2014) 

 

 

82   Copyright ⓒ 2014 SERSC 

0.5 1 1.5 2
0

2

4

Time (s)

(a)

F
re

q
. 
(k

H
z
)

0.5 1 1.5 2
0

2

4

Time (s)

(b)

F
re

q
. 
(k

H
z
)

0.5 1 1.5 2
0

2

4

Time (s)

(c)

F
re

q
. 
(k

H
z
)

0.5 1 1.5 2
0

2

4

Time (s)

(d)

F
re

q
. 
(k

H
z
)

0.5 1 1.5 2
0

2

4

Time (s)

(e)

F
re

q
. 
(k

H
z
)

0.5 1 1.5 2
0

2

4

Time (s)

(f)

F
re

q
. 
(k

H
z
)

 

Figure 4. Spectrums of Enhanced Speech using Different Algorithms. (a) 
Clean Speech. (b) Noisy Speech Corrupted by F16 Fighter Jet Noise at SNR 
of -5 dB. (c) Speech Enhanced using the Proposed Algorithm. (d) Speech 

Enhanced using the Algorithm Proposed by Smaragdis. (e) Speech 
Enhanced by the Algorithm Proposed by Cohen [19], and (f) Speech 

Enhanced by the Power Subtraction 

Ten listeners were recruited for the listening tests with half of each gender. In the 

identification test, stimuli were played to the listeners monaurally through Sennheiser 

HD 250 Linear II circumaural headphones at a comfortable listening level.  The three 

processing conditions included the noise corrupted speech (denoted as UN), noisy 

speech processed using the proposed algorithm (denoted as pscNMF), synthesized 

speech using the conventional sparseness constraint convolutive NMF algorithm 

(denoted as scNMF), synthesized speech using the power subtraction algorithm 

(denoted as PS).  In addition, the algorithm proposed by Cohen in [19] (denoted as 

OMLSA) was also evaluated for its ability to improve speech intelligibility. The 

OMLSA algorithm minimizes the mean-square error of the log-spectra based on a 

Gaussian statistical model associated with the speech presence uncertainty. The noise 

spectrum is estimated by recursively averaging past spectral power values, using a 

smoothing parameter that is adjusted by the speech presence probability in subbands. In 

this paper, the parameters of OMLSA were the same as that in [19]. 

Table 1. Word Identification Rates of Different Stimuli with Different SNRs 

   Performance (%) 

SNR(dB) Noise UN pscNMF cNMF OMLSA PS 

 GWN 53.82 58.74 57.77 49.50 47.38 

-10 Babble 57.87 64.57 56.83 49.23 44.01 

 F16 51.23 59.22 50.51 48.38 40.51 

 GWN 60.82 69.33 65.81 49.31 59.09 
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-5 Babble 65.10 70.05 64.35 57.80 54.91 

 F16 59.26 68.08 59.35 50.27 59.29 

 GWN 68.86 75.59 75.36 62.09 71.82 

0 Babble 72.85 73.12 71.92 68.95 66.44 

 F16 69.25 75.32 67.95 66.12 71.51 

 

The duration of each sentence was approximately two seconds. The experiments were 

performed in a sound-proof room. Prior to the sentence test, each subject listened to a 

set of noise-masked sentences to become familiar with the testing procedure. Five-

minute breaks were given to the subjects every 30 minutes. A total of 30 sentences were 

used per condition in each trial (a total of ten trials). The order of the conditions was 

randomized across subjects. Listeners were asked to write down the words they heard, 

and intelligibility performance was assessed by counting the number of words identified 

correctly. 

Table 1 shows the word identification rates of unprocessed noisy speech and its 

enhanced version using different algorithms in different noise contexts with different 

SNR levels. As can be seen from Table 1, the recognition rate of the estimated clean 

speech using pscNMF has substantial high identification rate than the unprocessed 

noisy speech and that obtained using other speech enhancement algorithms in different 

SNR levels. 

 

5. Conclusion 

Improving speech intelligibility is a key issue when conducting speech enhancement 

in low SNR environment. Conventional speech enhancement algorithms fail to tackle 

this problem. In this paper, we proposed a sparseness constraint based non-negative 

matrix factorization algorithm and applied it to conduct speech intelligibility 

enhancement.  Experimental results show that the intelligibility of the speech enhanced 

using the proposed algorithm was substantially higher than that of the unprocessed 

noisy speech and that of the conventional speech enhancement algorithms.  Extensive 

comparisons demonstrate that the system has gained the state-of-the-art performance in 

speech intelligibility enhancement.  
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