
International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014), pp.403-414

http://dx.doi.org/10.14257/ijmue.2014.9.7.34

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2014 SERSC

A New Measure of Code Complexity during Software Evolution:

‘A Case Study’

Vinay Singh
1

and Vandana Bhattacherjee
2

Usha Martin Academy, Ranchi, India
1

Birla Institute of Technology, Ranchi, India
2

mailtovsingh@yahoo.co.in
1

bhattacherjeev@yahoo.in
2

Abstract

This paper first computes the Complexity increment by taking four complexity

metrics WMC (CK), CMC (Li), CC (BS) and CCC (S&B). The maintainability index of

the successive version has been computed at the system level. The tracking of the

number of classes added and deleted has also been obtained for the archaeology of

successive versions. The understandability and the maintainability of software are

then mapped with the trends of complexity increment, change in number of classes

added and deleted and the Maintainability index. The complexity increments between

successive versions give an indication towards the maturity level of software. These

metrics are empirically evaluated with 38 versions of JFree Chart and nine versions of

three live project data at the system level.

Keywords: Complexity Metric, maintainability index, maturity, software evolution,

understandability

1. Introduction

The IEEE glossary [15] defined Complexity as the degree to which a system or a

component has a design or implementation that is difficult to understand and verify. There are

many attributes that directly contribute to software complexity. Thomas McCabe proposed a

measure of software called Cyclomatic complexity [9]. Making use of graph theory, McCabe

postulated that software with a large number of possible control path would be more difficult

to understand, maintain, and test. However, the Cyclomatic number presents only a partial

view of complexity. An alternative approach to Cyclomatic complexity presented by Du and

Wang [4] defines a Software power (SP) by expanding the information entropy theory. A high

value of SP indicates that the software is more complex.

Several researchers have studied the evolution of software across several versions of the

same software system [5-7]. The retrieval of essential details about an existing software

system is called software archaeology [11, 14] that can aid to realize the organization history,

make the main form of the development of the organization, identify major factors influencing

software change and predict possible software development trends. Keeping track of this

information is all important for estimating the cost of maintenance. Erlikh reported that cost

devoted to system maintenance and evolution now accounts for more than 90% of the total

cost [12].

Software Metrics are important for software evolution community, because credible

methods to assess, observe, model and analyze software evolution process are required [13].

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

mailto:mailtovsingh@yahoo.co.in
mailto:bhattacherjeev@yahoo.in

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

404 Copyright ⓒ 2014 SERSC

The maintainability index is applied to quantify the effort needed for keeping change in

software. It was first proposed by Oman and Hagemeister [16] used Halsted effort, Cyclomatic

complexity and the Line of code metrics for calculating maintainability index which was

measured at procedural language. Their primary aim is to determine how easy it will be

maintaining a particular body of code. Later in virtual machinery [17] proposed a

maintainability index for Java systems by taking an extra parameter the average number of

comments in the program as it increases code understandability. They also redefine the LOC

by counting the number of Java statements.

In this paper, an effort has been made to examine the code understandability with the

change of complexity increment and the maintainability index. The complexity increments are

obtained by taking four complexity metrics such as Weighted method per class (WMC) of

Chidamber and Kemerer [3], Class method complexity (CMC) of Li [8], Class complexity

metric (CC) of Balasubramanian [1] and complete class complexity metric (CCC) of Vinay

and Bhattacherjee [10].

The rest of the paper is organised as follows: The study of the existing complexity metrics

is presented in Section 2, tools and process are presented in Section 3. Empirical study is

presented in section 4 whereas metrics and quality is presented in Section 5. The validation is

given in Section 6. In the end, the conclusion is given in Section 7.

2. Existing Complexity Metrics

Table 1. Existing Complexity Metrics

Metric Definition Reference

WMC (CK) Consider a class Ci with methods M1, M2, M3…Mn that are defined in the class.

Let c1, c2, c3…cn be the complexity of the methods.

Then,

If all method complexities are considered to be unity, then WMC= n, the number

of methods.

[3]

CMC (Li) Class Method Complexity (CMC) is the summation of the internal structural

complexity of all local methods, regardless of whether they are visible outside the

class or not (e.g.. all the private, protected and public methods in class).

[8]

CC (BS) Class Complexity (CC) metric, is calculated as the sum of the number of instance

variables in a class and the sum of the weighted static complexity of local

methods in the class.

To measure the static complexity Balasubramanian uses McCabe’s Cyclomatic

Complexity [McCabe, 1976] where the weighted result is the number of nodes

subtracted from the sum of the number of edges in a program flow graph and the

number of connected components.

[1]

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

Copyright ⓒ 2014 SERSC 405

CCC (S&B) Complete Class Complexity Metric) is used for measuring the complexity of

class in Object-Oriented Design. The CCC metric measures the classes at the

method level, attribute level and their relationships. CCC metric is calculated as

the sum of the nine properties at code level, such as methods, Cyclomatic

complexity, external method called, the message sent to other methods, reference

variables, super classes, subclasses, interface implemented and the package

imported.

[10]

3. Tools and Processes

3.1 Flow of modules

Figure 1 provides an overview of the tools and processes used. The JHawk metric tool is

used to extract metric values of Java source code. An interface has been developed in C# .Net

that takes a Java source file as input and generate an XML file. To measure the metric at

system level two macros has been designed. Summary macro is applied to examine the XML

file and generate the Excel sheet which holds the needed attribute to design the metrics as

discussed in table 1. The Avg-Calculator macro is applied to compute the measured value at

the system level. To compute the average, an average by quartile method is recursively used to

find, first at the package level and finally at the system level as presented in Table 2.

Figure 1. Program Flow Chart of the Complexity Metric

3.2 Algorithm for Average by Quartile

The obtained value of complexity metrics at system level is calculated through the Average

by Quartile process. The algorithm defines as follows.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

406 Copyright ⓒ 2014 SERSC

Table 2. Average by Quartile Process

Step 1: for i=1 to Pckn, where, Pckn is the number of packages in system X

Step 2: for k=1 to Cln , where, Cln is the number of classes or interfaces in package i

Step 3: Arrange the attributes of Clk in ascending order

Step 4: find the average by quartile of

 Where, Pcki is a package with classes Cln

 term, term ,

Step 5: end of inner for loop

Step 6: store each value of Pcki

Step 7: end of outer for loop

Step 8: Retrieve each value of Pcki and calculate in the same way for all package value, first,

arrange in ascending order and then find the average by quartile similarly from step 3 and

step4, finally, the single value is obtained for each metric for system X.

4. Empirical Study

The software used in the experiment was JFreeChart, which is a powerful and flexible

open-source charting library. We chose JFreeChart as the target software system because it is a

long-term open source library with a rich set of release notes and documents to confirm our

observations. An empirical study on the complexity metrics throughout the software evolves

and their consequence on the quality attribute understandability and maintainability is

discussed. We summarized the collected data by calculating the complexity metrics WMC,

CMC, CC, and CCC for the 38 versions of JfreeChart starting from versions 0.9.0 to 1.0.14

with 1658 packages, 28277 classes and 265457 methods at the system level.

The complexity increment of different complexity metrics WMC, CMC, CC and CCC are

calculated from

Where, WMCi is the complexity value of current version i and WMCi-1 is the complexity

value of the previous version i-1. Likewise the value of CMC, CC and CCC metrics are

calculated. Figure 2 shows the complexity increments of WMC, CMC, CC and CCC for the

different versions of JFreeChart at the system level. It has been noted that the significant

complexity growth occurs in the initial versions as the systems evolve.

Figure 2. Complexity Increment

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

Copyright ⓒ 2014 SERSC 407

Software complexity is inversely proportional to understandability. In order to obtain the

measure of the validity of the complexity metrics, it was expected that the complexity of each

version of the system should increase from one version to the next which is shown in Figure 2.

The positive growth of complexity comes in the early releases of systems which point out

that the changes in the system is difficult tends to sharpen out the fact that the

understandability of the system diminishes. The complexity increment values of WMC, CMC,

CC and CCC becomes negative in JfreeChart version 0.9.18, version 0.9.21 and version 1.0.8a

as shown in system number 19, 22 and 32 shown in Table 6 in Appendix A. The reverse

trends in complexity increment increases code understandability.

5. Metric and Quality
To assess the quality attributes understandability and programmer’s effort, this paper

computes maintainability index and percentage of additions and subtractions of classes for

the successive versions of JfreeChart. Programmer’s effort is related to the effort required for

the additions of functionalities in the successive version. The Maintainability index(MI) value

represents relative of ease maintaining the code. A higher value means better maintainability.

The MI [17] is being calculated by the formula given in (i)

 (i)

Where, aveE is the average Halsted volume per module.

aveV(g’) is the average extended Cyclomatic complexity per module.

ave(loc) is the average number of Java statement per module.

ave(cm) is the average number of comment line per module.

It has been considered that MI less than 65 is considered as poor maintainable, MI greater

than 65 is considered reasonable maintainable whereas MI greater than 85 is considered as

excellent maintainable [17].

 To keep track of the number of changes in the subsequent versions, Percentage of Added

and removed classes have been obtained from the following

Let,

Where,

The following four cases have been observed to measure the understandability of the

software during system evolution.

Case I: Positive growth of complexity increment and low maintainability index causes

decrease in understandability and the increase in programmer’s effort.

Case II: Positive growth of complexity increment and high maintainability index causes

decrease in understandability and also decrease in programmer’s effort.

Case III: Negative growth of complexity increment and low maintainability index causes

an increase in understandability and also increase in programmer’s effort.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

408 Copyright ⓒ 2014 SERSC

Case IV: Negative growth of complexity and high maintainability index causes an increase

in understandability and decrease in programmer’s effort.

Table 3. Metric and Quality growth (↑ increases ↓decreases)

Case Complexity MI Understandability Programmer’

Effort

I ↑ ↓ ↓ ↑

II ↑ ↑ ↓ ↓

III ↓ ↓ ↑ ↑

IV ↓ ↑ ↑ ↓

It has been noted from Figure 2 and Figure 3 that in early release, there is a positive growth

of complexity increments and low value of maintainability is observed that shows the

understandability of system decreases and similarly more effort is required to add new

functionalities in change the new release(complete results of MI is given in Table 7 in

Appendix A). It has been found that 11 versions are under case I, similarly, 11 versions are

under case II, 4 versions are under case III whereas, 9 versions are under case IV. It has been

noted that 9 versions under case IV are both highly understandable and require less

programmer’s effort for the addition of new functionality.

Figure 3. Maintainability Index during Software Evolution

Later on, after several initial releases, a version is expected to mature, having incorporated

most required capabilities by removing insignificant classes from the previous version. In this

study the major revision of the system is located in version JfreeChart 1.0.0 with a very high

maintainability index (MI =171). This means that the system is more maintainable hence

require less effort for addition of new functionalities. In this version, 25.4% new classes are

added.

It has been calculated by the percentage of added and removed classes (complete results are

given in Table 8 in appendix A). This information is used to find the programmer’s effort to

make the new version.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

Copyright ⓒ 2014 SERSC 409

It has been observed that about 25 % of the classes were added in version 0.9.5, 0.9.7 and

1.0.0 and similarly the system was more complex in the same version 0.9.5 with WMC, CMC,

CC and CCC values as (0.39, 0.89, 0.89 and 1.63), version 0.9.7 with (0.33, 0.32, 0.81 and

4.9) and version 1.0.0 with (0.56, 0.52, 0.68 and 3.89). Similarly, the MI value of 0.9.5 is

74.16, whereas, the MI value of version 0.9.7 is 74.73.

A mature version needs more maintenance and programmer’s mental effort since a large

number of changes are required [2]. This eventually results in a decrease in complexity and an

increase in understandability. The mature version 1.0.0 has been obtained after removing

28.8% classes from the previous version 0.9.21 whereas 3.7% classes are added to the low MI

value 63.17. Similarly the MI value of the mature version is 171 which indicate that the code

is more understandable and less effort was required to add new functionality. The above

results on deviation trends in complexity increments, maintainability index and the changes in

size (number of added and removed classes) could measure the code understandability.

Figure 4. Percentage Number of Classes Removed and Added

6. Validation
In order to obtain a measure of the validity of the quality attribute understandability,

it was expected that the understandability should initially decrease from one release to

the next because the early structure of the system may also be unstable and undergo

significant reworks during the initial releases. To corroborate the above fact, three

medium size Java projects, namely, Skywar, LMS and Java Parser have been taken from

Master’s level students. The Skywar is the gaming software; Library management

system uses Oracle as a backend where as Java parser is used to parse the Java code and

returns the lower level program attributes. Each project has an initial set of requirements

and was provided at the start in version 1.0 and was followed by version 1.1 and version

1.2. The projects were independently completed by the Master’s level student over a

period of 3 months. The deliverables include the design document and an

implementation that came across with all the versions requirements. The projects were

parsed by the tool for obtaining the complexity metric value and the maintainability

index as shown in Table 4.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

410 Copyright ⓒ 2014 SERSC

Table 4. Complexity Increments and Maintainability Index

Project WMC CMC CC CCC MI

SKYWAR 1.0 0.0 0.0 0.0 0.0 64

SKYWAR 2.0 0.35 0.37 0.40 2.61 59

SKYWAR 3.0 0.2 -0.11 0.39 -0.6 85

LMS 1.0 0.0 0.0 0.0 0.0 67

LMS 2.0 0.27 0.46 0.74 1.75 61

LMS 3.0 0.12 0.21 0.85 -0.27 93

Java Parser 1.0 0.0 0.0 0.0 0.0 63

Java Parser 2.0 0.29 0.31 0.61 2.1 51

Java Parser 3.0 0.03 0.5 -0.8 -1.56 91

It has been observed from Table 4 that the complexity increment is initially

increasing as the number of changes made in the project is difficult and similarly

the maintainability index values are decreasing. The ranking of the projects was

determined on a scale of 1-10, from least to most understandings.

Table 5. Programmers Ranking

Project Version 1.0 Version 2.0 Version 3.0

SKYWAR 4 3 8

LMS 7 5 9

Java Parser 5 3 8

It has been observed from Table 5 that the project SKYWAR was the gaming

software in which the changes made to it are difficult and the understandability of

the versions are initially decreases similarly, the value of complexity increments

increase and the maintainability indexed decreases. The similar trend is also

found with other projects.

7. Conclusion and Future Scope
This work demonstrated the outcomes of an experiment where the impact of

complexity increment on resulting software quality attributes (Understandability) was

empirically evaluated. Weighted method per class, class method complexity, class

complexity and complete class complexity metrics were adopted in order to measure the

code complexity during software development. The outcomes attained thus far allow us

to infer that, increasing trends in complexity shows that the understandability decreases.

The complexity increments and the maintainability index can be used for forecasting

how much effort would be needed to make the new version of the system, easy to

understand. Through the increase in complexity, information about the number of

functionalities that are added and deleted, and maintainability index one can choose to

measure the understandability and the maintainability of software.

References

[1] N. V. Balasubramanian, “Object Oriented Metrics”, Asian Pacific Software Engineering, Conference

(APSEC-96), (1996) December, pp. 30-34.

[2] J. Bansiya and C. G. Davis, “A hierarchical model for Object-Oriented design quality assessment”, IEEE

Trans. on Software Engineering, vol. 28, no. 1, (2002).

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

Copyright ⓒ 2014 SERSC 411

[3] S. R. Chidamber and C. F. Kemerer, “A Metric Suite for Object-Oriented Design”, IEEE Trans. on Software

Engineering, vol. 20, no. 6, (1994), pp. 476-493.

[4] Q. Du and F. Wang, “Software Power: A New Approach to Software Metrics”, 2010 Second WRI World

Congress on Software Engineering.

[5] C. F. Kemerer and S. Slaughter, “An empirical approach to studying software evolution”, IEEE Trans. on

Software Engineering, (1999), vol. 25, no. 4, pp. 493-509.

[6] J. F. Girard, M. Verlage and D. Ganesan, “Monitoring the Evolution of an OO system with Metrics: An

Experience from the Stock Market Software Domain”, IEEE Int. conference on Software Maintenance, (2004)

September 11-17, Chicago USA, pp. 360-367.

[7] J. Kothari, T. Denton, A. Shokoufandeh, S. Mancoridis and A. E. Hassan, “Studying the Evolution of

Software System Using Change Clusters Proc. Of ICPC 2006 Int. Conf on program comprehension”, Athens,

Greece, (2006) June 14-16.

[8] W. Li, “Another metric suite for Object-Oriented programming”, The Journal of Systems and Software, 1998,

vol. 44, no. 2, (1998), pp. 155-162.

[9] T. J. McCabe, “A Complexity Measure “, IEEE Transaction on Software Engineering, vol. 2, (1976), pp. 308-

320.

[10] V. Singh and V. Bhattacherjee, “New Complete Class Complexity Metrics” International Journal of Soft

Computing and software Engineering, vol. 3, no. 9, (2013) September, ISSN: 2251-7545 Prefix DOI:

10.7321/jscse

[11] G. Booch, “Software Archaeology Rational users conference, (2004).

[12] Erlikh “Leveraging legacy system dollars for e-business” IEEE IT Pro May/June 2000, 17-23

[13] W. Li and J. Talburt, “Empirically Analysing Object-Oriented Software Evolution; Journal of Object-Oriented

Programming”, vol. 11, no. 5, (1998), pp. 15-19.

[14] G. Robles, J. M. Gonzalez-Barahona and I. Herraiz, “An Empirical Approach to Software Archaeology”,

Proc. Of 21st Int. Conf. on Software Maintenance (ICSM 2005), Budapest, Hungary, September 25-30, pp. 47-

50.

[15] IEEE standard glossary of software engineering terminology. IEEE Std 610.12-1990.

[16] P. W. Oman, J. Hagemeister and D. Ash, “A Definition and Taxonomy for Software Maintainability”,

Technical Report #91-08-TR, Software Engineering Test Laboratory, University of Idaho, Moscow, ID,

(1991).

[17] http://www.virtualmachinery.com/sidebar4.htm

Appendix A

Table 6. Complexity Increment Value of Different Version of JfreeChart

System Number System Name Incr(WMC) Incr(CMC) Incr(CC) Incr(CCC)

1 jfreechart-0.9.0 0.00 0.00 0.00 0.00

2 jfreechart-0.9.1 0.00 0.24 0.06 0.35

3 jfreechart-0.9.2 0.00 0.17 0.41 2.21

4 jfreechart-0.9.3 0.22 0.19 0.20 -0.59

5 jfreechart-0.9.4 0.00 0.07 0.00 0.78

6 jfreechart-0.9.5 0.89 0.39 0.89 1.63

7 jfreechart-0.9.6 0.00 -0.03 0.00 0.00

8 jfreechart-0.9.7 0.33 0.32 0.81 4.09

9 jfreechart-0.9.8 0.00 0.00 0.00 0.00

10 jfreechart-0.9.9 0.11 0.12 0.19 0.44

11 jfreechart-0.9.10 0.00 0.00 0.13 0.13

12 jfreechart-0.9.11 0.33 0.33 0.44 1.22

13 jfreechart-0.9.12 0.33 0.34 0.29 0.09

14 jfreechart-0.9.13 0.11 0.38 0.23 1.44

15 jfreechart-0.9.14 0.22 0.17 0.45 0.00

16 jfreechart-0.9.15 0.00 0.00 0.04 0.00

17 jfreechart-0.9.16 -0.22 -0.37 -0.33 0.29

18 jfreechart-0.9.17 0.00 0.08 -0.11 1.83

19 jfreechart-0.9.18 -0.11 -0.09 -0.05 -0.21

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

http://dx.doi.org/10.7321/jscse
http://www.virtualmachinery.com/sidebar4.htm

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

412 Copyright ⓒ 2014 SERSC

20 jfreechart-0.9.19 0.44 0.57 0.62 0.89

21 jfreechart-0.9.20 0.22 0.18 0.04 1.59

22 jfreechart-0.9.21 -0.11 -0.02 -0.17 -2.47

23 jfreechart-1.0.0 0.56 0.52 0.68 3.87

24 jfreechart-1.0.1 0.00 0.00 0.00 0.00

25 jfreechart-1.0.2 -0.11 0.02 -0.02 1.86

26 jfreechart-1.0.3 0.11 0.14 0.51 0.65

27 jfreechart-1.0.4 -0.11 0.03 0.17 0.16

28 jfreechart-1.0.5 0.00 0.07 0.07 0.55

29 jfreechart-1.0.6 0.11 0.04 -0.22 -0.27

30 jfreechart-1.0.7 0.22 0.01 0.27 -0.15

31 jfreechart-1.0.8 0.00 0.02 0.00 0.16

32 jfreechart-1.0.8a -0.22 -0.13 -0.17 -0.20

33 jfreechart-1.0.9 0.11 0.04 0.05 0.13

34 jfreechart-1.0.10 0.22 0.13 0.24 0.62

35 jfreechart-1.0.11 0.00 -0.02 -0.22 0.00

36 jfreechart-1.0.12 0.00 0.02 0.04 0.31

37 jfreechart-1.0.13 0.00 0.01 -0.11 -0.01

38 jfreechart-1.0.14 0.11 0.02 0.05 0.01

Table 7. Maintainability Index of Different Version of JfreeChart

System Number

System Name

Maintainability Index

1 jfreechart-0.9.0 53

2 jfreechart-0.9.1 71

3 jfreechart-0.9.2 63.25

4 jfreechart-0.9.3 88.35

5 jfreechart-0.9.4 74.69

6 jfreechart-0.9.5 74.16

7 jfreechart-0.9.6 73.69

8 jfreechart-0.9.7 74.73

9 jfreechart-0.9.8 74.29

10 jfreechart-0.9.9 74.82

11 jfreechart-0.9.10 74.15

12 jfreechart-0.9.11 66.53

13 jfreechart-0.9.12 171.00

14 jfreechart-0.9.13 66.60

15 jfreechart-0.9.14 65.65

16 jfreechart-0.9.15 65.45

17 jfreechart-0.9.16 79.85

18 jfreechart-0.9.17 69.05

19 jfreechart-0.9.18 95.87

20 jfreechart-0.9.19 65.68

21 jfreechart-0.9.20 65.00

22 jfreechart-0.9.21 63.17

23 jfreechart-1.0.0 171.00

24 jfreechart-1.0.1 74.00

25 jfreechart-1.0.2 79.00

26 jfreechart-1.0.3 83.01

27 jfreechart-1.0.4 71.07

28 jfreechart-1.0.5 78.85

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

Copyright ⓒ 2014 SERSC 413

29 jfreechart-1.0.6 83.19

30 jfreechart-1.0.7 81.09

31 jfreechart-1.0.8 80.00

32 jfreechart-1.0.8a 87.44

33 jfreechart-1.0.9 73.13

34 jfreechart-1.0.10 62.83

35 jfreechart-1.0.11 65.65

36 jfreechart-1.0.12 64.19

37 jfreechart-1.0.13 64.00

38 jfreechart-1.0.14 60.85

Table 8. Percentage Added and Removed Classes of Different Version of

JfreeChart

System No i System Name Ai Ai% Ri %Ri Ci

1 jfreechart-0.9.0 0 0.0 0 0.0 210

2 jfreechart-0.9.1 23 11.0 0 0.0 233

3 jfreechart-0.9.2 11 4.7 0 0.0 244

4 jfreechart-0.9.3 137 56.1 2 0.8 379

5 jfreechart-0.9.4 45 11.9 20 5.3 404

6 jfreechart-0.9.5 102 25.2 30 7.4 476

7 jfreechart-0.9.6 3 0.6 0 0.0 479

8 jfreechart-0.9.7 115 24.0 7 1.5 587

9 jfreechart-0.9.8 7 1.2 0 0.0 594

10 jfreechart-0.9.9 102 17.2 79 13.3 617

11 jfreechart-0.9.10 11 1.8 26 4.2 602

12 jfreechart-0.9.11 28 4.7 2 0.3 628

13 jfreechart-0.9.12 56 8.9 28 4.5 656

14 jfreechart-0.9.13 19 2.9 0 0.0 675

15 jfreechart-0.9.14 41 6.1 10 1.5 706

16 jfreechart-0.9.15 22 3.1 2 0.3 726

17 jfreechart-0.9.16 19 2.6 6 0.8 739

18 jfreechart-0.9.17 91 12.3 36 4.9 794

19 jfreechart-0.9.18 27 3.4 5 0.6 816

20 jfreechart-0.9.19 55 6.7 16 2.0 855

21 jfreechart-0.9.20 15 1.8 2 0.2 868

22 jfreechart-0.9.21 32 3.7 250 28.8 650

23 jfreechart-1.0.0 165 25.4 42 6.5 773

24 jfreechart-1.0.1 3 0.4 1 0.1 775

25 jfreechart-1.0.2 58 7.5 2 0.3 831

26 jfreechart-1.0.3 82 9.9 0 0.0 913

27 jfreechart-1.0.4 36 3.9 4 0.4 945

28 jfreechart-1.0.5 15 1.6 0 0.0 960

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

414 Copyright ⓒ 2014 SERSC

29 jfreechart-1.0.6 16 1.7 1 0.1 975

30 jfreechart-1.0.7 21 2.2 10 1.0 986

31 jfreechart-1.0.8 2 0.2 0 0.0 988

32 jfreechart-1.0.8a 3 0.3 0 0.0 991

33 jfreechart-1.0.9 0 0.0 0 0.0 991

34 jfreechart-1.0.10 17 1.7 0 0.0 1008

35 jfreechart-1.0.11 21 2.1 1 0.1 1028

36 jfreechart-1.0.12 5 0.5 1 0.1 1032

37 jfreechart-1.0.13 31 3.0 0 0.0 1063

38 jfreechart-1.0.14 17 1.6 0 0.0 1080

Authors

 Vinay Singh, he has received his Master of Computer Application

degree from IGNOU, New Delhi, India in the year 2003 and Master of

Technology in Computer science and Engineering from BITs Mesra,

Ranchi, India in 2009. He is pursuing Ph.D from BIT’s Mesra, India.

Presently he is working as an Associate Dean of Information

Technology in UMESL, Kolkata, India since 2008. He is also

empanelled with Wipro Technologies as a corporate trainer. He has

published twelve papers in the International Journal and Conference.

His Research area is Software Metrics and Quality.

Vandana Bhattacherjee, she is working as a Professor, Department

of Computer Science and Engineering, Birla Institute of Technology,

Ranchi. She completed her B. E. (CSE) in 1989 and her M. Tech and

Ph. D in Computer Science from JNU New Delhi in 1991 and 1995

respectively. She has over 100 National and International publications

in Journal and Conference Proceedings. She is a member of IEEE

Computer Society and Life Member of Computer Society of India. Her

research areas include Software Process Models, Software Cost

Estimation, Data Mining and Software Metrics.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

