
International Journal of Multimedia and Ubiquitous Engineering 

  Vol.9, No.7 (2014), pp.171-184 

http://dx.doi.org/10.14257/ijmue.2014.9.7.15 

 

 

ISSN: 1975-0080 IJMUE 

Copyright ⓒ 2014 SERSC 

A Parallelization Design of JavaScript Execution Engine 
 

 

Duan Hucai
1,2

, Ni Hong
2
, Deng Feng

2
 and Hu Linlin

2
 

1
National Network New Media Engineering Research Center, Institute of Acoustics, 

Chinese Academy of Sciences, Beijing 10190, China 
2
University of Chinese Academy of Sciences, Beijing 100049, China 

duanhc@dsp.ac.cn 

Abstract 

With more and more consumer electronics apply multi-core chips, the traditional 

serialized JavaScript execution engine, which is optimized by just-in-time (JIT) compilation 

technology, fails to utilize multi-core advantages. This paper proposes a mathematical model 

to detect the dependency of serial JavaScript tasks and a parallelism execution algorithm for 

serial JavaScript execution engines. Moreover, the parallel JavaScript execution engine with 

thread-level speculation technology is implemented based on the SquirrelFish Extreme 

engine of WebKit. As the experiment were conducted respectively on the general test platform 

platform Sunspider in the industry and world top 15 websites at traffic volume, the results 

indicate that both in the real Web application and Sunspider platform, the parallel JavaScript 

execution engines with 2 to 16 threads can raise the performance dramatically compared 

with a SquirrelFish execution engine with or without JIT acceleration, respectively. 

Keywords: Multi-core chips, parallel computation, thread-level speculation, JavaScript 

 

1. Introduction 

JavaScript is a dynamic interpretation and execution language oriented to objects. As 

JavaScript acts as main scripting language in the client’s Web application, its execution 

performance directly affects the user’s experience related to Web applications. The traditional 

solution of JavaScript acceleration is JIT compilation technology [1-4] which generate 

machine codes from running JavaScript codes for execution. JIT acceleration technology may 

increase the compilation expenses [4], provided that the optimized code is executed again and 

the type of JavaScript objects is not changed etc. JIT optimization technology promotes 

JavaScript performances conventionally through experiments on the specific test platform [5, 

6], but the actual features of Web applications are different from the test platform of industrial 

circles [79]. JIT optimization technology usually fails to reduce the JavaScript execution time 

in common Web applications according to some researches [10]. Moreover, as more and more 

consumer electronics use multi-core chips, JavaScript execution engine applies serialization 

operation with JIT acceleration technology and fails to take advantage of multi-core chips. 

According to some research results [11], the JavaScript execution engine under serialization 

operation is parallelized so that the performance of Web applications is raised by 45 times. To 

reduce the difficulty of parallel compilation, it is proposed in [12-14] that the technology of 

Thread-Level Speculation (TLS) [15] should be applied to parallelize JavaScript engine and 

realize JavaScript function-level parallelism. However, the parallelism at function level 

cannot explore the parallelism potential of JavaScript application to the maximum extent 

                                                           
1 Project supported by the National Science and Technology Support Program of China (No.2012BAH73F01) and 
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while a large number of loop operations in the actual JavaScript application can apply fine-

grained loop level to partition parallelism. 

This paper analyzes the factors for JavaScript function-level or loop-level parallelism, 

proposes the detection approach of data dependency in JavaScript byte codes and further 

discusses an algorithm which divide serialized JavaScript program into tasks for parallel 

execution. Meanwhile, based on SquirrelFish Extreme, it also proposes a parallelism solution 

of byte-code interpreters. The algorithm hereof improves performances obviously after being 

tested on world top 10 websites at traffic volume. 

 

2. Feasible Analysis of Parallel JavaScript Execution Engine 
 

2.1. Principle Analysis of JavaScript Execution Engine 

The conventional JavaScript execution engine applies serial execution and translates 

JavaScript codes into byte codes for interpretation and execution [1, 3] or directly into 

machine codes for execution [2]. Figure 1 shows the execution processes for three common 

types of JavaScript execution engines. 
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Figure 1. Execution Processes of JavaScript Execution Engines 

As shown in Figure 1, it indicates the flow diagrams about how mainstream JavaScript 

execution engines interpret and execute JavaScript programs at present. (a) indicates V8’s 

execution process, V8 converts JavaScript source codes into abstract syntax trees and initiates 

a Full-Codege compiler to compile the abstract syntax trees into machine codes related to the 

platform and execute them one by one; it initiates a Crankshaft compiler to optimize hotspot 

functions in the running process and generate better machine codes for execution. (b) is a 

common JavaScript execution engine with the combination of a byte code interpreter and a 

JIT compiler, where JavaScript source codes are converted into abstract syntax trees. 

Different from V8, this engine generate a kind of abstract byte codes while an interpreter 

interprets and executes these codes. Meanwhile, a JIT compiler compiles hotpots of byte 

codes into machine codes related to the platform to optimize performances. As both 

SquirrelFish Extreme and TraceMonkey apply this design, the difference lies in optimized 

grain sizes. And the former applies the hotspot optimization algorithm based on Method while 

the latter uses that based on Trace [16]. Therefore, the current JavaScript execution engine 

can execute JavaScript codes only according to the single-threaded sequence but fails to 

speed up with the advantages of multi-core chips. 
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1.2. Parallelism Instances of JavaScript Execution Engine 

All parts of the JavaScript program always have a certain dependency relationship. The 

parallel processing shall decompose the program into several tasks for parallel execution 

without causing damage to these dependency relationships in order to shorten the time 

required for running the whole process. However, there is no general model for the 

parallelism of a serial program at present, so it is necessary to take the features of serial tasks 

in consideration for partition. As there are a lot of functions in the JavaScript program, it is 

possible to perform parallel execution of callee and caller functions during the function call. 

Moreover, there are a lot of loop iterative operations in the JavaScript codes and each 

iterative operation may be also executed in a parallel manner. Figure 2 indicates an example 

of creating JavaScript function, while JavaScript source codes stay on the left and the 

corresponding byte-code pseudo-code on the right. In this figure, the sequence of byte codes 

is partitioned into 13 tasks. Obviously, Tasks 2 and 3 are mutually independent and so are 

Tasks 3 and 4. The execution must be carried out after Task 1. And Tasks 4-12 are the byte-

code sequence after JavaScript loop unrolls and every round of iteration is based on the 

former round. The loop iterative operation cannot be executed in a parallel manner while 

Task 13 cannot be executed until all other tasks are completed. 

 

function f() 
{

var i = 0;
g();
i++;
for (var j = 1; j < 5;j++)

 {
i += j;

}
return i;

}
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Figure 2. Example of JavaScript Source Code and its Corresponding Byte-
Code Sequence 

Figure 3 indicates the sequence chart of the parallelism execution for the tasks in Figure 2. 

First, execute Task 1 in the main thread. When it is time to execute Task 2, open a thread to 

execute Task 2 because Tasks 2 and 3 are mutually independent. As the main thread proceeds 

to other byte codes after Task 2, it is time to execute Task 3. And then, open another thread to 

execute Task 3 due to mutual independence between Tasks 3 and 4. As the main thread 

proceeds to other byte codes after Task 3, kick off Task 4. The execution of Task 5 relies on 
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Tasks 3 and 4, so Task 4 must be executed in series by the main thread at this time. After the 

completion of Task 4, the main thread must not execute Task 5 until the completion of Task 

3. As Task 3 is completed, it sends feedback to the main thread and the main thread executes 

Task 5 and its subsequent tasks in order. Therefore, comparing with serial execution, parallel 

execution can reduce the total time indicated in Equation (1): 

 

Task 1

Task 2

Task 3

Task 4 Task 5 Task 6 Task13Task 7 Task 8 Task 9 Task 10 Task 12Task 11

Thread 1

Thread 2

Thread 3

Time Spent in creating new Threads Time Spent in waiting for Task3 finish before Task5 start  

Figure 3. Sequence Chart of JavaScript Parallel Execution 

2 3 5t t thread waitT T T T                                             (1) 

Where, 2tT  refers to the time consumed for Task 2 execution, 3tT  indicates the time 

consumed for Task 3 execution, threadT  means the time consumed for opening Threads 2 and 

3 while 5waitT  indicates the time consumed to wait for the completion of Task 3 before the 

main thread executes Task 5, it can be expressed in Figure 3 as follows:  

5 3 4wait t tT T T                                                           (2) 

Therefore, the time reduced for parallel execution can be expressed as follows: 

2 4t t threadT T T                                                            (3) 

Because Tasks 2 and 4 are executed in a parallel manner, the time consumed for the two 

tasks is reduced, comparing with serial execution but additional time is consumed for opening 

the thread. Provided the time consumed for serial execution of Tasks 2 and 4 is longer than 

that for opening the thread, the parallelization can improve the performances of JavaScript 

program. In the actual program, the expenses for task execution is much more than the time 

consumed for opening the thread, so maximizing the parallel execution of JavaScript program 

can improve performances and it is feasible to parallelize the serial JavaScript program. 

 

2. Parallel algorithm of JavaScript Execution Engine 

The key to parallel execution of JavaScript execution engine is to identify the dependency 

relationship in JavaScript tasks. Under the premise of no damage to the dependency 

relationship, a JavaScript program is partitioned into several subtasks for parallel execution. 

The dependency relationships can be categorized into the two types of control dependency 

relationship and data dependency relationship while the former leads to program process 

changes and the latter is incurred by reading/writing the same data. And the data dependency 

can affect the dependency relationship of a JavaScript program. Therefore, the analysis theory 

and techniques of data dependency relationships is the basis of JavaScript program 

parallelism. 

 

2.1. Mathematical Model Analysis of JavaScript Task Dependency 

( 1,2, , )iP i m is defined as one task in the JavaScript program and ( 1,2, , )iV i n  as 

a variable. As different tasks carry out reading/writing operations on the same variable, there 
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may be data dependency relationships. m n -order matrix rM  is defined as reading matrix 

with the value as follows: 

0,   in P , 
( , )

1,   in P

   

  

j i

r

j i

no reading Variable

reading
M i j

Variable


 


V

V .
           (4) 

m n -order writing matrix is defined as:  

 
  0,  

( , )
1,  

 V  

  V  
w

j i

j i

no writing Variable in P

writing Variable in P
M i j


 


,

.

 

 
                                    (5) 

There are three types of data dependency relationships: read-after-write (RAW), write-after-

read (WAR) and write-after-write (WAW) [17]. m m -order matrix wrM of JavaScript task 

read-write dependency is defined as 

              
T

wr r wM M M                                                                                      (6) 

Therefore:  

      

    

0,   
( , )

(0 )    ,   

i j

i

wr

j

M i j
k k n

no data RAW dependency between P and P

k variables have RAW dependency between P and P


 

  .
           (7) 

m n -order matrix wwM  of JavaScript task WAW dependency is defined as 

                    
T

ww w wM M M                                                                                        (8) 

Therefore,  

    0,  
( , )

(

 

0 ),

   ,

    .  

i j

i j

ww

no data WAW dependency between P and P

WAW dependency between P and P
M i j

k k n


 

 

                (9) 

m n -order dependency matrix dM is defined as: 

              d wr wwM M M                                                                           (10) 

And  

0,  
( , )

k (0<k 2n), 

   

   

i j

i j

d

no dependency betweenPand P

dependency between Pand P
M i j


 

  

，

.
                          (11) 

Meanwhile, the dependency relationship is of transitivity; if ( , ) 0dM i j  and ( , ) 0dM j l  , 

there is the dependency relationship between iP and lP . The task can be executed in a parallel 

manner only if there is no dependency relationship while the tasks under dependency 

relationships must be executed by the same thread in order. 

 

2.2. Parallel algorithm of JavaScript Execution Engine 

C  is defined as a set of tasks under execution or to be executed 

and 1 2 3{ , , , , }mC P P P P ; every time a new task ( 1,2, , )iP i m  is kicked off, put the 

new task is put into Set C ; and when a task is completed, delete it from C . 

,0jC C j m    is defined as some task under execution, ( )jThread C  is the thread where 

some task is under execution at that time, ( ( ))jP Thread C  indicates the task set which has 
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dependency relationship with 
jC  and is to be executed in the same thread with 

jC , and 

( ( ))jP Thread C C . ( )iIndex P  refers to the serial numbers of Task iP  in 

1 2 3{ , , , , }mP P P P  while 1 2{ , , , }mF P P P  is a task to be executed. This paper proposes an 

algorithm for parallel execution of serial JavaScript tasks:  

Step 1: If C  , execute F  in the main thread and put F  into Set C , otherwise 

proceed to Step 2; 

Step 2: If ( ( ), ( )) 0d jM Index F Index C   to random
jC C , execute F in the new thread 

and put F into SetC , otherwise proceed to Step 3; 

Step 3: If ( ( ), ( )) 0d jM Index F Index C   to
jC C , put F  in C  and ( ( ))jP Thread C , 

proceed to Step 4; 

Step 4: As the execution of
jC is completed, delete 

jC from C ; if ( ( ))jP Thread C  , 

( )jThread C goes on proceeding to the next , ( ( ))j j jC C P Thread C   from 

( ( ))jP Thread C and . Meanwhile, delete 
jC  from ( ( ))jP Thread C , otherwise complete 

( )jThread C  and feed the results back to the main thread. And then proceed to Step 5; 

Step 5: The main thread skips F and analyzes the subsequent tasks, proceed to Step 1 if 

there is any task, otherwise wait for execution completion of all threads and return to 

execution results. 

 

3. Algorithm Implementation 

This paper applies thread-level speculation technology and proposes a parallel algorithm 

solution of the JavaScript execution engine based on the Squirrelfish Extreme execution 

engine. 

 

3.1. Algorithm for Serial JavaScript Task Partitioning 

For parallel execution of the JavaScript program, it is required to divide the serial program 

into several tasks and find tasks from the task set for parallel execution. The thread-level 

speculation is intended to dynamically parallelize the serial program while there are the 

parallelism grain-sizes at loop level and method level. The loop-level parallelism assigns one 

thread to iteration of each loop for execution while the method-level parallelism deploys each 

function as one thread. Squirrelfish Extreme execution engine first translates JavaScript 

source codes into byte codes [18], partitions serial JavaScript program into several tasks in 

the process of byte-code generation and establishes the task dependency matrix. “Loop”, 

“loop_if_true” and “loop_if_less” of Squirrelfish Extreme byte codes initiate one-loop 

instructions, its “target” parameter is a start address of one loop-level task, the “call” 

instruction is a function call instruction, its “func” parameter is a start address of the function-

level task and the “ret” instruction is the symbol indicating calling by a function and backing 

to results. 
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Figure 4. Schematic Diagram of Task Partitioning for JavaScript Serial Program 

 

Figure 5. Pseudo-Code Realization of Task Partitioning for JavaScript Serial 
Program 

Figure 4 is the schematic diagram of task partitioning for the JavaScript serial program, it 

scans the byte-code sequence in order; every time it meets with a call function instruction or a 

loop iterative instruction, record one new task and map the task number to the address 

parameter of the instruction. Meanwhile, byte-code fragments between iteration and function 

call are partitioned into separate tasks. Figure 5 shows the pseudo-codes of the solution. 
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3.2. Dependency Matrix Computation 

Figure 6 shows the pseudo codes realized by the algorithm; as JavaScript program is 

partitioned into several tasks, it is possible to obtain ( ,:)rM i  from the i
th
 row of the reading 

matrix and ( ,:)wM i  from the 
thi  row of the writing matrix through all read/write variables in 

the speculation task ( 1,2, , )iP i m . The same operations are carried out for all tasks to 

establish the reading matrix rM and the writing matrix wM  and obtain the task dependency 

matrix dM  in combination with Equations (6)-(11). To reduce the memory consumption, use 

a sparse matrix during design to store the data of rM , wM  and dM . 

 

 

Figure 6. Pseudo-Code Computations through JavaScript Task Dependency 
Matrix 

3.3. Parallel Execution of Serial JavaScript 

After the dependency matrix is obtained, it is possible to judge whether two tasks can be 

executed in a parallel manner depending on the matrix-to-matrix dependency value. Execute 

the tasks with dependency relationships in the same thread and apply thread pool technology 

during realization to reduce the expenses for creating threads, while the pseudo-code 

realization is shown in Figure 7.  
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Figure 7. Pseudo Codes for JavaScript Parallel Execution 

4. Performance Evaluation  

This paper conducted the performance evaluations respectively from the two aspects of 

theory and experiment and fully approved that the parallelized JavaScript execution engine 

can significantly improve the performances of JavaScript program. 
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4.1. Theoretical Analysis 

Suppose that the serial JavaScript program can be partitioned into several tasks, the 

execution time of each task ( 1,2, , )iP i k  is ( 1,2, , )iT i k respectively. Comparing 

with the execution time of each task, the expenses are omitted for allocating threads because 

the thread pool is used to allocate threads. Therefore, the JavaScript execution engine without 

JIT acceleration requires the time 
1

k

i

i

T


  to execute k  tasks. 

Suppose that the serial JavaScript program is finally executed in parallel by d  threads and 

each thread executes ( 1,2, , )jk j d  tasks, the JavaScript execution engine in the 

serialized design requires the time 
1

max( )
jk

i

i

T


  to execute k  tasks.  

For JavaScript execution engine with JIT acceleration, suppose that the execution time for 

byte codes accelerated accounts for (0 1)    ×100% of the total tasks, the time 

consumed for optimizing the part of codes accounts for (0 )   ×100% of the total task 

execution time and the execution efficiency of JIT codes compiled is (0 )f f  times better 

than that of the original byte codes, so the JavaScript execution engine with JIT acceleration 

requires the time 
1

(1 )
k

i

i

T
f


 



     to execute k tasks. 

Therefore, comparing with the conventional serial JavaScript execution engine without JIT 

acceleration, the parallel execution engine can improve the performances by: 

1

1

( 1,2, , )

max( )
j

k

i

i

k

i

i

T

j d

T










                                                   (12) 

Obviously, it is proved from the theoretical view, the parallel JavaScript execution engine 

can effectively improve the performances by d times at the maximum only if the serial 

JavaScript program can be partitioned into separate tasks. Meanwhile, the d value is related to 

the specific JavaScript program which can be proved by the subsequent tests. 

Comparing with the serial JavaScript execution engine with JIT acceleration, the parallel 

execution engine hereof can improve the performances by: 

1

1

(1 )

( 1,2, , )

max( )
j

k

i

i

k

i

i

T
f

j d

T


 





   






                                   (13) 

According to Pareto’s 80/20 Law, 20% of the codes in a program take up 80% of the total 

running time, so the value of α is set to 80% [19] in this paper. And the average execution 

time for SquirrelFish Extreme byte codes is 10 times higher than that for the machine codes 

[12, 18], so f is set to 10 and β to 20%. Equation (13) is converted into: 
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1

1

0.48

( 1,2, , )

max( )
j

k

i

i

k

i

i

T

j d

T












                                                    (4) 

The parallel execution efficiency can significantly exceed that of JIT acceleration only if 

the serial JavaScript program can be executed in parallel at the maximum. During value 

settings of Equation (13), the value of Parameter   depends on the seeking efficiency of 

hotspots and its subsequent execution frequency of its JavaScript program hotspots while the 

actual value of β is absolutely possible to exceed 1 [20]. 

No general theories can be used at present to carry out quantitative analysis for improving 

the parallelization performances of serial JavaScript program, so it is required to perform 

experimental statistics for the common Web applications in order to analyze the performance 

improvement due to parallel JavaScript execution engine. 

 

4.2. Experimental Analysis 

 

 

Figure 8. The Comparative Chart of Test Performances on World Top 15 
Websites at Traffic Volume 

The experiment in this paper was based on the embedded network set-top box and the tests 

were conducted on the general test platform Sunspider of 15 websites with different business 

types as well as industrial fields. Figure 8 shows the comparative chart of performance tests 

on world top 15 websites with maximum traffic volumes, where JIT acceleration indicates 

unobvious effects on the actual websites, the average performances are raised by 5.43% and 

JIT acceleration even reduces the performances on some websites. Parallel JavaScript 

execution engine can significantly improve performances; comparing with serial JavaScript 
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execution engine without JIT acceleration, the parallel JavaScript engines with 2, 4, 8 and 16 

threads can improve the average performances respectively by 37.07%, 1.36 times, 4.08 times 

and 5.92 times; comparing with the serial JavaScript execution engine with JIT acceleration, 

the parallel JavaScript execution engines with 2, 4, 8 and 16 threads can improve the average 

performances respectively by 30.01%, 1.24 times, 3.82 times and 5.57 times. 

Figure 9 shows the test results on Sunspider platforms. The characteristics of JavaScript 

codes better fit the expectation of JIT optimization on Sunspider platforms, so it is usually 

used as performance test platform for JIT acceleration. 

 

 

Figure 9. the Comparative Chart of Performance Tests on Sunspider Platforms 

On Sunspider platforms, comparing to the JavaScript execution engine without JIT 

acceleration, JIT acceleration can improve the average performances by 1.62 times but 

Sunspider’s features are obviously different from the actual Web business. Comparing to the 

JavaScript execution engine without JIT acceleration, the parallel JavaScript execution 

engines with 2, 4, 8 and 16 threads can raise the average performances respectively by 

58.57%, 2.23 times, 4.97 times and 9.28 times; and comparing with JavaScript serial 

execution engine with JIT acceleration, the parallel JavaScript execution engines with 2, 4, 8 

and 16 threads can raise the average performances respectively by -39.7%, 22.86%, 1.27 

times and 2.91 times. 

Obviously, the characteristics of Sunspider are different from that of current mainstream 

Web applications and the parallel JavaScript execution engines with the same degree of 

parallelism have different effects on performance promotion for two types of businesses. For 

mainstream Web applications, 16-thread parallelism and 8-thread parallelism both have 

unobvious performance improvement, but the application of 16 threads on Sunspider nearly 

doubles performances comparing with that of 8 threads. Therefore, more-thread parallelism is 

not always better while it requires combining JavaScript task features and identifying the 

maximum degree of parallelism under current parallelism grain size through experiments. 
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5. Conclusions 

As the serial JavaScript execution engine fails to utilize multi-core advantages at present, 

this paper proposes a design method of the parallel JavaScript execution engine. The test 

results from actual Web applications and Sunspider platforms indicate that in the actual Web 

applications, comparing with a serial JavaScript execution engine without JIT acceleration, 

the parallel JavaScript execution engines with 2, 4, 8 and 16 threads can raise the 

performances respectively by 37.07%, 1.36 times, 4.08 times and 5.92 times; comparing with 

a serial JavaScript execution engine with JIT acceleration, the parallel JavaScript execution 

engines with 2, 4, 8 and 16 threads can raise the performances respectively by 30.01%, 1.24 

times, 3.82 times and 5.57 times. On a Sunspider platform, comparing with a serial JavaScript 

execution engine without JIT acceleration, the parallel JavaScript execution engines with 2, 4, 

8 and 16 threads can raise the performances respectively by 58.57%, 2.23 times, 4.97 times 

and 9.28 times, while comparing with a serial JavaScript execution engine with JIT 

acceleration, the parallel JavaScript execution engines with 2, 4, 8 and 16 threads can raise 

the performances respectively by -39.7%, 22.86%, 1.27 times and 2.91 times. 

This algorithm utilizes the parallelism of function-level and loop-level grain sizes at the 

same time during the execution and significantly improves the performances of Web business 

with a lot of loops or function calls, while current Web businesses also contain many non-

loop or –function-call codes. It is also possible to execute these codes in parallel, so the 

subsequent study may highlight the parallelism research of byte-code grain sizes. Meanwhile, 

the parallel JavaScript execution engine may generate additional memory consumption. 

Therefore, the memory optimization will also be the key for future researches.  
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