
International Journal of Multimedia and Ubiquitous Engineering

 Vol.9, No.7 (2014), pp.171-184

http://dx.doi.org/10.14257/ijmue.2014.9.7.15

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2014 SERSC

A Parallelization Design of JavaScript Execution Engine

Duan Hucai
1,2

, Ni Hong
2
, Deng Feng

2
 and Hu Linlin

2

1
National Network New Media Engineering Research Center, Institute of Acoustics,

Chinese Academy of Sciences, Beijing 10190, China
2
University of Chinese Academy of Sciences, Beijing 100049, China

duanhc@dsp.ac.cn

Abstract

With more and more consumer electronics apply multi-core chips, the traditional

serialized JavaScript execution engine, which is optimized by just-in-time (JIT) compilation

technology, fails to utilize multi-core advantages. This paper proposes a mathematical model

to detect the dependency of serial JavaScript tasks and a parallelism execution algorithm for

serial JavaScript execution engines. Moreover, the parallel JavaScript execution engine with

thread-level speculation technology is implemented based on the SquirrelFish Extreme

engine of WebKit. As the experiment were conducted respectively on the general test platform

platform Sunspider in the industry and world top 15 websites at traffic volume, the results

indicate that both in the real Web application and Sunspider platform, the parallel JavaScript

execution engines with 2 to 16 threads can raise the performance dramatically compared

with a SquirrelFish execution engine with or without JIT acceleration, respectively.

Keywords: Multi-core chips, parallel computation, thread-level speculation, JavaScript

1. Introduction

JavaScript is a dynamic interpretation and execution language oriented to objects. As

JavaScript acts as main scripting language in the client’s Web application, its execution

performance directly affects the user’s experience related to Web applications. The traditional

solution of JavaScript acceleration is JIT compilation technology [1-4] which generate

machine codes from running JavaScript codes for execution. JIT acceleration technology may

increase the compilation expenses [4], provided that the optimized code is executed again and

the type of JavaScript objects is not changed etc. JIT optimization technology promotes

JavaScript performances conventionally through experiments on the specific test platform [5,

6], but the actual features of Web applications are different from the test platform of industrial

circles [79]. JIT optimization technology usually fails to reduce the JavaScript execution time

in common Web applications according to some researches [10]. Moreover, as more and more

consumer electronics use multi-core chips, JavaScript execution engine applies serialization

operation with JIT acceleration technology and fails to take advantage of multi-core chips.

According to some research results [11], the JavaScript execution engine under serialization

operation is parallelized so that the performance of Web applications is raised by 45 times. To

reduce the difficulty of parallel compilation, it is proposed in [12-14] that the technology of

Thread-Level Speculation (TLS) [15] should be applied to parallelize JavaScript engine and

realize JavaScript function-level parallelism. However, the parallelism at function level

cannot explore the parallelism potential of JavaScript application to the maximum extent

1 Project supported by the National Science and Technology Support Program of China (No.2012BAH73F01) and

CAS pilot special issue (No. XDA06040501).

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

172 Copyright ⓒ 2014 SERSC

while a large number of loop operations in the actual JavaScript application can apply fine-

grained loop level to partition parallelism.

This paper analyzes the factors for JavaScript function-level or loop-level parallelism,

proposes the detection approach of data dependency in JavaScript byte codes and further

discusses an algorithm which divide serialized JavaScript program into tasks for parallel

execution. Meanwhile, based on SquirrelFish Extreme, it also proposes a parallelism solution

of byte-code interpreters. The algorithm hereof improves performances obviously after being

tested on world top 10 websites at traffic volume.

2. Feasible Analysis of Parallel JavaScript Execution Engine

2.1. Principle Analysis of JavaScript Execution Engine

The conventional JavaScript execution engine applies serial execution and translates

JavaScript codes into byte codes for interpretation and execution [1, 3] or directly into

machine codes for execution [2]. Figure 1 shows the execution processes for three common

types of JavaScript execution engines.

JavaScript AST

JavaScript AST

Full
CodeGen

Native Code

08 B5
 C3 D5
 AE 0F

Hydrogen

Lithium

LaddI t1, t2, 7
 LModI t5, t1, 2

Crankshaft

 ByteCode

load r0, t1
add r1, t1

Native Code
Exist?

Interpret
ByteCode

NO

Native Code

Yes B8 84
C0 AF

(a) V8 Compilation Pipeline (b) Bytecode Interpreter with Just-In-Time Compiler

Figure 1. Execution Processes of JavaScript Execution Engines

As shown in Figure 1, it indicates the flow diagrams about how mainstream JavaScript

execution engines interpret and execute JavaScript programs at present. (a) indicates V8’s

execution process, V8 converts JavaScript source codes into abstract syntax trees and initiates

a Full-Codege compiler to compile the abstract syntax trees into machine codes related to the

platform and execute them one by one; it initiates a Crankshaft compiler to optimize hotspot

functions in the running process and generate better machine codes for execution. (b) is a

common JavaScript execution engine with the combination of a byte code interpreter and a

JIT compiler, where JavaScript source codes are converted into abstract syntax trees.

Different from V8, this engine generate a kind of abstract byte codes while an interpreter

interprets and executes these codes. Meanwhile, a JIT compiler compiles hotpots of byte

codes into machine codes related to the platform to optimize performances. As both

SquirrelFish Extreme and TraceMonkey apply this design, the difference lies in optimized

grain sizes. And the former applies the hotspot optimization algorithm based on Method while

the latter uses that based on Trace [16]. Therefore, the current JavaScript execution engine

can execute JavaScript codes only according to the single-threaded sequence but fails to

speed up with the advantages of multi-core chips.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

Copyright ⓒ 2014 SERSC 173

1.2. Parallelism Instances of JavaScript Execution Engine

All parts of the JavaScript program always have a certain dependency relationship. The

parallel processing shall decompose the program into several tasks for parallel execution

without causing damage to these dependency relationships in order to shorten the time

required for running the whole process. However, there is no general model for the

parallelism of a serial program at present, so it is necessary to take the features of serial tasks

in consideration for partition. As there are a lot of functions in the JavaScript program, it is

possible to perform parallel execution of callee and caller functions during the function call.

Moreover, there are a lot of loop iterative operations in the JavaScript codes and each

iterative operation may be also executed in a parallel manner. Figure 2 indicates an example

of creating JavaScript function, while JavaScript source codes stay on the left and the

corresponding byte-code pseudo-code on the right. In this figure, the sequence of byte codes

is partitioned into 13 tasks. Obviously, Tasks 2 and 3 are mutually independent and so are

Tasks 3 and 4. The execution must be carried out after Task 1. And Tasks 4-12 are the byte-

code sequence after JavaScript loop unrolls and every round of iteration is based on the

former round. The loop iterative operation cannot be executed in a parallel manner while

Task 13 cannot be executed until all other tasks are completed.

function f()
{

var i = 0;
g();
i++;
for (var j = 1; j < 5;j++)

 {
i += j;

}
return i;

}

function g()
{

return 1;

}

function f()
{

var i = 0;
g();
i++;
for (var j = 1; j < 5;j++)

 {
i += j;

}
return i;

}

function g()
{

return 1;

}

set i = 0
call g

set i = 0
call g

return 1return 1

increment iincrement i

set j = 1
test loop condition j < 5

set j = 1
test loop condition j < 5

i += ji += j

increment j
test loop condition j < 5

increment j
test loop condition j < 5

i += ji += j

increment j
test loop condition j < 5

increment j
test loop condition j < 5

i += ji += j

increment j
test loop condition j < 5

increment j
test loop condition j < 5

increment j
test loop condition j < 5

increment j
test loop condition j < 5

i += ji += j

return ireturn i

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

Figure 2. Example of JavaScript Source Code and its Corresponding Byte-
Code Sequence

Figure 3 indicates the sequence chart of the parallelism execution for the tasks in Figure 2.

First, execute Task 1 in the main thread. When it is time to execute Task 2, open a thread to

execute Task 2 because Tasks 2 and 3 are mutually independent. As the main thread proceeds

to other byte codes after Task 2, it is time to execute Task 3. And then, open another thread to

execute Task 3 due to mutual independence between Tasks 3 and 4. As the main thread

proceeds to other byte codes after Task 3, kick off Task 4. The execution of Task 5 relies on

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

174 Copyright ⓒ 2014 SERSC

Tasks 3 and 4, so Task 4 must be executed in series by the main thread at this time. After the

completion of Task 4, the main thread must not execute Task 5 until the completion of Task

3. As Task 3 is completed, it sends feedback to the main thread and the main thread executes

Task 5 and its subsequent tasks in order. Therefore, comparing with serial execution, parallel

execution can reduce the total time indicated in Equation (1):

Task 1

Task 2

Task 3

Task 4 Task 5 Task 6 Task13Task 7 Task 8 Task 9 Task 10 Task 12Task 11

Thread 1

Thread 2

Thread 3

Time Spent in creating new Threads Time Spent in waiting for Task3 finish before Task5 start

Figure 3. Sequence Chart of JavaScript Parallel Execution

2 3 5t t thread waitT T T T   (1)

Where, 2tT refers to the time consumed for Task 2 execution, 3tT indicates the time

consumed for Task 3 execution, threadT means the time consumed for opening Threads 2 and

3 while 5waitT indicates the time consumed to wait for the completion of Task 3 before the

main thread executes Task 5, it can be expressed in Figure 3 as follows:

5 3 4wait t tT T T  (2)

Therefore, the time reduced for parallel execution can be expressed as follows:

2 4t t threadT T T  (3)

Because Tasks 2 and 4 are executed in a parallel manner, the time consumed for the two

tasks is reduced, comparing with serial execution but additional time is consumed for opening

the thread. Provided the time consumed for serial execution of Tasks 2 and 4 is longer than

that for opening the thread, the parallelization can improve the performances of JavaScript

program. In the actual program, the expenses for task execution is much more than the time

consumed for opening the thread, so maximizing the parallel execution of JavaScript program

can improve performances and it is feasible to parallelize the serial JavaScript program.

2. Parallel algorithm of JavaScript Execution Engine

The key to parallel execution of JavaScript execution engine is to identify the dependency

relationship in JavaScript tasks. Under the premise of no damage to the dependency

relationship, a JavaScript program is partitioned into several subtasks for parallel execution.

The dependency relationships can be categorized into the two types of control dependency

relationship and data dependency relationship while the former leads to program process

changes and the latter is incurred by reading/writing the same data. And the data dependency

can affect the dependency relationship of a JavaScript program. Therefore, the analysis theory

and techniques of data dependency relationships is the basis of JavaScript program

parallelism.

2.1. Mathematical Model Analysis of JavaScript Task Dependency

(1,2, ,)iP i m is defined as one task in the JavaScript program and (1,2, ,)iV i n as

a variable. As different tasks carry out reading/writing operations on the same variable, there

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

Copyright ⓒ 2014 SERSC 175

may be data dependency relationships. m n -order matrix rM is defined as reading matrix

with the value as follows:

0, in P ,
(,)

1, in P

j i

r

j i

no reading Variable

reading
M i j

Variable


 


V

V .
 (4)

m n -order writing matrix is defined as:

 0,

(,)
1,

 V

 V
w

j i

j i

no writing Variable in P

writing Variable in P
M i j


 


,

.

 (5)

There are three types of data dependency relationships: read-after-write (RAW), write-after-

read (WAR) and write-after-write (WAW) [17]. m m -order matrix wrM of JavaScript task

read-write dependency is defined as

T

wr r wM M M  (6)

Therefore:

0,
(,)

(0) ,

i j

i

wr

j

M i j
k k n

no data RAW dependency between P and P

k variables have RAW dependency between P and P


 

  .
 (7)

m n -order matrix wwM of JavaScript task WAW dependency is defined as

T

ww w wM M M  (8)

Therefore,

 0,
(,)

(

0),

 ,

 .

i j

i j

ww

no data WAW dependency between P and P

WAW dependency between P and P
M i j

k k n


 

 

 (9)

m n -order dependency matrix dM is defined as:

 d wr wwM M M  (10)

And

0,
(,)

k (0<k 2n),

i j

i j

d

no dependency betweenPand P

dependency between Pand P
M i j


 

  

，

.
 (11)

Meanwhile, the dependency relationship is of transitivity; if (,) 0dM i j  and (,) 0dM j l  ,

there is the dependency relationship between iP and lP . The task can be executed in a parallel

manner only if there is no dependency relationship while the tasks under dependency

relationships must be executed by the same thread in order.

2.2. Parallel algorithm of JavaScript Execution Engine

C is defined as a set of tasks under execution or to be executed

and 1 2 3{ , , , , }mC P P P P ; every time a new task (1,2, ,)iP i m is kicked off, put the

new task is put into Set C ; and when a task is completed, delete it from C .

,0jC C j m   is defined as some task under execution, ()jThread C is the thread where

some task is under execution at that time, (())jP Thread C indicates the task set which has

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

176 Copyright ⓒ 2014 SERSC

dependency relationship with
jC and is to be executed in the same thread with

jC , and

(())jP Thread C C . ()iIndex P refers to the serial numbers of Task iP in

1 2 3{ , , , , }mP P P P while 1 2{ , , , }mF P P P is a task to be executed. This paper proposes an

algorithm for parallel execution of serial JavaScript tasks:

Step 1: If C  , execute F in the main thread and put F into Set C , otherwise

proceed to Step 2;

Step 2: If ((), ()) 0d jM Index F Index C  to random
jC C , execute F in the new thread

and put F into SetC , otherwise proceed to Step 3;

Step 3: If ((), ()) 0d jM Index F Index C  to
jC C , put F in C and (())jP Thread C ,

proceed to Step 4;

Step 4: As the execution of
jC is completed, delete

jC from C ; if (())jP Thread C  ,

()jThread C goes on proceeding to the next , (())j j jC C P Thread C   from

(())jP Thread C and . Meanwhile, delete
jC  from (())jP Thread C , otherwise complete

()jThread C and feed the results back to the main thread. And then proceed to Step 5;

Step 5: The main thread skips F and analyzes the subsequent tasks, proceed to Step 1 if

there is any task, otherwise wait for execution completion of all threads and return to

execution results.

3. Algorithm Implementation

This paper applies thread-level speculation technology and proposes a parallel algorithm

solution of the JavaScript execution engine based on the Squirrelfish Extreme execution

engine.

3.1. Algorithm for Serial JavaScript Task Partitioning

For parallel execution of the JavaScript program, it is required to divide the serial program

into several tasks and find tasks from the task set for parallel execution. The thread-level

speculation is intended to dynamically parallelize the serial program while there are the

parallelism grain-sizes at loop level and method level. The loop-level parallelism assigns one

thread to iteration of each loop for execution while the method-level parallelism deploys each

function as one thread. Squirrelfish Extreme execution engine first translates JavaScript

source codes into byte codes [18], partitions serial JavaScript program into several tasks in

the process of byte-code generation and establishes the task dependency matrix. “Loop”,

“loop_if_true” and “loop_if_less” of Squirrelfish Extreme byte codes initiate one-loop

instructions, its “target” parameter is a start address of one loop-level task, the “call”

instruction is a function call instruction, its “func” parameter is a start address of the function-

level task and the “ret” instruction is the symbol indicating calling by a function and backing

to results.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

Copyright ⓒ 2014 SERSC 177

Task 1

Start
Loop

 Target

Task 2

Loop if true

Task3

call

Task4

pop

Task5

Loop
 Target

Task6

Loop if false

Task7

Figure 4. Schematic Diagram of Task Partitioning for JavaScript Serial Program

Figure 5. Pseudo-Code Realization of Task Partitioning for JavaScript Serial
Program

Figure 4 is the schematic diagram of task partitioning for the JavaScript serial program, it

scans the byte-code sequence in order; every time it meets with a call function instruction or a

loop iterative instruction, record one new task and map the task number to the address

parameter of the instruction. Meanwhile, byte-code fragments between iteration and function

call are partitioned into separate tasks. Figure 5 shows the pseudo-codes of the solution.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

178 Copyright ⓒ 2014 SERSC

3.2. Dependency Matrix Computation

Figure 6 shows the pseudo codes realized by the algorithm; as JavaScript program is

partitioned into several tasks, it is possible to obtain (,:)rM i from the i
th
 row of the reading

matrix and (,:)wM i from the
thi row of the writing matrix through all read/write variables in

the speculation task (1,2, ,)iP i m . The same operations are carried out for all tasks to

establish the reading matrix rM and the writing matrix wM and obtain the task dependency

matrix dM in combination with Equations (6)-(11). To reduce the memory consumption, use

a sparse matrix during design to store the data of rM , wM and dM .

Figure 6. Pseudo-Code Computations through JavaScript Task Dependency
Matrix

3.3. Parallel Execution of Serial JavaScript

After the dependency matrix is obtained, it is possible to judge whether two tasks can be

executed in a parallel manner depending on the matrix-to-matrix dependency value. Execute

the tasks with dependency relationships in the same thread and apply thread pool technology

during realization to reduce the expenses for creating threads, while the pseudo-code

realization is shown in Figure 7.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

Copyright ⓒ 2014 SERSC 179

Figure 7. Pseudo Codes for JavaScript Parallel Execution

4. Performance Evaluation

This paper conducted the performance evaluations respectively from the two aspects of

theory and experiment and fully approved that the parallelized JavaScript execution engine

can significantly improve the performances of JavaScript program.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

180 Copyright ⓒ 2014 SERSC

4.1. Theoretical Analysis

Suppose that the serial JavaScript program can be partitioned into several tasks, the

execution time of each task (1,2, ,)iP i k is (1,2, ,)iT i k respectively. Comparing

with the execution time of each task, the expenses are omitted for allocating threads because

the thread pool is used to allocate threads. Therefore, the JavaScript execution engine without

JIT acceleration requires the time
1

k

i

i

T


 to execute k tasks.

Suppose that the serial JavaScript program is finally executed in parallel by d threads and

each thread executes (1,2, ,)jk j d tasks, the JavaScript execution engine in the

serialized design requires the time
1

max()
jk

i

i

T


 to execute k tasks.

For JavaScript execution engine with JIT acceleration, suppose that the execution time for

byte codes accelerated accounts for (0 1)   ×100% of the total tasks, the time

consumed for optimizing the part of codes accounts for (0)  ×100% of the total task

execution time and the execution efficiency of JIT codes compiled is (0)f f times better

than that of the original byte codes, so the JavaScript execution engine with JIT acceleration

requires the time
1

(1)
k

i

i

T
f


 



    to execute k tasks.

Therefore, comparing with the conventional serial JavaScript execution engine without JIT

acceleration, the parallel execution engine can improve the performances by:

1

1

(1,2, ,)

max()
j

k

i

i

k

i

i

T

j d

T










 (12)

Obviously, it is proved from the theoretical view, the parallel JavaScript execution engine

can effectively improve the performances by d times at the maximum only if the serial

JavaScript program can be partitioned into separate tasks. Meanwhile, the d value is related to

the specific JavaScript program which can be proved by the subsequent tests.

Comparing with the serial JavaScript execution engine with JIT acceleration, the parallel

execution engine hereof can improve the performances by:

1

1

(1)

(1,2, ,)

max()
j

k

i

i

k

i

i

T
f

j d

T


 





   






 (13)

According to Pareto’s 80/20 Law, 20% of the codes in a program take up 80% of the total

running time, so the value of α is set to 80% [19] in this paper. And the average execution

time for SquirrelFish Extreme byte codes is 10 times higher than that for the machine codes

[12, 18], so f is set to 10 and β to 20%. Equation (13) is converted into:

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

Copyright ⓒ 2014 SERSC 181

1

1

0.48

(1,2, ,)

max()
j

k

i

i

k

i

i

T

j d

T












 (4)

The parallel execution efficiency can significantly exceed that of JIT acceleration only if

the serial JavaScript program can be executed in parallel at the maximum. During value

settings of Equation (13), the value of Parameter  depends on the seeking efficiency of

hotspots and its subsequent execution frequency of its JavaScript program hotspots while the

actual value of β is absolutely possible to exceed 1 [20].

No general theories can be used at present to carry out quantitative analysis for improving

the parallelization performances of serial JavaScript program, so it is required to perform

experimental statistics for the common Web applications in order to analyze the performance

improvement due to parallel JavaScript execution engine.

4.2. Experimental Analysis

Figure 8. The Comparative Chart of Test Performances on World Top 15
Websites at Traffic Volume

The experiment in this paper was based on the embedded network set-top box and the tests

were conducted on the general test platform Sunspider of 15 websites with different business

types as well as industrial fields. Figure 8 shows the comparative chart of performance tests

on world top 15 websites with maximum traffic volumes, where JIT acceleration indicates

unobvious effects on the actual websites, the average performances are raised by 5.43% and

JIT acceleration even reduces the performances on some websites. Parallel JavaScript

execution engine can significantly improve performances; comparing with serial JavaScript

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

182 Copyright ⓒ 2014 SERSC

execution engine without JIT acceleration, the parallel JavaScript engines with 2, 4, 8 and 16

threads can improve the average performances respectively by 37.07%, 1.36 times, 4.08 times

and 5.92 times; comparing with the serial JavaScript execution engine with JIT acceleration,

the parallel JavaScript execution engines with 2, 4, 8 and 16 threads can improve the average

performances respectively by 30.01%, 1.24 times, 3.82 times and 5.57 times.

Figure 9 shows the test results on Sunspider platforms. The characteristics of JavaScript

codes better fit the expectation of JIT optimization on Sunspider platforms, so it is usually

used as performance test platform for JIT acceleration.

Figure 9. the Comparative Chart of Performance Tests on Sunspider Platforms

On Sunspider platforms, comparing to the JavaScript execution engine without JIT

acceleration, JIT acceleration can improve the average performances by 1.62 times but

Sunspider’s features are obviously different from the actual Web business. Comparing to the

JavaScript execution engine without JIT acceleration, the parallel JavaScript execution

engines with 2, 4, 8 and 16 threads can raise the average performances respectively by

58.57%, 2.23 times, 4.97 times and 9.28 times; and comparing with JavaScript serial

execution engine with JIT acceleration, the parallel JavaScript execution engines with 2, 4, 8

and 16 threads can raise the average performances respectively by -39.7%, 22.86%, 1.27

times and 2.91 times.

Obviously, the characteristics of Sunspider are different from that of current mainstream

Web applications and the parallel JavaScript execution engines with the same degree of

parallelism have different effects on performance promotion for two types of businesses. For

mainstream Web applications, 16-thread parallelism and 8-thread parallelism both have

unobvious performance improvement, but the application of 16 threads on Sunspider nearly

doubles performances comparing with that of 8 threads. Therefore, more-thread parallelism is

not always better while it requires combining JavaScript task features and identifying the

maximum degree of parallelism under current parallelism grain size through experiments.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

Copyright ⓒ 2014 SERSC 183

5. Conclusions

As the serial JavaScript execution engine fails to utilize multi-core advantages at present,

this paper proposes a design method of the parallel JavaScript execution engine. The test

results from actual Web applications and Sunspider platforms indicate that in the actual Web

applications, comparing with a serial JavaScript execution engine without JIT acceleration,

the parallel JavaScript execution engines with 2, 4, 8 and 16 threads can raise the

performances respectively by 37.07%, 1.36 times, 4.08 times and 5.92 times; comparing with

a serial JavaScript execution engine with JIT acceleration, the parallel JavaScript execution

engines with 2, 4, 8 and 16 threads can raise the performances respectively by 30.01%, 1.24

times, 3.82 times and 5.57 times. On a Sunspider platform, comparing with a serial JavaScript

execution engine without JIT acceleration, the parallel JavaScript execution engines with 2, 4,

8 and 16 threads can raise the performances respectively by 58.57%, 2.23 times, 4.97 times

and 9.28 times, while comparing with a serial JavaScript execution engine with JIT

acceleration, the parallel JavaScript execution engines with 2, 4, 8 and 16 threads can raise

the performances respectively by -39.7%, 22.86%, 1.27 times and 2.91 times.

This algorithm utilizes the parallelism of function-level and loop-level grain sizes at the

same time during the execution and significantly improves the performances of Web business

with a lot of loops or function calls, while current Web businesses also contain many non-

loop or –function-call codes. It is also possible to execute these codes in parallel, so the

subsequent study may highlight the parallelism research of byte-code grain sizes. Meanwhile,

the parallel JavaScript execution engine may generate additional memory consumption.

Therefore, the memory optimization will also be the key for future researches.

Acknowledgements

Thanks to my tutor, from the topics of papers, writing, changes to the draft, condensed

tutor's efforts and wisdom, thank the fund support.

References

[1] G. Garen, Announcing SquirrelFish.2008.http://www.webkit.org/blog/189/announcing-squirrelfish/.

[2] Google Inc. A New Crankshaft for V8.2010. http://blog.chromium.org/ 2010/12/new-crankshaft-for-v8.html.

[3] MozillaWiki. JavaScript:TraceMonkey. 2010. https://wiki.mozilla.org/ JavaScript:TraceMonkey.

[4] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat and M. Franz, “Trace-based just-in-

time type specialization for dynamic languages”, In ACM Sigplan Notices, vol. 44, no. 6, (2009), June, pp.

465-478, ACM.

[5] WebKit. SunSpider 1.0.2 JavaScript Benchmark. 2013. https://www.webkit.org/perf/sunspider-

1.0.2/sunspider-1.0.2/driver.html.

[6] Google. V8 Benchmark Suite.2009. http://v8.googlecode.com/svn/data/benchmarks/v3/ run.html.

[7] J. K. Martinsen and H. Grahn, “A methodology for evaluating JavaScript execution behavior in interactive

web applications”, In Proc. of the 9th ACS/IEEE Int’l Conf. On Computer Systems and Applications, (2011),

December, pp. 241–248.

[8] P. Ratanaworabhan, B. Livshits and B. G. Zorn, “JS Meter: Comparing the behavior of JavaScript

benchmarks with real web applications”, In WebApps’10: Proc. of the 2010 USENIX Conf. on Web

Application Development, (2010), pp. 3–3.

[9] G. Richards, S. Lebresne, B. Burg and J. Vitek, “An analysis of the dynamic behavior of JavaScript

programs”, In PLDI ’10: Proc. of the 2010 ACM SIGPLAN Conf. on Programming Language Design and

Implementation, (2010), pp. 1–12.

[10] Martinsen, J. Kasper, H. Grahn and Anders Isberg, “A comparative evaluation of JavaScript execution

behavior”, Web Engineering. Springer Berlin Heidelberg, (2011), pp. 399-402.

[11] E. Fortuna, “A limit study of JavaScript parallelism”, Workload Characterization (IISWC), 2010 IEEE

International Symposium on. IEEE, (2010).

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

http://blog.chromium.org/2010/12/new-crankshaft-for-v8.html

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.7 (2014)

184 Copyright ⓒ 2014 SERSC

[12] Martinsen, J. Kasper, H. Grahn and A. Isberg, “Using speculation to enhance javascript performance in web

applications”, Internet Computing, IEEE 17.2 (2013), pp. 10-19.

[13] Martinsen, J. Kasper and H. Grahn, “An alternative optimization technique for JavaScript engines”,

Proceedings of the Third Swedish Workshop on Multi-Core Computing (MCC-10), (2010).

[14] Martinsen, J. Kasper and H. Grahn, “Thread-level speculation for web applications”, Second Swedish

Workshop on Multi-Core Computing, (2009).

[15] Oancea, E. Cosmin, and M. Alan, “Software thread-level speculation: an optimistic library implementation”,

Proceedings of the 1st international workshop on Multicore software engineering, ACM, (2008).

[16] A. Gal, “Trace-based just-in-time type specialization for dynamic languages”, ACM Sigplan Notices, vol. 44,

no. 6, ACM, (2009).

[17] S. Gupta, “SPARK: A high-level synthesis framework for applying parallelizing compiler

transformations”, VLSI Design, 2003, Proceedings, 16th International Conference on. IEEE, (2003).

[18] WebKit, Squirrelfish bytecode, 2013. http://www.webkit.org/specs/squirrelfish-bytecode.html.

[19] Martinsen, J. Kasper, H. Grahn and A. Isberg, “Preliminary Results of Combining Thread-Level Speculation

and Just-in-Time Compilation in Google’s V8”, Sixth Swedish Workshop on Multicore Computing (MCC-

13), Halmstad University, (2013).

[20] Martinsen, J. Kasper, H. Grahn and A. Isberg, “A comparative evaluation of JavaScript execution

behavior”, Web Engineering, Springer Berlin Heidelberg, (2011), pp. 399-402.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

