International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014), pp.171-184
http://dx.doi.org/10.14257/ijmue.2014.9.7.15

A Parallelization Design of JavaScript Execution Engine

Duan Hucai'?, Ni Hong?, Deng Feng® and Hu Linlin?

National Network New Media Engineering Research Center, Institute of Acoustics,
Chinese Academy of Sciences, Beijing 10190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

duanhc@dsp.ac.cn ,\).

Abstract
With more and more consumer electronics apply mu;sl qore ¢ i

serialized JavaScript execution engine, which is optimiz
technology, fails to utilize multi-core advantages. This

thé traditional
IT) compilation

to detect the dependency of serial JavaScript tasks arall |sm cution algorithm for
serial JavaScript execution engines. Moreover, the IIeI J t execution engine with
thread-level speculation technology is imple d base e SquirrelFish Extreme

engine of WebKit. As the experiment were,co ed resp Iy on the general test platform
platform Sunspider in the industry and &op 15 websites at traffic volume, the results
indicate that both in the real Web applj@w and %er platform, the parallel JavaScript
execution engines with 2 to 16 @ an ra%; performance dramatically compared
with a SquirrelFish execution eﬂg& h or with IT acceleration, respectively.
Keywords: Multi-core cN@parallel@g tion, thread-level speculation, JavaScript

1. Introduction Q \‘

JavaScript |c m'&g@e ion and execution language oriented to objects. As
JavaScript act’ scripting”language in the client’s Web application, its execution
performance dircetly affe user ’s experience related to Web applications. The traditional
solution of JavaScript eration is JIT compilation technology [1-4] which generate
machine codes from g JavaScript codes for execution. JIT acceleration technology may
increase the compilation expenses [4], provided that the optimized code is executed again and
the type of AdavaScript objects is not changed etc. JIT optimization technology promotes
JavaScript ances conventionally through experiments on the specific test platform [5,
6], but t | features of Web applications are different from the test platform of industrial
circ JIT optimization technology usually fails to reduce the JavaScript execution time
in (%m Web applications according to some researches [10]. Moreover, as more and more
consumer electronics use multi-core chips, JavaScript execution engine applies serialization
operation with JIT acceleration technology and fails to take advantage of multi-core chips.
According to some research results [11], the JavaScript execution engine under serialization
operation is parallelized so that the performance of Web applications is raised by 45 times. To
reduce the difficulty of parallel compilation, it is proposed in [12-14] that the technology of
Thread-Level Speculation (TLS) [15] should be applied to parallelize JavaScript engine and
realize JavaScript function-level parallelism. However, the parallelism at function level
cannot explore the parallelism potential of JavaScript application to the maximum extent

! Project supported by the National Science and Technology Support Program of China (N0.2012BAH73F01) and
CAS pilot special issue (No. XDA06040501).

ISSN: 1975-0080 IJMUE
Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

while a large number of loop operations in the actual JavaScript application can apply fine-
grained loop level to partition parallelism.

This paper analyzes the factors for JavaScript function-level or loop-level parallelism,
proposes the detection approach of data dependency in JavaScript byte codes and further
discusses an algorithm which divide serialized JavaScript program into tasks for parallel
execution. Meanwhile, based on SquirrelFish Extreme, it also proposes a parallelism solution
of byte-code interpreters. The algorithm hereof improves performances obviously after being
tested on world top 10 websites at traffic volume.

2. Feasible Analysis of Parallel JavaScript Execution Engine V.
2.1. Principle Analysis of JavaScript Execution Engine

The conventional JavaScript execution engine applle r| exe d translates
JavaScript codes into byte codes for interpretation an or directly into
machine codes for execution [2]. Figure 1 shows th or three common
types of JavaScript execution engines. @

Hydrogen

Native Code

B8 84
CO AF

JavaScript » AST —>

Native Code

_ Full

" CodeGen
08 BS Q Interpret
C3 D5 Crankshaft addl t1 & ByteCode
AE OF WMod

(a)V8Com
Figure

As shown in Figuge‘blt indicates the flow diagrams about how mainstream JavaScript

Ripetine \ (b) Bytecode Interpreter with Just-In-Time Compiler
! Exe t@p Processes of JavaScript Execution Engines

execution engines, ftebpret and execute JavaScript programs at present. (a) indicates V8’s
execution process converts JavaScript source codes into abstract syntax trees and initiates
a Full-Code %%mpiler to compile the abstract syntax trees into machine codes related to the
platform a cute them one by one; it initiates a Crankshaft compiler to optimize hotspot
functi @ the running process and generate better machine codes for execution. (b) is a
co@JavaScript execution engine with the combination of a byte code interpreter and a
JIT compiler, where JavaScript source codes are converted into abstract syntax trees.
Different from V8, this engine generate a kind of abstract byte codes while an interpreter
interprets and executes these codes. Meanwhile, a JIT compiler compiles hotpots of byte
codes into machine codes related to the platform to optimize performances. As both
SquirrelFish Extreme and TraceMonkey apply this design, the difference lies in optimized
grain sizes. And the former applies the hotspot optimization algorithm based on Method while
the latter uses that based on Trace [16]. Therefore, the current JavaScript execution engine
can execute JavaScript codes only according to the single-threaded sequence but fails to
speed up with the advantages of multi-core chips.

172 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

1.2. Parallelism Instances of JavaScript Execution Engine

All parts of the JavaScript program always have a certain dependency relationship. The
parallel processing shall decompose the program into several tasks for parallel execution
without causing damage to these dependency relationships in order to shorten the time
required for running the whole process. However, there is no general model for the
parallelism of a serial program at present, so it is necessary to take the features of serial tasks
in consideration for partition. As there are a lot of functions in the JavaScript program, it is
possible to perform parallel execution of callee and caller functions during the function call.
Moreover, there are a lot of loop iterative operations in the JavaScript codes and each
iterative operation may be also executed in a parallel manner. Figure 2 indicates armex ple
of creating JavaScript function, while JavaScript source codes stay on the d the
corresponding byte-code pseudo-code on the right. In this figure, the sequ ofybyte codes
is partitioned into 13 tasks. Obviously, Tasks 2 and 3 are mgtually i t and so are
Tasks 3 and 4. The execution must be carried out after “And T@MZ are the byte-

&g is based on the
former round. The loop iterative operation canno cutew rallel manner while

Task 13 cannot be executed until all other tasks are

code sequence after JavaScript loop unrolls and ever
‘Ieted

é@ POl
ﬁumtion £0 Q)& i’ % ini?‘tei::rfti
var i = 0: 4 . % setj=1

O

test loop condition j <5
g(); @ \Q' i+=] |
it 9 . increment j
for (Va\x 5; J++) test loop condition j < 5
Q \O 7 i +=] |
Q increment j
return i
} > . |
increment j

6 g test loop condition j< 5
9 i+=] |
10 .
) @ test loop condition j< 5
funct%g(‘11 . ‘

a
5

i i+=j
) 1- 12 increment j
urn 1, test loop condition j< 5
% 13 return i

Figure 2. Example of JavaScript Source Code and its Corresponding Byte-
Code Sequence

Figure 3 indicates the sequence chart of the parallelism execution for the tasks in Figure 2.
First, execute Task 1 in the main thread. When it is time to execute Task 2, open a thread to
execute Task 2 because Tasks 2 and 3 are mutually independent. As the main thread proceeds
to other byte codes after Task 2, it is time to execute Task 3. And then, open another thread to
execute Task 3 due to mutual independence between Tasks 3 and 4. As the main thread
proceeds to other byte codes after Task 3, kick off Task 4. The execution of Task 5 relies on

Copyright © 2014 SERSC 173

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

Tasks 3 and 4, so Task 4 must be executed in series by the main thread at this time. After the
completion of Task 4, the main thread must not execute Task 5 until the completion of Task
3. As Task 3 is completed, it sends feedback to the main thread and the main thread executes
Task 5 and its subsequent tasks in order. Therefore, comparing with serial execution, parallel
execution can reduce the total time indicated in Equation (1):

Thread 1

‘ Tt TesKe T - Tk ” T H Tt _ T ‘
>
>

Thread 3 /‘ j ;

|:| Time Spent in creating new Threads - Time Spent in waiting for Task3 finish before Task% star; Z

Figure 3. Sequence Chart of JavaScrip\ ﬂel E n

T,+T % (1)

Where, T, refers to the time consumed for T 2 ex'&} 13 indicates the time
f

>
>

Thread 2

consumed for Task 3 execution, T .., Mea |me co or opening Threads 2 and
3 while T, indicates the time consu wait f ompletlon of Task 3 before the
main thread executes Task 5, it can b 3 as follows:

wa|t5 (2)

Therefore, the time reduced for raIIeI e ion can be expressed as follows:
ta thread (3)
Because Tasks 2 execu araIIeI manner, the time consumed for the two
tasks is reduced, co Wlth S executlon but additional time is consumed for opening
the thread. Proyvi tlme med for serial execution of Tasks 2 and 4 is longer than

program. In the dctual pr the expenses for task execution is much more than the time
consumed for opening ead, so maximizing the parallel execution of JavaScript program
can improve perfo@ and it is feasible to parallelize the serial JavaScript program.

that for openi thre%d aIIellzatlon can improve the performances of JavaScript

2. Parallelxlg_gr thm of JavaScript Execution Engine
I

The ke allel execution of JavaScript execution engine is to identify the dependency
rela @ in JavaScript tasks. Under the premise of no damage to the dependency
rel%lp, a JavaScript program is partitioned into several subtasks for parallel execution.
The dependency relationships can be categorized into the two types of control dependency
relationship and data dependency relationship while the former leads to program process
changes and the latter is incurred by reading/writing the same data. And the data dependency
can affect the dependency relationship of a JavaScript program. Therefore, the analysis theory
and techniques of data dependency relationships is the basis of JavaScript program
parallelism.

2.1. Mathematical Model Analysis of JavaScript Task Dependency

P(i=12,---,m)is defined as one task in the JavaScript program and V, (i =1,2,---,n) as
a variable. As different tasks carry out reading/writing operations on the same variable, there

174 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

may be data dependency relationships. mxn-order matrix M, is defined as reading matrix
with the value as follows:
o {0, no reading Variable V, in P,
M. (i)= : , :)
1, reading Variable V, in P..
M x N -order writing matrix is defined as:
0, no writing Variable Vv, inP,

M. (i,])= N _ _ : 5
o)) {1, writing Variable V; in R. ®)

There are three types of data dependency relationships: read-after-write (RAW), Wer—
read (WAR) and write-after-write (WAW) [17]. mxm -order matrix M, of JavaScript task

read-write dependency is defined as .
M, =M, xM] 6 & (6)

Therefore:

M 0, no data RAW dependency be and w .
i, j)=
wlt) cy’between P and P, @

k(0 <k <n), k variables haveQW depengen
mxn-order matrix M, of JavaScript ta‘s@W depen y is defined as

M, =M, Ki@'&% &\\@ (8)
, r@ata W, .chpgndency between P, and P;,

0
M, (@, J)=
w1)=, k <n), dependency between B, and P;.

mxn-order depen@matri@ defined as:
Q &@MW +M,, (10)

MG , o dependency betweenPand P,
1, 11
o k'(0<k’ < 2n), dependency between Rand P,. D

Therefore,

(9)

And

Meanwhile@ dependency relationship is of transitivity; if M (i, J) #0and M, (],I) =0,

ther, t@jependency relationship between P, and B, . The task can be executed in a parallel
man only if there is no dependency relationship while the tasks under dependency

relationships must be executed by the same thread in order.
2.2. Parallel algorithm of JavaScript Execution Engine

C is defined as a set of tasks wunder execution or to be executed
andC c{R,P,,R,,---,P.}; every time a new task P(i=12,---,m) is kicked off, put the
new task is put into Set C ; and when a task is completed, delete it from C .
C; €C,0< j<m is defined as some task under execution, Thread(C;) is the thread where

some task is under execution at that time, P(Thread(C,)) indicates the task set which has

Copyright © 2014 SERSC 175

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

dependency relationship with C; and is to be executed in the same thread with C;, and
P(Thread(C;)) =C . Index(R) refers to the serial numbers of Task B in

{P.R,,R,,---,P,} while F e{R,P,,---,P,} is a task to be executed. This paper proposes an
algorithm for parallel execution of serial JavaScript tasks:

Step 1. If C=O, execute F in the main thread and put F into Set C, otherwise
proceed to Step 2;

Step 2: If M, (Index(F), Index(C,)) =0 to randomC; € C, execute F in the new thread

and put F into SetC , otherwise proceed to Step 3;
Step 3: If M (Index(F), Index(C;)) >0 toC; €C, put F in C and P(T C))

proceed to Step 4; C‘}i

Step 4: As the execution of C;is completed, delete C)=9,
Thread(C;) goes on proceeding to nex qxjj% %ad (C,;)) from
P(Thread(C,)) and . Meanwhile, delete C fr@ j&)otherwwe complete
Thread(C;) and feed the results back to the mgis thread. AnMoceed to Step 5;

Step 5: The main thread skips F and an@ the su'bsgty nt tasks, proceed to Step 1 if
there is any task, otherwise wait for on completion of all threads and return to

execution results. %

3. Algorithm Implement

This paper applies thrwel spe '&&:chnology and proposes a parallel algorithm

solution of the JavaSeri cution based on the Squirrelfish Extreme execution
engine.

3.1. Algorithn, |aI Java ‘%tTaskPartmonlng
e

JavaScript program, it is required to divide the serial program
sks from the task set for parallel execution. The thread-level
dynamically parallelize the serial program while there are the

For parallel eXecution
into several tasks and i
speculation is mten

to byte codes [18], partitions serial JavaScript program into several tasks in
of byte-code generation and establishes the task dependency matrix. “Loop”,
/true” and “loop if less” of Squirrelfish Extreme byte codes initiate one-loop
instructions, its “target” parameter is a start address of one loop-level task, the “call”
instruction is a function call instruction, its “func” parameter is a start address of the function-
level task and the “ret” instruction is the symbol indicating calling by a function and backing
to results.

176 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

| I | I : |
Loop

Loop if true call pop Target Loop if false

Task1 Task2 Task3 Task4 Task5 Task6 Task7

Figure 4. Schematic Diagram of Task Partitioning for JavaScript Serial Program

Algorithm 1 Tasks Division for Serial JavaScript

Initialize task id as 1, establish tasks hashmap and add er op d ress 0 into it;

For each opcode do
For each argument in apcode do Q
If argument is a loop| |loop_if true] ||0 ess th
task id increment;

add task id and this opcc®|rget® mto the tasks hashmap;

Else if argument is a call
task id increm

add task id a d this opcod argument into the tasks hashmap;
Else if argumen t then
task’l ?ent
d@k id anﬁh@%code address into the tasks hashmap;
Else

If last aément is a loop_if _true||loop_if_less then

id increment
&dd task id and this opcode address into the tasks hashmap;

d if

@Q

Figure 5. Pseudo-Code Realization of Task Partitioning for JavaScript Serial
Program

Figure 4 is the schematic diagram of task partitioning for the JavaScript serial program, it
scans the byte-code sequence in order; every time it meets with a call function instruction or a
loop iterative instruction, record one new task and map the task number to the address
parameter of the instruction. Meanwhile, byte-code fragments between iteration and function
call are partitioned into separate tasks. Figure 5 shows the pseudo-codes of the solution.

Copyright © 2014 SERSC 177

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

3.2. Dependency Matrix Computation

Figure 6 shows the pseudo codes realized by the algorithm; as JavaScript program is
partitioned into several tasks, it is possible to obtain M (i,:) from the i" row of the reading

matrix and M (i,:) from the i row of the writing matrix through all read/write variables in
the speculation task P(i=12,---,m). The same operations are carried out for all tasks to
establish the reading matrix M, and the writing matrix M, and obtain the task dependency

matrix M, in combination with Equations (6)-(11). To reduce the memory consumption, use
a sparse matrix during design to store the dataof M, M, and M, . &)

Algorithm 2 Interdependencies matrix calculation . \Q
Initialize elements of sparse matrix Md as 0; Q @
Initialize elements of sparse matrix Mr and Mw, 0)
Initialize variable tables; ’Q A\

For each task do Q '\v%

for each opcode do

for each argument in,o &a do &\\Q)

if argument i rite then

else |ia ent isa hen

}g\he taskA;%nd the variable id, mark Mr(task id, variable id) =

end for 6
end for Q
. Mw and Mr

getth ask id aw@nable id, mark Mw(task id, variable id) =

Figureo: §eudo—Code Computations through JavaScript Task Dependency

Matrix
3.3. P;allel Execution of Serial JavaScript

After the dependency matrix is obtained, it is possible to judge whether two tasks can be
executed in a parallel manner depending on the matrix-to-matrix dependency value. Execute
the tasks with dependency relationships in the same thread and apply thread pool technology
during realization to reduce the expenses for creating threads, while the pseudo-code
realization is shown in Figure 7.

178 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

Algorithm 3 Parallel execution for Serisl JavaSoript
{Main Thread execution}
Initialize thread pocl T,

Initialize queus Wtask for tasks executing or waiting for execution;
For each task do
Add the task id into the Wtask;
If Witask is empty do
Execute the task in the main thread;
Else if hMd{task id, id of any task in Wrask) =0 do °
Get @ new thread from thread pool T; V
Execute the task in the new thread;

Else if Md({task id, id of any task in Wrask) = 1 do 62

Add the task id into the dependency task thread” elie;

End if S&

If the task is complete do V
Remove the task from Wtask; Q x’v

End if
If there is the next task exist do

Process the next task: . \
Else

Waiting for Dthersﬁw&c%&ppletmg n%«n the result;

End if
End for
{Child Thread executi Q
Initialize que or tasks rl.E,r or this thread execution;

For each ta
EKEQ urrent taN
If th 15 Cof
Remove t frﬂ-m Wiask;

If Stask empty do
e first task in Stask;

A i ExEcute the task;

Return the result to the main thread;
Q Gave back the thread to the thread pool T;
@ End if
End if
End for

Figure 7. Pseudo Codes for JavaScript Parallel Execution

4. Performance Evaluation

This paper conducted the performance evaluations respectively from the two aspects of
theory and experiment and fully approved that the parallelized JavaScript execution engine
can significantly improve the performances of JavaScript program.

Copyright © 2014 SERSC 179

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

4.1. Theoretical Analysis
Suppose that the serial JavaScript program can be partitioned into several tasks, the
execution time of each task P(i=1,2,---,k) is T.(i=12,---,K) respectively. Comparing

with the execution time of each task, the expenses are omitted for allocating threads because
the thread pool is used to allocate threads. Therefore, the JavaScript execution engine without

k
JIT acceleration requires the time ZTi to execute Kk tasks.
i=1
Suppose that the serial JavaScript program is finally executed in parallel by d threads and
each thread executes kj(j:1,2,---,d) tasks, the JavaScript execution ngin i the

kj
serialized design requires the time max(ZTi) to execute K tasks. 6
[]

i=1
For JavaScript execution engine with JIT acceleration&&p et t&e&ecution time for

byte codes accelerated accounts for a(0<a < 0% of thentotal tasks, the time
consumed for optimizing the part of codes accou r B(100% of the total task

execution time and the execution efficiency of odes CQ%:I is T(0< f) times better
than that of the original byte codes, so thé @cript exe& engine with JIT acceleration

. . a, <
requires the time (1—a+ﬂ+T)x%}%exec® S.

Therefore, comparing with nventional seriat JavaScript execution engine without JIT
acceleration, the parallel execution engine ¢aifprove the performances by:

L (1=12,---,d) (12)

Obviously, it 1s prove
can effectively impro

the theoretical view, the parallel JavaScript execution engine
performances by d times at the maximum only if the serial
partitioned into separate tasks. Meanwhile, the d value is related to
program which can be proved by the subsequent tests.
Comparing\»ﬁ_%r he serial JavaScript execution engine with JIT acceleration, the parallel
execution e@ ereof can improve the performances by:

Q’O (1—a+ﬂ+?)ka:Ti

= (j=12,---,d) (13)

max(Zj:Ti)

According to Pareto’s 80/20 Law, 20% of the codes in a program take up 80% of the total
running time, so the value of a is set to 80% [19] in this paper. And the average execution
time for SquirrelFish Extreme byte codes is 10 times higher than that for the machine codes
[12, 18], so fis set to 10 and B to 20%. Equation (13) is converted into:

180 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

048x 3T
—kzzl (i=12,---,d) 4
max(Q_T,)

The parallel execution efficiency can significantly exceed that of JIT acceleration only if
the serial JavaScript program can be executed in parallel at the maximum. During value
settings of Equation (13), the value of Parameter £ depends on the seeking efficiency of
hotspots and its subsequent execution frequency of its JavaScript program hotspots,while, the
actual value of B is absolutely possible to exceed 1 [20].

No general theories can be used at present to carry out quantitative analys':s farimproving

the parallelization performances of serial JavaScript program, so it is regui
experimental statistics for the common Web applications @ﬁto an

improvement due to parallel JavaScript execution engine. x)
gkarrehh without JIT

SquirrelFish Extreme with JIT

performance

4.2. Experimental Analysis Q

\- 2 threads Parallelism JavaScript Engine

I:l 4threads Parallelism JavaScript Engine

@& &\\ |:| Gthreads Parallelism JavaScript Engine

|:| 16threads Paralelism JavaScript Engine

o Relative execution times

[

0
ol tefgoogle hbc ehay mailgoogle hing imdb QQ wikipedia youtube linkedin - man amazon facebook wordpress
Top 15 popular Web Applications

Figure 8. The Comparative Chart of Test Performances on World Top 15
Websites at Traffic Volume

The experiment in this paper was based on the embedded network set-top box and the tests
were conducted on the general test platform Sunspider of 15 websites with different business
types as well as industrial fields. Figure 8 shows the comparative chart of performance tests
on world top 15 websites with maximum traffic volumes, where JIT acceleration indicates
unobvious effects on the actual websites, the average performances are raised by 5.43% and
JIT acceleration even reduces the performances on some websites. Parallel JavaScript
execution engine can significantly improve performances; comparing with serial JavaScript

Copyright © 2014 SERSC 181

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

execution engine without JIT acceleration, the parallel JavaScript engines with 2, 4, 8 and 16
threads can improve the average performances respectively by 37.07%, 1.36 times, 4.08 times
and 5.92 times; comparing with the serial JavaScript execution engine with JIT acceleration,
the parallel JavaScript execution engines with 2, 4, 8 and 16 threads can improve the average
performances respectively by 30.01%, 1.24 times, 3.82 times and 5.57 times.

Figure 9 shows the test results on Sunspider platforms. The characteristics of JavaScript
codes better fit the expectation of JIT optimization on Sunspider platforms, so it is usually
used as performance test platform for JIT acceleration.

18 Bl SquirrelFish without JIT '\)
Bl SquirrelFish Extreme with JIT Z’«
T4 B 2 threads Parallelism JavaS r|
™4 threads P Iehsm J ngine
a2 12 s threads Ilsm J |pt Engine
.E 118 t arallell Script Engine
5
5
@ 08
)
2 06
5 <
(]
® g
02
0

bltops controlflows crypto date math

nsplder Benchmarks

regexp

Figure 9. the'€empa i@Chart of Performance Tests on Sunspider Platforms

On Sunspider pl @ns, comparing to the JavaScript execution engine without JIT
acceleration, JIT ration can improve the average performances by 1.62 times but
Sunspider’s featureSyare obviously different from the actual Web business. Comparing to the
JavaScript ¢ ion engine without JIT acceleration, the parallel JavaScript execution
engines wi , 4, 8 and 16 threads can raise the average performances respectively by
58.5 ,@3 times, 4.97 times and 9.28 times; and comparing with JavaScript serial
exe% engine with JIT acceleration, the parallel JavaScript execution engines with 2, 4, 8
and threads can raise the average performances respectively by -39.7%, 22.86%, 1.27
times and 2.91 times.

Obviously, the characteristics of Sunspider are different from that of current mainstream
Web applications and the parallel JavaScript execution engines with the same degree of
parallelism have different effects on performance promotion for two types of businesses. For
mainstream Web applications, 16-thread parallelism and 8-thread parallelism both have
unobvious performance improvement, but the application of 16 threads on Sunspider nearly
doubles performances comparing with that of 8 threads. Therefore, more-thread parallelism is
not always better while it requires combining JavaScript task features and identifying the
maximum degree of parallelism under current parallelism grain size through experiments.

182 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

5. Conclusions

As the serial JavaScript execution engine fails to utilize multi-core advantages at present,
this paper proposes a design method of the parallel JavaScript execution engine. The test
results from actual Web applications and Sunspider platforms indicate that in the actual Web
applications, comparing with a serial JavaScript execution engine without JIT acceleration,
the parallel JavaScript execution engines with 2, 4, 8 and 16 threads can raise the
performances respectively by 37.07%, 1.36 times, 4.08 times and 5.92 times; comparing with
a serial JavaScript execution engine with JIT acceleration, the parallel JavaScript execution
engines with 2, 4, 8 and 16 threads can raise the performances respectively by 30,01%, 1.24
times, 3.82 times and 5.57 times. On a Sunspider platform, comparing with a ser'al&Fécript
execution engine without JIT acceleration, the parallel JavaScript execution e gl%v

QLEE 4

8 and 16 threads can raise the performances respectively by 58.57%, 2.23(ti 97 times

and 9.28 times, while comparing with a serial Java cr oxecut e with JIT
acceleration, the parallel JavaScript execution englnes wi reads can raise
the performances respectively by -39.7%, 22.86%, 1 t|

This algorithm utilizes the parallelism of funct vel an eI graln sizes at the
same time during the execution and significantly improves the ances of Web business
with a lot of loops or function calls, while cu Web b e es also contain many non-
loop or —function-call codes. It is also pas ﬂh to exe ese codes in parallel, so the
subsequent study may highlight the para res ar e -code grain sizes. Meanwhile,
the parallel JavaScript execution e addltlonal memory consumption.
Therefore, the memory Optlmlm il also be for future researches.

Acknowledgements
Thanks to my tutor, f qﬁe topl \%apers writing, changes to the draft, condensed

tutor's efforts and WI ank thefund support.

References Q : O

[1] G. Garen, Announcing Sq |sh 2008.http://www.webkit.org/blog/189/announcing-squirrelfish/.

[2] Google Inc. A New Cr for VV8.2010. http://blog.chromium.org/ 2010/12/new-crankshaft-for-v8.html.
[3] Mozillawiki. Java -TraceMonkey. 2010. https://wiki.mozilla.org/ JavaScript:TraceMonkey.

[4] A. Gal, B. Eich, ver, D. Anderson, D. Mandelin, M. R. Haghighat and M. Franz, “Trace-based just-in-

465-478, A

time type ;%iagz ion for dynamic languages”, In ACM Sigplan Notices, vol. 44, no. 6, (2009), June, pp.
[5] WebKit.

Spider 1.0.2 JavaScript Benchmark. 2013. https://www.webkit.org/perf/sunspider-

1.0.2/8 er-1.0.2/driver.html.
[6] @ e=/8 Benchmark Suite.2009. http://v8.googlecode.com/svn/data/benchmarks/v3/ run.html.
[A artinsen and H. Grahn, “A methodology for evaluating JavaScript execution behavior in interactive

web applications”, In Proc. of the 9th ACS/IEEE Int’l Conf. On Computer Systems and Applications, (2011),
December, pp. 241-248.

[8] P. Ratanaworabhan, B. Livshits and B. G. Zorn, “JS Meter: Comparing the behavior of JavaScript
benchmarks with real web applications”, In WebApps’10: Proc. of the 2010 USENIX Conf. on Web
Application Development, (2010), pp. 3-3.

[9] G. Richards, S. Lebresne, B. Burg and J. Vitek, “An analysis of the dynamic behavior of JavaScript
programs”, In PLDI *10: Proc. of the 2010 ACM SIGPLAN Conf. on Programming Language Design and
Implementation, (2010), pp. 1-12.

[10] Martinsen, J. Kasper, H. Grahn and Anders Isherg, “A comparative evaluation of JavaScript execution
behavior”, Web Engineering. Springer Berlin Heidelberg, (2011), pp. 399-402.

[11] E. Fortuna, “A limit study of JavaScript parallelism”, Workload Characterization (IISWC), 2010 IEEE
International Symposium on. IEEE, (2010).

Copyright © 2014 SERSC 183

http://blog.chromium.org/2010/12/new-crankshaft-for-v8.html

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.7 (2014)

[12] Martinsen, J. Kasper, H. Grahn and A. Isberg, “Using speculation to enhance javascript performance in web
applications”, Internet Computing, IEEE 17.2 (2013), pp. 10-19.

[13] Martinsen, J. Kasper and H. Grahn, “An alternative optimization technique for JavaScript engines”,
Proceedings of the Third Swedish Workshop on Multi-Core Computing (MCC-10), (2010).

[14] Martinsen, J. Kasper and H. Grahn, “Thread-level speculation for web applications”, Second Swedish
Workshop on Multi-Core Computing, (2009).

[15] Oancea, E. Cosmin, and M. Alan, “Software thread-level speculation: an optimistic library implementation”,
Proceedings of the 1st international workshop on Multicore software engineering, ACM, (2008).

[16] A. Gal, “Trace-based just-in-time type specialization for dynamic languages”, ACM Sigplan Notices, vol. 44,
no. 6, ACM, (2009).

[17]1 S. Gupta, “SPARK: A high-level synthesis framework for applying parallelizing compiler
transformations”, VLSI Design, 2003, Proceedings, 16th International Conference on. IEEE, (20

[18] WebKit, Squirrelflsh bytecode, 2013. http://www.webkit.org/specs/squirrelfish-bytecode.html. &)

[19] Martinsen, J. Kasper, H. Grahn and A. Isberg, “Preliminary Results of Combining Thread-L lation
and Just-in-Time Compilation in Google’s V8, Sixth Swedish Workshop on Multicor, uting (MCC-
13), Halmstad University, (2013). @

[20] Martinsen, J. Kasper, H. Grahn and A. Isberg, “A comparati véaluatio
behavior”, Web Engineering, Springer Berlin Heidelberg, (2011) x 402

cript execution

184 Copyright © 2014 SERSC

