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Abstract 6 E

Sender-based message logging can considerably I%gh ai@ee overhead of
receiver-based message logging resulting from syrelfenausly Io'gb'ggieach message into
stable storage by using volatile memory of its sen stor gging. This beneficial
feature can be obtained at the expense of extrag.communicatiomcasts required for allowing
message senders to get receive sequence nu of the ages from their receivers and

confirm them with the receivers and sl and co ty of recovery of each failed
process coming from its obtaining me g fr m corresponding senders. However,
attempting to apply sender-based ge nto large-scale ubiquitous sensor
networks requires reducing th r of me assmg on core networks during its
message logging and recovery edures s aper presents a scalable virtual sender-
based message logging a hm to salv roblem by enabling the broker elected in a
group of nodes as V|rtual tolo oth of the logging and recovery procedures to a
maximum. We sho Is algori can guarantee the system consistency in case of
sequential fallures rfo ‘b%er than the conventional one in terms of message
overhead.

Keywords: Sensor Net\%@ Scalability, Fault-tolerance, Message Logging, Recovery
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1. Introduction
Among rollbac overy techniques [7], sender-based message logging [1, 8, 20] with
check pointiﬂgé,s, 6, 11, 14] is one of the most lightweight fault-tolerance techniques to be
capable of applied in those fields. It may considerably lower high failure-free overhead
re ed message logging [15, 21] resulting from synchronously logging each
e% stable storage, which can be realized by using volatile memory of its sender as
storage-for logging [1, 7, 8, 10, 20]. This beneficial feature can be obtained at the expense of
extra communication costs required for allowing message senders to get receive sequence
numbers(RSNs) of the messages from their receivers and confirm them with the receivers and
slowness and complexity of recovery of each failed process coming from its obtaining
message log from the corresponding senders. As architectural aspects of current and future
distributed computing systems are changing to geographically group-based and peer-to- peer
based, many of these systems, especially sensor networks, are adopting broker-based
architectures to accommodate these topological features well. Thus, this change is making
several issues about their fundamental building blocks that should be reconsidered to work
well for these newly fashioned systems in highly effective manners. Existing sender-based
message logging protocols abbreviated by SBML [1, 8, 20] should also be examined properly
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before their application to accommodate this architectural change, which we focus on in this
paper. However, although they can be applied to small-scale peer-to-peer flat style
architectures well, all the protocols oblivious to the underlying network may not
fundamentally provide any breakthrough for ensuring high scalability required in
geographically dispersed sensor networks systems composed of a large number of sensor
nodes [4, 6, 12, 13, 16, 18]. In this point of view, the two drawbacks mentioned earlier all of
the conventional sender-based message logging algorithms have may be amplified and
highlighted greatly if they would be applied into large-scale sensor networks, being capable
of significantly diminishing the practical value coming from their common advantageous
features, even becoming unpractical. In this paper, we present a scalable virtual sw.&sed
message logging algorithm to address the critical problems by employing the Jarge~scale
ubiquitous sensor network systems’ architectural features stated earlier. | I% satisfy

these requirements, this algorithm enables the broker elected in a cluster origrotp of nodes to
localize both of the logging and recovery procedures @&xim TS feature may
considerably reduce the number of both control and dat es passi n core networks
incurred during fully message logging and recov, edur s&%der—based message
logging.

The rest of the paper is organized as follows, In Section describe the distributed
system model assumed and in Section 3, %\A\;;ﬁ a vist@ender—based message logging
n

algorithm and prove its correctness. Sectl’ox d 5 sho merical evaluation results and

conclude this paper. % @
AN

2. System Model 4%‘

A distributed computation consiSts of a‘s f n(n > 0) sequential processes executed on
sensor nodes in the system there i ibuted stable storage that every process can
always access that persi yond r)% or failures, thereby supporting recovery from
failure of an arbitrarx?\a r of proéessors [7]. Processes have no global memory and global
clock. The system/™s Yasync géa each process is executed at its own speed and
communicates ach other dmly through messages at finite but arbitrary transmission
delays. Exchan mess e@ay temporarily be lost but, eventually delivered in FIFO order.
We assume that the com ication network is immune to partitioning and sensor nodes fail
according to the fail odel where every crashed process on them halts its computation
with losing all con@b its volatile memory [17]. Events of processes occurring in a failure-
free executign are Ordered using Lamport’s happened before relation [9]. The execution of
each proces&%ecewise deterministic [5, 19]: at any point during the execution, a state
interval of rocess is determined by a non-deterministic event, which is delivering a
recei d@ssage to the appropriate application. The k-th state interval of process p, denoted
by% 0), is started by the delivery event of the k-th message m of p, denoted by devkp(m).
Therefbte, given p’s initial state, si’,, and the non-deterministic events, [dev",, dev?,, ..., dev'y],
its corresponding state s, is uniquely determined. Let p’s state, s, = [si%, Si'y, ..., Si}],
represent the sequence of all state intervals up to si'y. s', and s'y(p # q) are mutually consistent
if all messages from q that p has delivered to the application in s', were sent to p by q in s,
and vice versa [3]. A set of states, which consists of only one state for every process in the
system, is a globally consistent state if any pair of the states is mutually consistent.

In the remainder of this paper, the messages applications generate are called application
messages and the messages used for the message logging and recovery procedures, control
messages.
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3. The Virtual Sender-based Message Logging Algorithm

3.1. Normal Operation Procedure

— intra—net. communication
<= = => nter—-net. communication

process Pi

Figure 1. Message intaﬁ&(@A

¢ @ —-—> RsN
= = =  Ackof RSN
\ | fl(m3) | _— application message
Q l time ——»
—

ms\‘ I:* l [fitma) |

7
o A I A
I
|
)
'

.I-
m4 I

T
1
1
1
1
1
|
T
1
. 1
I 1
. |
!
1
1
1
Y

~—=s

m1i

pé = T T

[ o L
. v I
- |f|(m1)|

Figure 2. Process Execution-A Failure-free execution of Existing SBML
Algorithms
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In this paper, we assume that the entire sensor network system consists of a finite set of
areas. Each area has a group of nodes among which one having generally, but not mandatorily,
the highest capacity of resources such as CPU, memory, storage, network, etc., is elected as
broker of their area. Figures 1, 2, 3 and 4 show the same instance of this system model
assumed having three areas with 7 processes. In these figures, a gray-shaded ellipse on each
area indicates its broker. When a sender process sends a message to its corresponding receiver,
SBML requires the following three steps; partially logging the message with its SSN (Send
Sequence Number), IDs of its sender and receivers into its volatile storage, saving its RSN
returned from its receiver into its log element and informing the receiver of the success of
fully logging the message on the sender’s volatile storage. However, should they ¢ apptied
into broker-based sensor networks, the existing SBML algorithms may incur hi Mree
overheads in terms of communication cost. This disadvantage occurs A g%@r-process

X

communications frequently perform across multiple broker coptrolling ar ample, in
Figures 1 and 2, process p7 sends message ml to proc ﬂ%s’endl pl. Then, pl
sends m3 to p2, sending m4 to p7. In this case, the existl L algorit force their three
steps with all three messages ml, m2 and ex cd%,ﬁsing inter-network
communication functions. Unlike the existing SB Igori algorithm allows the
broker to manage the volatile storage for fully Aggging all the sages sent to every area
member, not including itself, from out5|de inistrati rea. This feature enables the
second and the third steps to perform w1th eacliythessage receiver’s broker. For

example, Figures 3 and 4 shows how o osed g@hm operates in the same scenario as
Figures 1 and 2. In this case, every s of ea ~g;age sent to outside its area like p7, p5
or p2 has only to maintain thlézj log mfo on of the message denoted by pl(mi).
Instead, each broker like p4, p3 6 keeps logged messages fl(m1), fi(m2) and fi(m4)
on its volatile storage res |vely g&h 4, we can see that the failure-free steps

excluding the first- step essage 2 and m4 are executed only inside each local
area of their receiver e&g ver

<> intra—net. communication
<= = => nter-net. communication
process
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Figure 3. Message Interaction-A Failure-free Execution of our SBML Algorithm

Figure 5 shows the algorithmic description of our proposed SBML algorithm executing
during failure-free operation mentioned earlier. All modules for this algorithm are briefly
explained as follows. First, Module MSG-SEND(m) OF SENDER Pg, is a procedure
performed by the sender of the message m when sending and partially logging it on the
sender’s volatile storage. The second Module MSG-RECV(m) OF BROKER BRj; is
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executed by the broker of the area Ai receiving message m, if m’s receiver isn’t itself,
enabling BRy; to perform the three steps for m. In Module MSG-RECV(m) OF RECEIVER
Prevr, message m’s receiver assigns a RSN to m and return it to its sender or the broker of the
receiver accordingly. Module RSN-RCVR(RSN OF m) OF PROCESS P is a procedure for
inserting message m’s RSN into m’s log element on its sender. The last Module RSN-
CONFIRM(m) OF RECEIVER P, is executed by message m’s receiver to know about fully
logging m on its sender, releasing messages expected to be sent after the receipt of m.

time )
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Figure 4. Proces%@ﬂio failure-free Execution of our SBML Algorithm

3.2. Recovery;ure
If a process Tails, SB&&S it restore a check pointed state from the stable storage,

obtain all the messa eived from others before failure and replay them in their
RSNs and then FIF gé%'!er. For example, in Figures 6 and 7, process p1 has received 12
messages having dheir"RSNs from 4 to 15 among which 8 messages came from outside

areas A2 . Although the existing algorithms suffer from their high
communicati erhead occurring during recovery like in Figure 6, our algorithm can
localize ecovery procedure like in Figure 7 as follows; First, if a process, not

no tore a pre-failure state from its latest checkpoint and broadcast a recovery
request only inside its local area. Whenever it receives a reply including logged
messages sent to itself from another process, it puts fully logged messages into its
replay buffer in RSN order and then partially logged ones in FIFO order. After it has
gotten replies from all the other nodes, it replays all the messages sent before its failure
after its latest checkpoint in the sorting order. Figure 8 shows the formal expression of
our non-broker recovery procedure named Module RECOVERY() OF PROCESS P,
NOT BROKER. Broker’s recovery procedure of our algorithm is more complicated like
in figure 9 and may require longer completion time. But, most of broker-based systems
assume failures of brokers occur very infrequently.

brc@S s according to the crash failure model, it can be recreated on an available
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Module MSG-SEND(m) OF SENDER Pgpgy
assign its current SSN tom ;
increment its current SSN by one ;
if(m is a message destined to a process P, in another area not playing the role of area
broker)
then
send m to the broker of P, ;
else
send m to Pyeyr ;

log partially m into its volatile memory ; A\) o

Module MSG-RECV(m) OF BROKER BR;
if(m is a message destined to another process P, in its managing area) t@

forward a message m to Py, ; °

log partially m into its volatile memory ; 6 @
else Q x)

assign its current RSN tom ; Q

increment its current RSN by one ; X\)

return RSN of m to sender of m;

disallow all the messages generated, fo sent a@ving received m to be sent ;
deliver m to its corresponding appli ;

Module MSG-RECV(m) OF RE E&a Prowr &\\Q)
assign its current RSN tomn ;

increment its current RSI\JIE;ne ;e

if(m is a message sent d@gjtly from,its,ON

return RSN of m 4
else \»t H\Ri g

return RSN the rok&%f Provr ;
disallow,a ‘ essages ated for being sent after having received m to be sent ;
S coIT sp@ing application ;

deliver iy
Module RSN-RCVR F m) OF PROCESS P

retrieve m’s partiablog information, em, from its volatile log ;
update RSNA6|$;mto em;
I

confirm fylly 16gging m to receiver of m ;

Modul -CONFIRM(m) OF RECEIVER P,
loayall the messages delayed sending by m’s fully logging procedure until now to be

inal sender Pgng,) then

senty

Figure 5. Message Logging Procedures during Failure-Free Operation
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Figure

ﬁ@of Recovery Procedure of our SBML Algorithm

Module RECOV F PROCESS P, NOT BROKER
restore a state f its latest checkpoint on stable storage ;
broadcast each ayrecovery request to its area ;
while recc%weplies aren’t received from all processes in this area do
put fu gged messages for P piggybacked on each reply into flog, in RSN order ;
t@rtlally logged messages for P piggybacked on each reply into plog, in FIFO
ord%
fo

rélle  flog, st (e.RSN = RSN,) do
increment RSN, by one ;
deliver e.m to its corresponding application ;
flog, < flog, - {e} ;
while plog, is a non-empty set do
randomly select 3 e in plog, st (e.m.SSN = LSSN,[e.m.SID]+1) ;
call Module Msg-Recv(e.m) of Receiver Py ;
plog, < plogy - € ;

Figure 8. Recovery Procedures of each Non-Broker Process
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Figure 9. Recovery Pro@ of % n our SBML Algorithm

3.3. Correctness Proof

Theorem 1 Our propose ML al onth@ ables the system to recover to be a globally
consistent state in case of tial fai

Proof. We prov 'ﬁ:e tradiction. Assume that consistent recovery is
impossible even aft ecover ﬁ%edure of this algorithm has been performed. There are
two process fail %s to con follows:

Case 1: Theyfailed process® isn’t a broker.

In this case, the reco process p first restores a pre-failure state from its latest

checkpoint on stable s like in figure 8. Then, it broadcasts a recovery request message
to every other mem
two sub-cases to ¢

Case 1.1 ‘%L'} a broker.
In this c sends p all the logged messages kept on its volatile memory which were
' to p by r before p’s failure.

2 1 is a broker.

ase, r sends p all the logged messages kept on its volatile memory which were
originally sent to p by r as well as every other member residing on another area before p’s
failure.

Therefore, in both subcases, p can obtain all the messages received from its
communicating members on its local area and on the outside areas before its failure and
replay them in their RSN and FIFO order.

Case 2: The failed process p is a broker.

In this case, the recovering process p first restores a pre-failure state from its latest
checkpoint on stable storage like in figure 9. Then, it broadcasts a recovery request message
to every other member r both on its local area and on the outside areas. In this case, there are
two sub-cases to consider:
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Case 2.1: r has the logged messages whose original receivers were p before p’s failure.

In this case, r sends p the full or partial log information of the messages kept on its volatile
memory. Then, p can replay all the received messages in their RSN and FIFO order.

Case 2.2: r has the logged messages whose original receivers were some others on p’s
local area before p’s failure.

In this case, r sends p the partial log information of the messages kept on its volatile
memory. Then, p obtains RSNs of the messages from their receivers by retransmitting the
messages to them. Hereafter, p can become a virtual sender of the other members on its local
area.

Therefore, consistent recovery is possible in all the cases. This contradicts the hy&ss

4. Comparisons
In this section, we present some numerical evaluatlo r showin @unty of our
algorithm(OSBML) over the existing one(ESBML)[8] in ftotal@ e cost. For this
purpose, several parameters used are defined as follows:

- Ngroup: the number of groups or areas physically aII artitfapéd in the system.
- Nmemp: the average number of processes or node ted m%gﬁoup

- N(= Ngroup X Nmemp): the total number of progesses or nodes 1fythe system.
Nmsg: the total number of messages geper, the syst
- Ceore- the cost of sending a message % on core newworks to a destination in another

group.
- Ciocal: the cost of sending a des W|th|n the same group.
- p: the probability with wha&@glven mesSage is generated to be sent to the outside

area.

Although many WAN-basget, or Inter %%broadcast protocols implemented in network
layer or application laye propos y require special deployment of IP multicast or
control of overlay n with various membershlp management protocols. These diversity
and complexity m dlfﬁ E%wasure uniformly the message cost of the broadcast
protocols. Du @ eason, we‘analyze performance of the two message logging algorithms
only using un unctien . In this evaluation, we assume a geographically dispersed

sensor network system_rjode con3|st|ng of Ngroup groups having each Npemp processes or
nodes with two diffe e@bone—way message costs, Ceore anNd Cioca. With this assumed model,
the total message ’@Eads of ESBML and OSBML occurring during failure-free operations,
denoted by E iture—free AN OSBMLyire—see, Can be expressed as Eg.1 and Eq. 2
respectively.@

ESBML free =2 *Ccore *Nmsg 0 +2 *Clocal *([ - P) *Nmsg (1)

) ilure—free — 3#Ciocal *Nmsg #p+2*Cioca (1 — p) *Nmsg (2)

'@mount of reduced failure-free message overhead of OSBML against ESBML,
AMO e —iee(= Eq. 1 — Eq. 2), is Eq. 3.

A Moﬁzilure—free = (2 *Ceore—3 *Clocal) *N msg P (3)

From Eq. 3, we can see that AMOy. . may significantly become bigger as the number
of messages generated, the probability of p and the difference between Ceore and Cigca grow.

Let us clarify how OSBML may improve the scalability of the entire system during failure-
free operation using figure 10 compared with ESBML. Figure 10 shows the variation of the
ratio of ESBML’s failure-free message overhead ESBML e against OSBML’s one
OSBML y1ure—fiee in Various aspects. In this figure, the x-axis is the ratio of Ceore t0 Ciocar (Ceore/
Ciocar), denoted by Ratiogmm, and the y-axis, the ratio of ESBML e fice 10 OSBMLpinre—fiee
(ESBMLziture—free | OSBMLygitre—fiee), denoted by Ratioge—se.. The values of Ratiogomm range
from 10 through 100 incrementing by 10. The probability of p in this figure is 0.05(5%),
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0.1(10%), 0.2(20%) and 0.3(30%) respectively. As the average ratio Ratiogmm increases in the
figure, the corresponding value of Ratios.. .. also becomes higher. In particular, although
the difference between their average output ratios is not high in the small value of p, it is
much bigger as the probability of p is larger. From this figure, we can see that the scalability
of the localized logging nature of OSBML is considerably manifested as p and the gap
between the inter- to intra-bandwidths increase.

Second, the total message overheads of ESBML and OSBML resulting from a single non-
broker failure, denoted by ESBML ecovery 8N OSBML recovery, Can be expressed as Eq.4 and Eq.
5 respectively.

ESBMLrecovery - 2*((Ngroup 1) *Nmemb *Ccore +(Nmemb_1) *Clocal) x) .(4)

OSBMLrecovery 2*(Nmemb 1) *Clocal (5)

The amount of reduced recovery message overhead of OSBML @’ESBML,
AI\/Iorecovery( Eq.4 - Eq. 5), is Eq. 6. @

AI\/Iorecovery 2*(Ngroup 1) *Nmemb *Ccore ﬁ @ (6)

Eg. 6 indicates that as the number of groups, the ze and Gy become larger,
AMOecovery May enormously increase. % x)

Let us verify how much OSBML may decrease r Iy mess erhead using figure 11
compared with ESBML. In figure 11, we show tgvarlatlon of t tio of ESBML’s recovery

message overhead ESBML ecovery agalnst oS one @ recovery WIth varying Ratiocomm
in case Ngroup is 5, 10, 15 and 20 respectlve Ratloc mm DgComes bigger in this figure, their
RatiorecoveryS are also increasing. Especi o s larger, the values of RatiOrecovery
are stepping up to higher levels. Thi ome m the reason that the increase of the
number of groups and Ratio.my fokceds0th ESB significantly generate a large number of
high cost outgoing messages for*tommunioating between processes on different areas or
groups during recovery compared with

Third, the total messa heads ML and OSBML occuring when a single broker

fails can be both exp SEq4r |ver In this case, AMOrecovery IS 0.
In conclusion, t sults@m our algorithm with the seamless localization using
virtual sender has a p of highly decreasing both failure-free and recovery

message overh ads’incur the conventional sender-based message logging ones applied
to large-scale broker-base sor networks.

30 A M 05)
m (p=0.1)

23\&" (p=0.2)

(Y7L (p=03)

ol

Ratiofailure

10 20 30 40 50 60 70 80 90 100
Ratio.omm

Figure 10. Ratio of ESBML failure-free to OSBML failure-free, RatiOfailure-free, With Varying Values
of p and (Ccore/ Ciocal), Ratiocomm
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Figure 11. Ratio of ESBMLrecovery to OSBM % Ratlwry, with Varying
Values of Ngroup an iOco

5. Conclusions %

This paper proposed a V|rtua based n%,s age logging algorithm to
utilize the large-scale ub1qu1t sens ork systems’ architectural
features, considerably re d extra Om unication costs required for
allowing message sende get rec ve equence numbers (RSNs) of the

slowness and compl of re of each failed process coming from
its obtaining m log the corresponding senders. In order to
satisfy these ireme nables the broker elected in a cluster or
group of nog ize Pboth of the logging and recovery procedures to a
maximum. THhis fea ay enormously decrease the number of control
and data messages Ing on core networks incurred during fully message
logging and r y procedures of sender-based message logging. We
showed hqw, thi$algorithm can guarantee the system consistency in case of
sequentia res and perform better than the conventional one in terms of
messa rhead.
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