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Abstract 

 

Sender-based message logging can considerably lower high failure-free overhead of 

receiver-based message logging resulting from synchronously logging each message into 

stable storage by using volatile memory of its sender as storage for logging. This beneficial 

feature can be obtained at the expense of extra communication costs required for allowing 

message senders to get receive sequence numbers of the messages from their receivers and 

confirm them with the receivers and slowness and complexity of recovery of each failed 

process coming from its obtaining message log from the corresponding senders. However, 

attempting to apply sender-based message logging into large-scale ubiquitous sensor 

networks requires reducing the number of messages passing on core networks during its 

message logging and recovery procedures. This paper presents a scalable virtual sender-

based message logging algorithm to solve this problem by enabling the broker elected in a 

group of nodes as virtual sender to localize both of the logging and recovery procedures to a 

maximum. We show how this algorithm can guarantee the system consistency in case of 

sequential failures and perform better than the conventional one in terms of message 

overhead. 
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1. Introduction 
Among rollback-recovery techniques [7], sender-based message logging [1, 8, 20] with 

check pointing [2, 3, 6, 11, 14] is one of the most lightweight fault-tolerance techniques to be 

capable of being applied in those fields. It may considerably lower high failure-free overhead 

of receiver-based message logging [15, 21] resulting from synchronously logging each 

message into stable storage, which can be realized by using volatile memory of its sender as 

storage for logging [1, 7, 8, 10, 20]. This beneficial feature can be obtained at the expense of 

extra communication costs required for allowing message senders to get receive sequence 

numbers(RSNs) of the messages from their receivers and confirm them with the receivers and 

slowness and complexity of recovery of each failed process coming from its obtaining 

message log from the corresponding senders. As architectural aspects of current and future 

distributed computing systems are changing to geographically group-based and peer-to- peer 

based, many of these systems, especially sensor networks, are adopting broker-based 

architectures to accommodate these topological features well. Thus, this change is making 

several issues about their fundamental building blocks that should be reconsidered to work 

well for these newly fashioned systems in highly effective manners. Existing sender-based 

message logging protocols abbreviated by SBML [1, 8, 20] should also be examined properly 
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before their application to accommodate this architectural change, which we focus on in this 

paper. However, although they can be applied to small-scale peer-to-peer flat style 

architectures well, all the protocols oblivious to the underlying network may not 

fundamentally provide any breakthrough for ensuring high scalability required in 

geographically dispersed sensor networks systems composed of a large number of sensor 

nodes [4, 6, 12, 13, 16, 18]. In this point of view, the two drawbacks mentioned earlier all of 

the conventional sender-based message logging algorithms have may be amplified and 

highlighted greatly if they would be applied into large-scale sensor networks, being capable 

of significantly diminishing the practical value coming from their common advantageous 

features, even becoming unpractical. In this paper, we present a scalable virtual sender-based 

message logging algorithm to address the critical problems by employing the large-scale 

ubiquitous sensor network systems’ architectural features stated earlier. In order to satisfy 

these requirements, this algorithm enables the broker elected in a cluster or group of nodes to 

localize both of the logging and recovery procedures to a maximum. This feature may 

considerably reduce the number of both control and data messages passing on core networks 

incurred during fully message logging and recovery procedures of sender-based message 

logging.  

The rest of the paper is organized as follows. In Section 2, we describe the distributed 

system model assumed and in Section 3, present a virtual sender-based message logging 

algorithm and prove its correctness. Sections 4 and 5 show numerical evaluation results and 

conclude this paper.  

 

2. System Model 
A distributed computation consists of a set P of n(n > 0) sequential processes executed on 

sensor nodes in the system and there is a distributed stable storage that every process can 

always access that persists beyond processor failures, thereby supporting recovery from 

failure of an arbitrary number of processors [7]. Processes have no global memory and global 

clock. The system is asynchronous: each process is executed at its own speed and 

communicates with each other only through messages at finite but arbitrary transmission 

delays. Exchanging messages may temporarily be lost but, eventually delivered in FIFO order. 

We assume that the communication network is immune to partitioning and sensor nodes fail 

according to the fail stop model where every crashed process on them halts its computation 

with losing all contents of its volatile memory [17]. Events of processes occurring in a failure-

free execution are ordered using Lamport’s happened before relation [9]. The execution of 

each process is piecewise deterministic [5, 19]: at any point during the execution, a state 

interval of the process is determined by a non-deterministic event, which is delivering a 

received message to the appropriate application. The k-th state interval of process p, denoted 

by si
k

p(k > 0), is started by the delivery event of the k-th message m of p, denoted by dev
k

p(m). 

Therefore, given p’s initial state, si
0
p, and the non-deterministic events, [dev

1
p, dev

2
p, ..., dev

i
p], 

its corresponding state s
i
p is uniquely determined. Let p’s state, s

i
p = [si

0
p, si

1
p, ..., si

i
p], 

represent the sequence of all state intervals up to si
i
p. s

i
p and s

j
q(p ≠ q) are mutually consistent 

if all messages from q that p has delivered to the application in s
i
p were sent to p by q in s

j
q, 

and vice versa [3]. A set of states, which consists of only one state for every process in the 

system, is a globally consistent state if any pair of the states is mutually consistent. 

In the remainder of this paper, the messages applications generate are called application 

messages and the messages used for the message logging and recovery procedures, control 

messages. 
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3. The Virtual Sender-based Message Logging Algorithm 
 
3.1. Normal Operation Procedure 

 

 
 

Figure 1. Message interaction-A failure-Free Execution of Existing SBML 
Algorithms 

 

Figure 2. Process Execution-A Failure-free execution of Existing SBML 
Algorithms 
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In this paper, we assume that the entire sensor network system consists of a finite set of 

areas. Each area has a group of nodes among which one having generally, but not mandatorily, 

the highest capacity of resources such as CPU, memory, storage, network, etc., is elected as 

broker of their area. Figures 1, 2, 3 and 4 show the same instance of this system model 

assumed having three areas with 7 processes. In these figures, a gray-shaded ellipse on each 

area indicates its broker. When a sender process sends a message to its corresponding receiver, 

SBML requires the following three steps; partially logging the message with its SSN (Send 

Sequence Number), IDs of its sender and receivers into its volatile storage, saving its RSN 

returned from its receiver into its log element and informing the receiver of the success of 

fully logging the message on the sender’s volatile storage. However, should they be applied 

into broker-based sensor networks, the existing SBML algorithms may incur high failure-free 

overheads in terms of communication cost. This disadvantage occurs if inter-process 

communications frequently perform across multiple broker controlling areas. For example, in 

Figures 1 and 2, process p7 sends message m1 to process p5, sending m2 to p1. Then, p1 

sends m3 to p2, sending m4 to p7. In this case, the existing SBML algorithms force their three 

steps with all three messages m1, m2 and m4 to be executed using inter-network 

communication functions. Unlike the existing SBML algorithms, our algorithm allows the 

broker to manage the volatile storage for fully logging all the messages sent to every area 

member, not including itself, from outside its administrative area. This feature enables the 

second and the third steps to perform locally with each message receiver’s broker. For 

example, Figures 3 and 4 shows how our proposed algorithm operates in the same scenario as 

Figures 1 and 2. In this case, every sender of each message sent to outside its area like p7, p5 

or p2 has only to maintain the partial log information of the message denoted by pl(mi). 

Instead, each broker like p4, p3 or p6 keeps fully logged messages fl(m1), fl(m2) and fl(m4) 

on its volatile storage respectively. In Figure 4, we can see that the failure-free steps 

excluding the first-step with messages m1, m2 and m4 are executed only inside each local 

area of their receivers respectively. 
 

 

Figure 3. Message Interaction-A Failure-free Execution of our SBML Algorithm 

Figure 5 shows the algorithmic description of our proposed SBML algorithm executing 

during failure-free operation mentioned earlier. All modules for this algorithm are briefly 

explained as follows. First, Module MSG-SEND(m) OF SENDER Psndr is a procedure 

performed by the sender of the message m when sending and partially logging it on the 

sender’s volatile storage. The second Module MSG-RECV(m) OF BROKER BRAi is 
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executed by the broker of the area Ai receiving message m, if m’s receiver isn’t itself, 

enabling BRAi to perform the three steps for m. In Module MSG-RECV(m) OF RECEIVER 

Prcvr, message m’s receiver assigns a RSN to m and return it to its sender or the broker of the 

receiver accordingly. Module RSN-RCVR(RSN OF m) OF PROCESS P is a procedure for 

inserting message m’s RSN into m’s log element on its sender. The last Module RSN-

CONFIRM(m) OF RECEIVER Prcvr is executed by message m’s receiver to know about fully 

logging m on its sender, releasing messages expected to be sent after the receipt of m. 

 

 

Figure 4. Process Execution-A failure-free Execution of our SBML Algorithm 

3.2. Recovery Procedure 

If a process fails, SBML has it restore a check pointed state from the stable storage, 

obtain all the messages received from others before failure and replay them in their 

RSNs and then FIFO order. For example, in Figures 6 and 7, process p1 has received 12 

messages having their RSNs from 4 to 15 among which 8 messages came from outside 

areas A2 and A3. Although the existing algorithms suffer from their high 

communication overhead occurring during recovery like in Figure 6, our algorithm can 

localize p1’s recovery procedure like in Figure 7 as follows; First, if a process, not 

broker, fails according to the crash failure model, it can be recreated on an available 

node, restore a pre-failure state from its latest checkpoint and broadcast a recovery 

request only inside its local area. Whenever it receives a reply including logged 

messages sent to itself from another process, it puts fully logged messages into its 

replay buffer in RSN order and then partially logged ones in FIFO order. After it has 

gotten replies from all the other nodes, it replays all the messages sent before its failure 

after its latest checkpoint in the sorting order. Figure 8 shows the formal expression of 

our non-broker recovery procedure named Module RECOVERY() OF PROCESS P, 

NOT BROKER. Broker’s recovery procedure of our algorithm is more complicated like 

in figure 9 and may require longer completion time. But, most of broker -based systems 

assume failures of brokers occur very infrequently. 
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Module MSG-SEND(m) OF SENDER Psndr  

assign its current SSN to m ;  

increment its current SSN by one ;  

if(m is a message destined to a process Prcvr in another area not playing the role of area 

broker)  

then  
send m to the broker of Prcvr ;  

else  
send m to Prcvr ;  

log partially m into its volatile memory ; 

 

Module MSG-RECV(m) OF BROKER BRAi  

if(m is a message destined to another process Prcvr in its managing area) then  

forward a message m to Prcvr ;  

log partially m into its volatile memory ;  

else  
assign its current RSN to m ;  

increment its current RSN by one ;  

return RSN of m to sender of m ;  

disallow all the messages generated for being sent after having received m to be sent ; 

deliver m to its corresponding application ; 

 

Module MSG-RECV(m) OF RECEIVER Prcvr  

assign its current RSN to m ;  

increment its current RSN by one ;  

if(m is a message sent directly from its original sender Psndr) then  

return RSN of m to Psndr ;  

else  
return RSN of m to the broker of Prcvr ;  

disallow all the messages generated for being sent after having received m to be sent ;  

deliver m to its corresponding application ; 

 

Module RSN-RCVR(RSN OF m) OF PROCESS P  

retrieve m’s partial log information, em, from its volatile log ;  

update RSN of m into em ;  

confirm fully logging m to receiver of m ; 

 

Module RSN-CONFIRM(m) OF RECEIVER Prcvr  

allow all the messages delayed sending by m’s fully logging procedure until now to be 

sent ; 

Figure 5. Message Logging Procedures during Failure-Free Operation 
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Figure 6. An Example of Recovery Procedure Of Existing SBML Algorithms 

 

Figure 7. An Example of Recovery Procedure of our SBML Algorithm 

Module RECOVERY() OF PROCESS P, NOT BROKER  

restore a state from its latest checkpoint on stable storage ;  

broadcast each a recovery request to its area ;  

while recovery replies aren’t received from all processes in this area do  

put fully logged messages for P piggybacked on each reply into flogp in RSN order ;  

put partially logged messages for P piggybacked on each reply into plogp in FIFO 

order ;  

for all e ∈ flogp st (e.RSN = RSNp) do  

increment RSNp by one ;  

deliver e.m to its corresponding application ;  

flogp ← flogp - {e} ;  

while plogp is a non-empty set do  

randomly select ∃ e in plogp st (e.m.SSN = LSSNp[e.m.SID]+1) ;  

call Module Msg-Recv(e.m) of Receiver Prcvr ;  

plogp ← plogp - e ; 

Figure 8. Recovery Procedures of each Non-Broker Process 
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Figure 9. Recovery Procedure of Broker in our SBML Algorithm 

3.3. Correctness Proof 

Theorem 1 Our proposed SBML algorithm enables the system to recover to be a globally 

consistent state in case of sequential failures. 

Proof. We prove this theorem by contradiction. Assume that consistent recovery is 

impossible even after the recovery procedure of this algorithm has been performed. There are 

two process failure cases to consider as follows:  

Case 1: The failed process p isn’t a broker.  

In this case, the recovering process p first restores a pre-failure state from its latest 

checkpoint on stable storage like in figure 8. Then, it broadcasts a recovery request message 

to every other member r only on its local area including its area broker. In this case, there are 

two sub-cases to consider:  

Case 1.1: r isn’t a broker.  

In this case, r sends p all the logged messages kept on its volatile memory which were 

originally sent to p by r before p’s failure.  

Case 1.2: r is a broker.  

In this case, r sends p all the logged messages kept on its volatile memory which were 

originally sent to p by r as well as every other member residing on another area before p’s 

failure.  

Therefore, in both subcases, p can obtain all the messages received from its 

communicating members on its local area and on the outside areas before its failure and 

replay them in their RSN and FIFO order.  

Case 2: The failed process p is a broker.  

In this case, the recovering process p first restores a pre-failure state from its latest 

checkpoint on stable storage like in figure 9. Then, it broadcasts a recovery request message 

to every other member r both on its local area and on the outside areas. In this case, there are 

two sub-cases to consider:  
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Case 2.1: r has the logged messages whose original receivers were p before p’s failure.  

In this case, r sends p the full or partial log information of the messages kept on its volatile 

memory. Then, p can replay all the received messages in their RSN and FIFO order.  

Case 2.2: r has the logged messages whose original receivers were some others on p’s 

local area before p’s failure.  

In this case, r sends p the partial log information of the messages kept on its volatile 

memory. Then, p obtains RSNs of the messages from their receivers by retransmitting the 

messages to them. Hereafter, p can become a virtual sender of the other members on its local 

area. 

Therefore, consistent recovery is possible in all the cases. This contradicts the hypothesis. 

 

4. Comparisons 
In this section, we present some numerical evaluation for showing superiority of our 

algorithm(OSBML) over the existing one(ESBML)[8] in terms of total message cost. For this 

purpose, several parameters used are defined as follows: 

- Ngroup: the number of groups or areas physically or logically partitioned in the system.  

- Nmemb: the average number of processes or nodes located in each group.  

- N(= Ngroup ×  Nmemb): the total number of processes or nodes in the system.  

- Nmsg: the total number of messages generated in the system.  

- Ccore: the cost of sending a message passing on core networks to a destination in another 

group.  

- Clocal: the cost of sending a message to a destination within the same group.  

- ρ: the probability with which any given message is generated to be sent to the outside 

area. 

Although many WAN-based or Internet-scale broadcast protocols implemented in network 

layer or application layer were proposed, they require special deployment of IP multicast or 

control of overlay networks with various membership management protocols. These diversity 

and complexity make it difficult to measure uniformly the message cost of the broadcast 

protocols. Due to this reason, we analyze performance of the two message logging algorithms 

only using uncast functionality. In this evaluation, we assume a geographically dispersed 

sensor network system model consisting of Ngroup groups having each Nmemb processes or 

nodes with two different one-way message costs, Ccore and Clocal. With this assumed model, 

the total message overheads of ESBML and OSBML occurring during failure-free operations, 

denoted by ESBMLfailure−free and OSBMLfailure−free, can be expressed as Eq.1 and Eq. 2 

respectively. 

ESBMLfailure−free = 2∗Ccore∗Nmsg∗ρ+2∗Clocal∗(1 − ρ)∗Nmsg                                                    (1) 

OSBMLfailure−free = 3∗Clocal∗Nmsg∗ρ+2∗Clocal∗(1 − ρ)∗Nmsg                                                   (2) 

The amount of reduced failure-free message overhead of OSBML against ESBML, 

∆MOfailure−free(= Eq. 1 − Eq. 2), is Eq. 3. 

∆MOfailure−free = (2∗Ccore−3∗Clocal)∗Nmsg∗ρ                                                                          (3) 

From Eq. 3, we can see that ∆MOfailure−free may significantly become bigger as the number 

of messages generated, the probability of ρ and the difference between Ccore and Clocal grow. 

 Let us clarify how OSBML may improve the scalability of the entire system during failure-

free operation using figure 10 compared with ESBML. Figure 10 shows the variation of the 

ratio of ESBML’s failure-free message overhead ESBMLfailure−free against OSBML’s one 

OSBMLfailure−free in various aspects. In this figure, the x-axis is the ratio of Ccore to Clocal (Ccore / 

Clocal), denoted by Ratiocomm, and the y-axis, the ratio of ESBMLfailure−free to OSBMLfailure−free 

(ESBMLfailure−free / OSBMLfailure−free), denoted by Ratiofailure−free. The values of Ratiocomm range 

from 10 through 100 incrementing by 10. The probability of ρ in this figure is 0.05(5%), 
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0.1(10%), 0.2(20%) and 0.3(30%) respectively. As the average ratio Ratiocomm increases in the 

figure, the corresponding value of Ratiofailure−free also becomes higher. In particular, although 

the difference between their average output ratios is not high in the small value of ρ, it is 

much bigger as the probability of ρ is larger. From this figure, we can see that the scalability 

of the localized logging nature of OSBML is considerably manifested as ρ and the gap 

between the inter- to intra-bandwidths increase. 

Second, the total message overheads of ESBML and OSBML resulting from a single non-

broker failure, denoted by ESBMLrecovery and OSBMLrecovery, can be expressed as Eq.4 and Eq. 

5 respectively. 

ESBMLrecovery = 2∗((Ngroup−1)∗Nmemb∗Ccore +(Nmemb−1)∗Clocal)                                           (4) 

OSBMLrecovery = 2∗(Nmemb−1)∗Clocal                                                                                     (5) 

The amount of reduced recovery message overhead of OSBML against ESBML, 

∆MOrecovery(= Eq. 4 − Eq. 5), is Eq. 6. 

∆MOrecovery = 2∗(Ngroup−1)∗Nmemb∗Ccore                                                                               (6) 

Eq. 6 indicates that as the number of groups, the group size and Ccore become larger, 

∆MOrecovery may enormously increase.  

Let us verify how much OSBML may decrease recovery message overhead using figure 11 

compared with ESBML. In figure 11, we show the variation of the ratio of ESBML’s recovery 

message overhead ESBMLrecovery against OSBML’s one OSBMLrecovery with varying Ratiocomm 

in case Ngroup is 5, 10, 15 and 20 respectively. As Ratiocomm becomes bigger in this figure, their 

Ratiorecoverys are also increasing. Especially, as Ngroup grows larger, the values of Ratiorecovery 

are stepping up to higher levels. This outcome arises from the reason that the increase of the 

number of groups and Ratiocomm force both ESBML to significantly generate a large number of 

high cost outgoing messages for communicating between processes on different areas or 

groups during recovery compared with OSBML.  

Third, the total message overheads of ESBML and OSBML occuring when a single broker 

fails can be both expressed as Eq.4 respectively. In this case, ∆MOrecovery is 0.  

In conclusion, these results show that our algorithm with the seamless localization using 

virtual sender concept has a potential of highly decreasing both failure-free and recovery 

message overheads incurred by the conventional sender-based message logging ones applied 

to large-scale broker-based sensor networks. 

 

 

Figure 10. Ratio of ESBMLfailure-free to OSBMLfailure-free, Ratiofailure-free, with Varying Values 

of ρ and (Ccore / Clocal), Ratiocomm 
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Figure 11. Ratio of ESBMLrecovery to OSBMLrecovery, Ratiorecovery, with Varying 
Values of Ngroup and Ratiocomm 

5. Conclusions 

This paper proposed a virtual sender-based message logging algorithm to 

utilize the large-scale ubiquitous sensor network systems’ architectural 

features, considerably reducing extra communication costs required for 

allowing message senders to get receive sequence numbers (RSNs) of the 

messages from their receivers and confirm them with the receivers and 

slowness and complexity of recovery of each failed process coming from 

its obtaining message log from the corresponding senders. In order to 

satisfy these requirements, it enables the broker elected in a cluster or 

group of nodes to localize both of the logging and recovery procedures to a 

maximum. This feature may enormously decrease the number of control 

and data messages passing on core networks incurred during fully message 

logging and recovery procedures of sender-based message logging. We 

showed how this algorithm can guarantee the system consistency in case of 

sequential failures and perform better than the conventional one in terms of 

message overhead.  
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