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Abstract 
 

Surface reconstruction from gradient fields is of wide application in computer vision fields. 

Traditional methods usually enforce surface integrability in discrete domain, while current 

kernel approach suffers the problems of parameter choice. In this paper, we propose a novel 

method, i.e. kernel gradient regression, to reliably reconstruct surfaces. The box-spline 

kernel, instead of the common Gaussian kernel, is deployed in surface reconstruction due to 

its compact support and parameter robustness. To our knowledge, this is the first time to 

prove the special box-spline function as a new kind of positive definite spline kernel. The 

target surface is recovered under least-squares sense from the gradient fields, by converting 

the reconstruction problem to its kernel representation. Experimental results show that our 

proposed method outperform available approaches in preserving sharp edges and fine 

details, without prior knowledge of depth discontinuity. 
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1. Introduction 
Three-dimensional surface reconstruction is an important branch of Computer Vision. It 

plays an important role in the quality control of products, industrial measurement, medical 

diagnosis, digital preservation of relic, scene evidence, digital entertainment and virtual 

reality. In some application areas, local features of measured object can not be well 

reconstructed based on the direct geometric measurement method which makes the details of 

reconstructed surface quality greatly degraded, and often can not meet the requirements. On 

the other hand, surface reconstruction from gradient fields scheme can keep local details of 

measured objects well. It is quite satisfactory for computer vision applications and greatly 

complement geometric measurement based methods. Thus gradient fields surface 

reconstruction has received wide attention in the research field, and has become a key post-

processing step in shape from shading [1, 2], photometric stereo [3], and shape from texture 

[4, 5]. 

Typically, in the gradient reconstruction non-integrable gradient fields are produced in the 

first step, thus further processing is necessary to obtain the final surfaces. Traditional methods 

project the non-integrable gradient fields to the integrable gradient fields, such as Fourier 

bases [6], orthogonal wavelets bases [7], or redundant non-orthogonal shapelets basis 

functions [8]. Other methods use the zero-curl assumption to produce integrable gradient 

fields [9-11]. Alternatively, Harker and O’Leary [12] use discrete least squares to reconstruct 

surface from gradient fields ignoring the integrability of objective surface. 
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Over the last ten years kernel methods [13, 14] attracted intensive attention in the 

pattern recognition and machine learning literature. These methods formulate learning 

and estimation problems in a reproducing kernel Hilbert space (RKHS) [15]. The 

familiar problems, including regression, classification, and principal component 

analysis, can be resolved using kernel techniques [16, 17]. By applying kernel trick [15], 

the nonlinear data can be mapped to RKHS, and the high-dimensional property of the 

feature space makes the algorithm linear and easy to handle. The convenient kernel 

method provides the opportunity to other important applications, for example, surface 

reconstruction from gradient fields. Most recently, Ng et al. [18] applied kernel 

approach to reconstruct surface without enforcing integrability. This method treats the 

reconstruction problem as kernel regression, which approximates the underlying surface 

by kernel density estimation. It calculates the dual form of regression parameters by 

minimizing the dot-product between kernel represented gradients and observed normals. 

This method could not maintain sharp edges, and requires prior knowledge of depth 

discontinuity for certain surfaces. 

   Like most kernel approaches, Ng et al. [18] also used the common Gaussian kernel, 

which is of infinite support, in their kernel reconstruction approach. Theoretically, the 

calculation of all dot-products in neighboring sites can result in a dense Gram matrix [15], 

which is computational very expensive. Practically, the truncated Gaussian function can be 

employed instead. However, it is always difficult to determine the appropriate parameter 

values (variance and cut-off radius) in surface reconstruction. 

   In this paper, we propose a kernel method to reconstruct surface from gradient fields. We 

kernelize the gradient regression problem such that surface reconstruction can be resolved by 

least squares in the dual space. In addition, we prove that a special box-spline function [19] 

can be used as positive definite kernel. As box-spline kernel is compactly supported, the 

reconstruction accuracy can be improved and the computation is quite efficient. The proposed 

kernel method are evaluated by both synthetic gradient data and simulated photometric stereo.  

   The rest of the paper is organized as follows. Section 2 presents the background and 

related work. Section 3 outlines our proposed gradient surface reconstruction method using 

kernel. Section 4 proves that a special box-spline function is a new kind of kernel. Section 5 

presents the results. Finally, conclusion and future work are discussed. 

 

2. Related Work 
In this section, we first review the relevant work on traditional surface reconstruction 

methods, and then introduce the background of box-spline functions. 

 

2.1. Surface Reconstruction 

The efficient solution to surface reconstruction problem is projecting the non-

integrable gradients to the frequency domain [6] or wavelet domain [7, 20], and then 

surface is integrated in this fields. As an extension, Kovesi [8] used redundant non-

orthogonal shapelets as basis functions, which made the reconstruction more robust. 

This method also used the slant and tilt data as input rather than the gradient ones to  

avoid over-smooth. It shared the same idea that the differentiation in frequency domain 

will become linear, resulting in an easier and more efficient solution.  Among these 

projecting methods, Simchony el al.'s [21] is the most classical one. In their paper two 

direct analytical methods were proposed to solve the reconstruction problem. In order to 

translate the original scene depth to frequency domain, they used discrete sine 

transform (DST) for Dirichlet boundary conditions and discrete cosine transform (DCT) 

for Neumann boundary conditions [22]. It was reported that the precision and 
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robustness of these methods were superior to other methods [23, 24]. In most situations, 

since the objective surface is smooth enough to fit Neumann boundary conditions, so 

DCT transform for gradient fields is quite suitable for surface reconstruction. But when 

large changes like sharp edges appear on the surface, DCT fails to give satisfactory 

results. Thus more robust method is demanded to solve universal problem. Following 

Simchony et al.’s work, Agrawal et al. [9-11] presented a framework for a series of 

integral enforcing methods. They modified the objective function leading to slight 

changes in corresponding Euler-Lagrange equation. The yielded binary weighted 

Poisson equation was used in alpha-surface method and continuous weighted Poisson 

equation was used in M-estimators method. These methods iteratively updated the 

weights according to local information after obtaining the initial result using the DCT 

method [21]. 

On the other hand, Harker and O’Leary [12] proposed a direct and non-iterative 

reconstructing method in spatial domain. This method used the finite difference form of 

local gradient fields to construct an overall objective function. The finite difference 

operation is only related to several neighbor pixels, thus the overall difference matrix is 

quite sparse which makes the large scale reconstruction of reliable surface practical. 

While in this method only limited local information of the objective surface had been 

involved into calculation, so it failed to reconstruct a satisfactory surface when the 

noise in gradient fields was really severe. Noticeably, this method ignored the 

integrability of objective surface which was different from the above-mentioned 

methods. 

Although all the methods mentioned above solved the surface reconstruction problem 

in frequency domain or in spatial domain, intrinsically they need complete gradient data 

input. In addition, these methods cannot control the smoothness level of the target 

surface. Ng et al. [18] proposed to solve the reconstruction problem by using a kernel 

approach. By constructing the kernel form of the surface function, the reconstruction 

problem was transformed to linear regression in the kernel feature space. The algorithm 

was also applicable to sparse input, thanks to the regulation term in its solution. 

However, this method did not consider the sharp changes on the target surface and 

would fail to reconstruct surface when the surface has sharp edges. 

 

2.2. Box-spline 

Box-splines [19] are nontrivial generalization of one-dimensional uniform B-splines 

to higher dimensions. It consists of piecewise polynomials and has global continuity 

and compact support. Unlike tensor form B-spline, whose support is a rectangle, box-

splines have more flexible supports which include B-spline’s as a special case. Box-

spline is superior to B-spline also in the Fourier domain. The frequency of B-spline, due 

to its tensor product inherence, decays faster along the diagonal directions than the grid 

directions. Consequently, according to Shannon’s sampling theory, box-spline is more 

adequate than B-spline in surface reconstruction. 

Box-spline plays an important role in the field of multi-dimensional function 

approximation, due to its elegant properties. Recently, box-spline was widely use for 

volume reconstruction and rendering, where the volume data are non-Cartesian sampled 

[25-27]. Entezari and Möller [28] extended the well-known Zwart-Powell box-spline in 

2-D to a 7-direction box-spline in 3-D and used it to reconstruct Cartesian lattice 

volume data. 

For a long time, there lacks efficient algorithms to evaluate box-splines. Recently, 

Kim and Peter [29] proposed an evaluation algorithm based on Beziér form, and proved 
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that their algorithm is efficient and accurate. We also employed this algorithm in our 

work and found that it is indeed adequate for practical use. 

In previous work [25, 26, 28], box-splines were directly used as interpolation 

approximations for volume data reconstruction, and their performance was evaluated in 

Fourier domain. To our knowledge, we are the first one to construct a positive definite 

box-spline kernel and validate its performance in the sense of RKHS. Differing from 

other kernel functions, box-spline kernel function is compact supported, which make it 

easier to choose function parameters and give precise reconstruction results. The details 

of box-spline kernel will be given in the following section. 

 

3. Surface Reconstruction by Kernel Method 
In this section, we introduce the kernel regression method of surface reconstruction. 

Because of the analytic form of the regression function, the surface gradients could also be 

represented in similar kernel form preserving the same regression parameters. Thus the 

surface parameters are recovered under least-squares sense from the kernelized gradient 

fields. 

 

3.1. Surface Reconstruction 

Consider a linear regression problem [16] 

                                                      
1

, ,

n

i i

i

z f w x



     x w x                                           (1) 

which fits the training set
1 1

 =  { ( ; ),  ,( ; )} , 
l l

S z zx x where 
n

x  has the corresponding 

label z . Here, we use the notation
T

1 2
( , , , )

n
x x xx   for the n -dimensional input, and 

w  for the n -dimensional regression parameter.  

Equation (1) can be written in its dual representation 

                                        i

i 1

, α , ,

l

i
f



  x X α x x x                                          (2) 

where 
T

1 2
( , , , )

l
X x x x . By applying kernel trick, we get the kernel form of the 

regression equation as 

                                            i

1

α , ,

l

i

i

f k



 x x x                                                   (3) 

which maps the low-dimensional data to high-dimensional kernel space. It is note that 

[16], as a kernel function, ( , )
i

k x x   must obey the reproducing property 

                                                       , , ,
i i

k   x x x x                                               (4) 

where (x )   denotes the nonlinear feature space mapping. 

In our surface reconstruction problem, 
T

, ( )u vx   is the surface site and ( )z f x  

is its corresponding depth, and 
i

x  is the neighboring site of .x  Let  

T

1 2
( ( ) , ( ) , , ( ))

l
f f fz x x x  and substitute the observed data in the kernel 

representation, we have 
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where G  is the Gram matrix of the kernel function. By this manner, the nonlinear 

regression problem becomes linear in the dual space. It is clear from Equation (5) that, 

the surface can be reconstructed when we know the regression parameter α . 

As the gradient fields, not depths, are available in surface reconstruction problem, we 

could compute α  from the derivation of Equation (3). Based on this consideration, we 

present the kernel gradient regression method in the following sections. 

 

3.2. Kernel Gradient Regression 

According to the analytic form described in Equation (3), the surface will be differentiable 

if an appropriate kernel function is chosen. We can obtain the first order derivative of 

Equation (3) as 
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where  ( , )a u v . Let  
T

1 2
( ( ) , ( ) , , ( ) )

a a a a l
f f fz x x x , it can be written as 
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Similarly, by applying 2-order differentiation, we also get the Laplacian of the 

surface as 
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Let 
T

L L 1 2
( ( ) ; ( ) , , ( )) 

L L l
f f fz x x x  , Equation (8) can be written in the matrix 

notation as 

 

                            

   

   

   

L 1 1 L 1 1

L 2 1 L 2 2

L

L 1 L

L

, ,

, ,

, ,

,

l

l

l l l l

k k

k k

k k







   
   

   
   

   
 

  



x x x x

x x x x
z

x x x x

G α

                             (9) 

where 
L

G   is referred as Laplacian Gram matrix in this work. Equation (9) is actually 

the Poisson equation in the kernel representation. 

Therefore we can obtain the parameter α  from the matrix form equation (7). By 

further adding a regularization term, which can be the local Laplacian, to control the 

smoothness of the target surface, we write the objective function in quadric form as 

                                        
2 2

L
λ ,

a a
E   α z G α z                                      (10) 

where   is the weight of the regularization term. 

The kernel regression parameter α  can be calculated by setting the first order 

derivative of ( )E α  to zero. Then the target surface can be reconstructed as 

 
1

T T T

L L
   λ .

a a a a



  z G α G G G G G z G                         (11) 

 

4. Box-spline Kernel 
Box-splines offer a mathematically elegant framework for constructing a class of elements 

with flexible shape and support, and have been successfully applied in volume data 

reconstruction and rendering [25, 26]. In this section, we first briefly introduce box-spline, 

then prove that a specific box-spline function can serve as kernels, and finally validate its 

superiority in surface reconstruction over the common Gaussian and B-spline kernels. 

 

 

Figure 1. Illustration of Box-Splines Generation. The Top Row shows the Shape of the 

Basic, Linear, and Quadratic Box-Splines and the Bottom Row Shows their 

Corresponding Support Regions. Higher-order Box-Splines are generated from the 

Lower-Order Ones by “Smearing” Along the Specified Directions 
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4.1. Definition and Properties 

A box-spline is specified by n  vectors in 
s

 where  n s , and is denoted by 

1
 =  ( , , )

s n n
Ξ ξ ξ . For the surface reconstruction in this work 2s  . The simplest box-

spline is constructed by n = s vectors, which is the characteristic function of its support 
 

                                    

1
, [0 ,1)

d e tx ,

0 ,

n
x

M

o th e rw ise




 




Ξ

Ξ
Ξ                                                       (12) 

where [0 ,1)
n

Ξ   denotes the support and  |d e t |Ξ  is its corresponding area. In the case of 

 n s  , box-splines are defined recursively 

 
 

1

,

0

d ,M M t t  ΞΞ ξ
x ξ                                                                  (13) 

which means that 
[ , ]  

M
Ξ ξ

 is obtained by “smearing” (x )M
Ξ

 along the direction of 

vector ξ . Then starting from the basic box-spline specified by Equation (12), higher 

order ones can be generated recursively by Equation (13). Figure 1 illustrates this 

intuitive generation procedure. 

Usually, box-splines defined by the above formula do not center at the origin, see 

Figure 1. For convenience, we translate their centers to the origin and still denote them 

by (x )M
Ξ

. 

The Fourier transformation of the centralized box-spline is given by: 
 

                                   
T

Ξ
s in ,ˆ cM



 
ξ Ξ

ω ω ξ                                                                    (14) 

 

where 
2

T

1
( , , , )

n
  ω  is the vector in Fourier domain and 

s in c (x ) =  s in ( x 2 ) ( x 2 ) . A comprehensive introduction to box-splines can be found 

in [19]. 

 

4.2. Proof of Kernel 

The dot-product kernel in Equation (4) coincides with the class of positive definite 

kernel. Hofmann et al. [14] state the following theorem for positive definite function. 

 

Theorem 1 A continuous function h on 
d

 is positive definite if and only if there exists a 

finite nonnegative Borel measure   on 
d  such that 

 

                                          
,

x e d
d

i

h 


 
x ω

ω
R

                                                          (15) 

 

Informally, this means that h   is positive definite if and only if its Fourier transform 

is nonnegative. 

We start with the famous Zwart-Powell (ZP) [28] box-spline. In the 2-D form, ZP 

box-spline is specified by 
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1 0 1 1

.
0 1 1 1

 
  
 

Z P
Ξ                            (16)  

As this box-spline does not make a kernel, we construct a new one by specifying 

Z P Z P
=  (� ,� )Ξ Ξ Ξ , whose Fourier transform is 

                        
2 2 2 2

s in c ω s in c ω s in c ω ω s in c ω ,ˆ ω
u v u v u v

M    
Ξ

             (17) 

where ω
u

 and ω
v

 are the frequencies along the u and v  directions, respectively.As 

M̂
Ξ

is nonnegative, M
Ε

 is positive definite according to Theorem 1, and hence can 

serve as a positive definite kernel, i.e. 

                                                     , .
i i

k M 
Ξ

x x x x                                    (18) 

 

4.3. Kernel Comparison 

In this section, we discuss the support properties of the box-spline, Gaussian, and B-

spline kernels, and compare the reconstruction accuracy of these kernels. 

The commonly used Gaussian kernel is of the form 

                                

2

2
, e x p ,

2 σ

i

i
k

  
  

 

x x
x x                                         (19) 

which is a radius basis function (RBF) kernel. Its shape is determined by the variance 

parameter σ . 

 

 

Figure 2. Reconstructed Ridge Surface using Different Kernel Functions. Top: The 

Supports of Gaussian, B-spline, and box-spline Functions. Bottom: Reconstructed Ridge 

Surfaces from its Gradients 

As Gaussian kernel is of infinite support (see Figure 2(a)), theoretically its Gram 

matrices 
a

G  and 
L

G will be full matrices which needs expensive computation. For 

truncated Gaussian kernel in practice, it is still difficult to determine the suitable cut -off 

radius r and variance σ . 

As shown in Figure 2(b), B-spline kernel function is compactly supported and its 

support is square at the edge. In addition, the B-spline function is anisotropic with 

respect to the center, thus it’s not a RBF kernel. Figure 2(c) illustrates that the support 

of box-spline kernel is compact, which makes the Gram matrices quite sparse. As the 
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octagon support is nearly isotropic, box-spline kernel can be approximately regarded as 

a RBF kernel. 

In the following, we compare the performances of the three kernels in surface 

reconstruction. For the box-spline and B-spline kernels, it is natural to choose the 

support boundary as their radius r . For the Gaussian kernel, we need to determine both 

its cut-off radius r and variance σ. For convenience, we relate r and σ  by a factor n  

such that r n  . 

 

 

Figure 3. Reconstruction Errors of Ridge Surface with Respect to Support Radius for 

Three Kernel Functions 

We constructed a Ridge surface with two symmetric narrow elevations and a float 

floor, and used the proposed kernel gradient regression method to reconstruct the Ridge 

surface from its gradient fields. Figure 3 shows the reconstruction root -mean-square 

(RMS) errors of the box-spline, B-spline, and Gaussian ( 3, 4 , 5n  ) kernels, with 

respect to different radius values. For the box-spline kernel, the reconstruction error 

decreases quickly and become stable when 2 .6r  . For the Gaussian kernel, the 

reconstruction error is sensitive to both cut-off radius and variance. Its reconstruction is 

quite instable when 3n  , and close to that of box-spline kernel in case of 4n  . The 

reconstruction error of the B-spline kernel is also relatively large. Overall, the surface 

reconstruction by box-spline kernel is quite accurate, and is robust to the radius 

parameter. Figure 2 shows the reconstructed Ridge surfaces under the same radius 

3 .0r   (for Gaussian kernel, 3 .0  ). We note that, for other surfaces, the error 

distributions of Gaussian become different, which prevents the use of fixed parameters. 

In the following section, we use box-spline kernel in the proposed method without 

specific notation. 
 

5. Experimental Results 
In the experiment, we evaluate the proposed method on both synthetic gradient data and in 

simulated photometric stereo, in comparison with the DCT, alpha-surface [10], M-estimation 

[10] and Frankot-Chellappa method [6]. 
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5.1. Synthetic Data 

The reconstruction results on noise-free Vase data are shown in Figure 4. Overall, Frankot-

Chellappa method totally fails with a large deforming after reconstruction. A better shape is 

obtained by Alpha surface method, but there is an obvious bias at the left-side of the vase 

surface. The reconstructed surfaces by the DCT and M-estimator methods seem good, but 

oscillations occur at sharp edges (see enlarged parts). This is because the gradient data is 

obtained approximately using finite difference scheme from local surface. In comparison, the 

proposed kernel method produce satisfactory reconstructions. The reconstructed surface not 

only well maintains the overall shape of the vase but also keep the smoother fine details. 

 

 

Figure 4. Reconstructed Vase surfaces without Noise. The Enlarged Parts show Detail 

Comparison 

Next, we make the gradient data of a Ramp surface and added Gaussian noise with  

5 %   of its maximum gradient. The reconstructed surfaces are shown in Figure 5. 

The reconstruction by the alpha-surface is heavily affected by noise, the vibration is 

throughout the whole surface. For the Frankot-Chellappa, DCT and M-estimator 

methods, although the noise is well suppressed, the reconstructed pyramid base are 

obviously distorted (the error parts are pointed by the arrows). In comparison, the 

proposed method successfully reconstruct this noise-corrupted surface. The noise is 

better reduced and the smooth pyramid base is also well maintained.  
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Figure 5. Reconstructed Ramp Surfaces with Additive Gaussian Noises ( 5 %  ) of the 

Maximum Gradient in the Gradient Fields. The Arrows Indicate the Surface Parts that 

are not Appropriately Reconstructed 

Table 1 gives the RMS errors of different reconstruction methods for the Vase and 

Ramp surfaces. It is verified that the proposed kernel method produces the best 

reconstruction accuracy in both noisy and noise-free data. 

Table 1. Root-mean-square Errors of Different Reconstruction Methods on Noisy and 

noise-free Gradient Data 

Method 

 
w/o noise with noise 

Vase Ramp Vase Ramp 

Frankot-Chellappa [6] 2.38 0.30 2.39 0.30 

DCT [10] 0.47 0.33 0.56 0.35 

Alpha surface[10] 1.80 0.72 3.45 0.82 

M-estimator [10] 0.47 0.33 0.57 0.35 

Proposed 0.19 0.09 0.33 0.13 

 

5.2. Simulated Photometric Stereo 

We generate eight Mozart images under different lighting directions according to the 

Lambertian model, and add Gaussian noise (with 1 0 %    of the maximum intensity) to 

simulate the actual imaging procedure. Three of these images are shown in Figure 6. We then 

employ the traditional photometric stereo [3] algorithm to estimate the surface normals, based 

on which gradient fields were obtained. 

 

 

Figure 6. Three Simulated Mozart Images (Out Of Eight Ones) under Different 

Lighting Directions, Added with Gaussian Random Noises( 1 0 %  ) of the Maximum 

Intensity 
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Figure 7 shows the reconstructed Mozart surfaces by different methods. Frankot -

Chellappa and DCT methods produce oscillating results on the large gradient regions. 

Alpha surface and M-estimator methods suppress this oscillation but the appearances 

are noisy. In contrast, proposed method maintains large curvatures in the sharp change 

areas, and preserve fine details at the same time. 

 

 

Figure 7. Reconstructed Mozart Surfaces in Simulated Photometric Stereo by Different 

Methods 

6. Conclusions 

We have presented the kernel gradient regression method to reconstruct surfaces from 

gradient fields. In addition, we construct a specific box-spline kernel that is superior to the 

common Gaussian and B-spline kernels. To our knowledge, we are the first one to propose 

this new kind of positive definite kernel function and prove it in the previous section. 

Experimental results validate that the proposed kernel method outperform other 

reconstruction methods on both synthetic gradient data and in simulated photometric stereo. 

Proposed method is of practical application in related computer vision fields including 

photometric stereo, shape from shading, etc. On the other hand the disadvantage of proposed 

method is time-consuming, in the future the acceleratory scheme should be carefully 

designed, for example, parallel computing based on GPU platform. The radius of kernel 

function is quite related to noise level, if we estimate the gradient noise level firstly, then the 

only parameter of box-spline function could be fixed, which make the reconstruction more 

convenient and precise. We can expect that these improvement will help the box-spline kernel 

reconstruction scheme become a more widely used method in surface reconstruction field. 
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