
International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014), pp.73-84

http://dx.doi.org/10.14257/ijmue.2014.9.4.08

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2014 SERSC

Configuration Tool for ARINC 653 Operating Systems

Eu-Teum Choi
1
, Ok-Kyoon Ha

2
 and Yong-Kee Jun

1

1
Department of Informatics, Gyeongsang National University

2
Engineering Research Institute, Gyeongsang National University

{etchoi, jassmin, jun}@gnu.ac.kr

Abstract

ARINC 653 Specification defines a standardized interface of real-time operating systems

and an Application Executive (APEX) to develop the reliable applications for avionics based

on Integrated Modular Avionics (IMA). The requirements of system platform based on ARINC

653 Standard are defined as configuration data and are integrated to the XML configuration

file(s) in the real-time operating system. Unfortunately, existing configuration tools for

integrating requirements do not provide checking the syntax errors of XML and verifying the

integrity of input data for partitioning. This paper presents a configuration tool for ARINC

653 OS that consist of Wizard module which generates the basic configuration data for IMA

based on XML Scheme of ARINC 653 Standard, XML and Partition Editor for the

partitioning system of IMA, and Verification module which checks the integrity of input data

and XML syntax with its visualization.

Keywords: ARINC 653, IMA, partition OS, configuration, XML, verification

1. Introduction

Avionic systems have been changing from Federated Systems to Integrated Modular

Avionics (IMA) which purposes to reduce the weight of air-born systems and its power

consumption by integrated management of the system. The ARINC 653 Specification [1-3]

has been developed as a standardized interface definition of real-time operating system to

simplify the development of IMA [4-9]. The ARINC 653 provides a strict and robust time and

space partitioning [10-12] to guarantee the reliability of avionic systems by isolating the

failures of the system. Configuration data [13] for the time and space partitions can be defined

as the XML configuration file(s) that can be accessed only by system operation system.

System Integrator of air-born system usually employs editing tools to integrate all of the

requirements of the system to the configuration data which bases on XML schema of the

ARINC 653 standard. However, it is quite tedious activity to check the syntax errors of XML

and the integrity of partition scheduling [14-16] during the integrating process. Moreover,

existing configuration tools, which employ general purpose editing tool, do not provide any

function to verify the syntax errors of XML and the integrity of input data for

partitioning such as the allocation of resources and the scheduling of applications.

This paper presents a configuration tool for the ARINC 653 OS that consist of

Wizard module which generates the basic configuration data for IMA based on XML

Scheme of the ARINC 653 Standard, XML and Partition Editor for the partitioning

system of IMA, and Verification module which checks the integrity of input data and

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

74 Copyright ⓒ 2014 SERSC

XML syntax with its visualization. XML Editor provides to check syntax errors of the

XML configuration file based on the XML schema of the ARINC 653 standard, and

Partition Editor verifies the integrity of partitioning with graphic user interface (GUI)

by analyzing the input data of partitions.

The remainder of this paper is organized as follows. Section 2 introduces the concept

of ARINC 653 for IMA platform and XML scheme for specifying ARINC 653 OS

configuration. The design of our configuration tool which defines and verifies the

configuration data of ARINC 653 OS is illustrated in Section 3, and Section 4 depicts

the implementation of the configuration tool which consists of partition wizard, multi -

page editor, outline view, and problem view. We conclude our argument of the paper in

Section 6.

2. Background

Configuration data of ARINC 653 can be defined as the XML configuration file(s) to

provide a strict and robust time and space partitioning system for IMA. This paper introduces

the notion of the ARINC 653 for IMA platform and the XML Schema that defines the

structure of the data needed to specify any ARINC 653 configuration.

2.1. ARINC 653 Standard

The ARINC 653 Specification [1[3] has been developed as a standardized interface

definition of real-time operating system to simplify the development of Integrated

Modular Avionics (IMA) [4-9]. This standard specifies an Application Executive

(APEX) which provides services comprised of a set of fifty-one routines to enable the

development of portable applications on an IMA platform. The main objective of the

APEX is to provide a strict and robust time and space partitioning environment [10-12]

allowing a processing unit known as module to host multiple applications independently

in each partition. A module is managed by an operating system called Module

Operating System (MOS).

The temporal partitioning is a strict time slicing which guarantees that only one

application at a time is accessing the system resources including the processor

according to a periodic scheduler. The spatial partitioning provides strict memory

management by guaranteeing that a memory area allocated to a partition and its

processes cannot be corrupted by another partition and its processes. Each partition is

governed by a Partition Operating System (POS) which provides standard

functionalities like scheduling, process management, and interaction with the MOS.

A partition consists of a set of concurrently executing processes, sharing access to

the system resources with the help of a preemptive, priority-based scheduler. They are

initialized at module starting time using an XML configuration file. Processes can

communicate within a partition using shared buffers that provide a queue for message

passing and blackboards that allow them to read, write and clear a single message.

APEX also provides machine-dependent services such as interrupt handling, partition

switching or inter-partition communication for interactions with the hardware. Figure 1

depicts the conceptual structure of ARINC 653.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

Copyright ⓒ 2014 SERSC 75

Applications Application Application Application

Health Monitor

XML Configuration Data(XML)

Real Time Operating System

APEX

User Mode

Kernel Mode

Health Monitor Health Monitor Health Monitor

Module OS Module OS Module OS Module OS

Health Monitor

Figure 1. The conceptual architecture of ARINC 653

One of the most important features of ARINC 653 is indisputably its health monitor

(HM) which has the responsibility to detect and provide recovery mechanisms for both

hardware and software failures at the process, partition, and module levels. The

objective of this hierarchical error handling framework is to contain and isolate faults

before they propagate across the whole system. Typical faults detected by the HM

include memory and processors errors, input/output and device errors or any other

application level errors like division by zero, deadline misses or invalid system calls. If

an application detects an error during its execution, it may report to the HM by

invoking an APEX system call. As presented in the ARINC 653 specification, each

error is characterized by an error identifier and a symbolic name. The specification

defines a set of states in which a system can be at each point of time. These states can

be for instance, partitions or modules initialization, process execution or error handling.

2.2. XML Schema for ARINC 653 OS

The configuration data [13] of ARINC 653 is static data areas that are accessed only

by operating system, but they are not built as the part of the operating system.

Therefore, they cannot be accessed directly by any application. The ARINC 653

Specification provides an extensible XML Schema that defines the structure of the data

needed to specify any ARINC 653 configuration. The XML Schema consists of tagged

pairs that describe the attributes of elements and their relationship to the whole.

Figure 2 shows the elements and their relationship used to define the XML Schema

of ARINC 653. The square boxes represent the major elements and the attributes which

are appeared by the text inside the box. From the figure, An ARINC 653 Module

consist of seven major elements, one or more Partitions, a System HM table, a Module

HM table, a Connection table, one or more Partition HM tables, one or more Partition

Memory elements, and a Module Schedule. The requirements of the major elements are

as follows:

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

76 Copyright ⓒ 2014 SERSC

Figure 2. XML Schema Element Relationships (appear in [1])

 A Partition consist of five attributes, Partition Identifier, Partition Name,

Criticality, System Partition, and Entry Point, and zero or more sampling and

queuing port elements.

 Each sampling port or queuing port for Inter partition communications has a

unique attribute and several common shared attributes defined by PortType.

 All of HM tables should be made up of one or more System state entry which

includes Error ID Levels and Error ID Actions.

 The System state entry of the System HM tables is made up of one or more

Error ID Levels. The id levels are defined as a distinguished module, partition,

or process level errors. The process level errors are mapped to the predefined

error codes.

 The Module and Partition HM tables are made up of one or more the System

state entry that consists of one or more Error ID Actions. The Error ID Actions

are the definition of error handlers what the system OS is to do when the error

occurs in a specific system state.

 The Module Schedule of ARINC 653 is made up of Partition Schedule elements,

and the attributes for the Module Schedule defines the major frame rate for each

partition scheduling and the mapping of each partition to one or more partition

windows.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

Copyright ⓒ 2014 SERSC 77

 The Connection table defines the global channel identifications to their port

connections. Each channel consists of one source and one or more destinations,

where the source and destinations are either standard partitions or a pseudo

partition.

 The definition of Partition Memory must characterize the regions of memory

with proper codes or separated data that each partition has access to.

3. Design of Configuration Tool for ARINC 653 OS

The functional requirements for implementing avionics applications are integrated as the

system configuration data with satisfying the requirements for the design of an air-craft. For

guaranteeing safety critical executions of the applications, the ARINC 653 standard specifies

the configuration tables to make sure of minimum functionalities, such as partition

management, process management, time management, memory allocation, inter-partition

communication, intra-partition communication, and health monitor, that can be provided by

the system OS. This paper presents a configuration tool which considers the minimum

functionalities for the ARINC 653 OS.

To create the immaculate configuration file by System Integrator, our configuration tool

consider the following requirements.

 The configuration tool must provide a user interface (UI) to consist

automatically partition schedules of ARINC 653.

 The tool must provide any method to verify the integrity of the partition

schedules defined by user.

 The tool must consider the compatibility with integrated development

environment (IDE) for avionics software.

 The created configuration files (or XMLs) by the tool must apply the ARINC

653 OS.

Figure 3 depicts overall architecture of our configuration tool that consider above

requirements. This tool consists of three main parts, configuration part for creating and

maintaining the partitions of the ARINC 653 OS, verification part which checks the syntax

errors of the configuration data and verifies the integrity of the partition requirements, and

reporting part to provide related issues to the partition configurations.

Configuration part consists of three modules, Partition Wizard, Partition Editor, and XML

Editor. Partition Wizard defines the configuration data and creates a XML configuration file

for partitions based on the system requirements and the configuration tables of the ARINC

653 standard. By this module, memory areas that can be accessed by each partition are

allocated, and schedule methods are selected to archive robust execution of partitions.

Partition Editor provides the summary of partition configurations from the XML file to

modify the configurations including partition memory areas, partition schedules, and other

partition properties. XML Editor is a text editing module considering the XML Schema of the

ARINC 653 standard.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

78 Copyright ⓒ 2014 SERSC

Configuration Tool for ARINC 653 OS

Configuration Part

Partition Wizard Partition Editor

Verification Part

Schedule Verifier

Syntax Error
Detector

Reporting Part

System Integrator

requirements XML
Configuration

File

Configuration dataXML Editor

Error Marking
on XML Editor

Schedule
Visualization

Problem ViewReporting Verification

Figure 3. The architecture of our configuration tool

The verification part consists of the Syntax Error Detector and Schedule Verifier modules

to verify the XML configuration file. The Syntax Error Detector checks existing errors in the

context of the XML file by applying the XML schema. This module is internally behaved as

an error handler of the XML Editor module. Schedule Verifier is a module for verifying the

integrity of partitions by analyzing three kinds of scheduling configurations, such as module

schedules, partition schedules, and window schedules. Reporting part consists of three kinds

of error reporting modules, Error Marking, Problem View, and Schedule Visualization. The

Error Marking and The Problem View indicate the syntax errors fixed by the Syntax Error

Detector, and The Schedule Visualization graphically represents the status of scheduled

partitions verified by Schedule Verifier.

Start

End

Open the configuration file
Execution of the Partition

Wizard Module

Create or open the
configuration file

OpenCreate

Definition of partitions for
satisfying system requirements

Allocation of memory areas that
can be accessed by each

partition

Definition of scheduling
attributes for each partition

The Configuration
File

Modification of the Configuration File

Manual Modification

XML Editor

Modification using Control
Objects

Partition Editor

Verification of the Configuration File

Detection of Syntax Errors Schedule Verification

XML Editor Partition Editor

Reporting Syntax Error Reporting Schedule States

Uploading to Target System

Figure 4. The processes of our configuration tool

Figure 4 depicts the processes of our configuration tool. The configuration files are created

by the partition wizard module with three steps. These three steps define partitions of OS for

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

Copyright ⓒ 2014 SERSC 79

satisfying system requirements and scheduling attributes for each partition, and allocate

memory areas that can be accessed by each partition. The configuration files created and

opened by the partition wizard can be verified or modified by using the XML Editor or the

Partition Editor. The XML Editor provides the way to modify manually the configuration

files, and the Partition Editor provides an Interface to modify automatically the configuration

files only by controlling related objects. To verify the reliability of the configuration files, the

syntax errors are detected and reported by the XML Editor, and the validation of partition

scheduling for ARINC 653 OS is checked by the Partition Editor through the visualization of

the scheduling. The final configuration files that were completed three kinds of procedure (i.

e., automatic creation, manual or automatic modification, and automatic verification) are

uploaded to a target system by the integrator of the system.

With our configuration tool, it can guarantee that the integrating system and application

requirements are became more correct, because it automatically produces only verified

configuration data for ARINC 653 OS. Thus, the tool is useful for the system integration of

any air-craft as well as its facility.

4. Implementation

We implemented the configuration tool as a plug-in of the Eclipse Integrated Development

Environment (IDE) [17-18]. For the implementation, we used Java programming language

and the Eclipse Standard Development Kit (SDK) 3.8.1 for supporting Java Development Kit

(JDK) 1.7, and carried on a system with Intel i5 3.4GHz CPU and 4GB main memory under

Windows 7 OS. Figure 5 shows our configuration tool which consists of partition wizard,

multi-page editor, outline view, and problem view for defining and verifying configuration

data. In our implementation, we added the outline view that forms an overview list to provide

the circumstantial information of important configuration data, such as partitions, partition

memories, module schedule, and each HM table, and the problem view to provide the error

information in the XML configuration file.

Figure 5. Overview of our configuration tool for ARINC 653 OS

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

80 Copyright ⓒ 2014 SERSC

(a) Partition page

(b) Partition memory page

(c) Partition schedule page

Figure 6. The Partition Wizard of configuration tool

The Partition Wizard module is used in order to generate a XML configuration file through

a sequenced set of pages. The sequenced pages of this module provide three steps to define

partitions, partition memories, and partition schedules. Each page of the Partition Wizard

module appears in Figure 6. Figure 6(a) is the first step of the wizard to define partitions for

satisfying system requirements, and (b) is the second step to allocate memory areas that can

be accessed by each partition. The final step, Figure 6(c), defines scheduling attributes for

each partition and its windows. A XML configuration file will be recorded into an appointed

directory after all of three steps.

The multi-page editor consists of the Partition Editor and the XML Editor to modify the

XML configuration file which generated by Partition Wizard. Figure 7 shows each of the

Partition Editor and XML Editor. The Partition Editor, Figure 7(a), summarizes the

configuration data related to partitioning information which is defined in the XML file, and

provides control objects to modify the configuration data. The XML Editor, Figure 7(b),

shows source code of the XML file. This editor is more specific than general text editor for

the configuration data, because this considers the XML schema of the ARINC 653 standard.

(a) Partition editor (b) XML editor

Figure 7. Partition Editor and XML Editor of our configuration tool

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

Copyright ⓒ 2014 SERSC 81

(a) Schedule Visualization (b) Reporting Syntax Error

Figure 8. Reported results for the analysis of errors in a configuration

Figure 8 shows three modules of the reporting part, the Error Marking, the Problem View,

and the Schedule Visualization. Figure 8(a), the Schedule Visualization module, graphically

verifies the integrity of partitions by analyzing three kinds of scheduling configurations, such

as module schedule, partition schedule, and windows schedule. This module represents

scheduling problems which analyzed by the Schedule Verifier module of the Verification Part.

Figure 8(b) shows how both the Error Marking and the Problem View present the syntax

errors of the XML file which are located by the Syntax Error Detector. The Error Marking

module indicates the offending text with a squiggly under-line and an error icon on the left-

hand ruler for the XML editor, and the Problem view display the details of the errors.

5. Conclusion

ARINC 653 Specification defines a standardized interface of real-time OS and an APEX to

develop the reliable applications for avionics based on IMA. The requirements of system

platform based on ARINC 653 Standard are defined as configuration data and are integrated

to XML configuration file(s) in the real-time OS. Unfortunately, existing configuration tools

for integrating requirements do not provide checking the syntax error of XML and verifying

the integrity of input data for partitioning.

This paper presented a configuration tool which consists of three main parts for ARINC

653 OS. The XML configuration file can be easily generated and easily modified with our

configuration tool. Moreover, the tool graphically represents each scheduling errors and

reports syntax errors in the XML configuration file. Therefore, our configuration tool is

helpful to integrate the system requirements of applications for avionics based on IMA as

well as verifying the integrity of partitions. Future work includes improving the tool for

supporting health managements of ARIINC 653, such as HM tables of each level and error

handling.

Acknowledgements

This research was supported by the Korea Evaluation Institute of Industrial Technology (KEIT)

under “the Development of Verification System for Mid-sized IMA Project” (10043591) funded by the

Ministry of Trade, Industry & Energy and was also supported by the MSIP(Ministry of Science, ICT &

Future Planning), Korea, under the “SW master's course of a hiring contract” support program (NIPA-

2013-HB301-13-1004) supervised by the NIPA (National IT Industry Promotion Agency).

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

82 Copyright ⓒ 2014 SERSC

References

[1] Airlines electronic engineering committee (AEEC), Avionics Application Software Standard Interface -

ARINC Specification 653 – part 1. (Supplement 2- Required Services), ARINC inc., (2006).

[2] P. J. Prisaznuk, “ARINC 653 role in Integrated Modular Avionics (IMA)”, Proceedings of the 27th Digital

Avionics Systems Conference, (2008) October 26-30; St. Paul, MN.

[3] S. Santos, J. Rufino, T. Schoofs, C. Tatibana and J. Windsor, “A portable ARINC 653 standard interface”,

Proceedings of the 27th Digital Avionics Systems Conference, (2008) October 26-30; St. Paul, MN.

[4] O. -K. Ha, G. M. Tchamgoue, J. -B. Suh and Y. -K. Jun, “On-the-fly Healing of Race Conditions in ARINC-

653 Flight Software”, Proceedings of the 29th Digital Avionics Conference, (2010) October 3-7; Salt Lake

City, UT.

[5] G. M. Tchamgoue, O. -K. Ha, K. -H. Kim and Y. -K. Jun, “A Framework for On-the-fly Race Healing in

ARINC-653 Applications”, International Journal of Hybrid Information Technology, SERSC, vol. 4, no. 2,

(2011), pp. 1-12.

[6] P. J. Prisaznuk, “Integrated modular avionics”, Proceedings of the IEEE 1992 National, (1992) May 18-22;

Dayton, OH.

[7] T. Schoofs, S. Santos, C. Tatibana and J. Anjos, “An integrated modular avionics development environment”,

Proceedings of the 28th Digital Avionics Systems Conference, (2009) October 23-29; Orlando, FL.

[8] P. Parkinson and L. Kinnan, “Safety-critical software development for integrated modular avionics”,

Embedded System Engineering, vol. 11, no. 7, (2003).

[9] C. B. Watkins and R. Walter, “Transitioning from federated avionics architectures to Integrated Modular

Avionics”, Proceedings of the 26th Digital Avionics Systems Conference, (2007) October 21-25; Dallas, TX.

[10] N. Diniz and J. Rufino, “ARINC 653 In Space”, Dasia 2005, EUROSPACE, Edinburgh, Scotland, (2005).

[11] S. Han and H. Jin, “Full virtualization based ARINC 653 partitioning”, Proceedings of the 30th Digital

Avionics Systems Conference, (2011) October 16-20; Seattle, WA.

[12] J. Rufino, S. Filipe, M. Coutinho, S. Santos and J. Windsor, “ARINC 653 interface in RTEMS”, Proceedings

of the Data Systems In Aerospace, (2007) June; Napoli, Italy.

[13] A. Hrvath and D. Varro, “Model-Driven Development of ARINC 653 Configuration Tables”, Proceedings of

the 29th Digital Avionics Systems Conference, (2010) October 3-7; Salt Lake City, UT.

[14] Y.-H. Lee, D. Kim, M. Younis and J. Zhou, “Scheduling tool and algorithm for integrated modular avionics

systems”, Proceedings of the 19th Digital Avionics Systems Conference, (2000) October 7-13; Philadelphia,

PA.

[15] L. Kinnan, J. Wlad and P. Rogers, “Porting applications to an ARINC 653 compliant IMA platform using

VxWorks as an example”, Proceedings of the 23rd Digital Avionics Systems Conference, (2004) October 24-

28.

[16] S. H. VanderLeest, “ARINC 653 hypervisor”, Proceedings of the 29th Digital Avionics Systems Conference,

(2010) October 3-7; Salt Lake City, UT.

[17] A. Bolour, “Notes on the eclipse plug-in architecture”, http://www.eclipse.org/articles/Article-Plug-in-

architecture/plugin_architecture.html.

[18] C. Eric and D. Rubel, “Eclipse: building commercial-quality plug-ins”, vol. 2, (2006).

Authors

Eu-Teum Choi

He received the BS degree in Department of Applied Life Chemistry

from Gyeongsang National University (GNU), South Korea. He is

currently enrolled MS degree from the Department of Informatics in

GNU. He worked as an engineer of IT department in Korea industry for

two years. His research interests include distributed programming and its

debugging, embedded system programs for avionics, and dependable

systems.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

Copyright ⓒ 2014 SERSC 83

Ok-Kyoon Ha

He received the BS degree in Computer Science under the

Bachelor’s Degree Examination Law for Self-Education from

National Institute for Lifelong Education, and the MS and PhD

degree in Informatics from Gyeongsang National University (GNU),

South Korea. He is now a Research Fellow of Engineering Research

Institute (ERI) in GNU. He worked as the manager of IT department

in Korea industry for several years. His research interests include

parallel/distributed programming and its debugging, embedded

system programs, and dependable systems. Dr. Ha is a member of

Korean Institute of Information Technology (KIIT) and Korea

Institute of Information Scientist and Engineers (KIISE).

Yong-Kee Jun

He received the BS degree in Computer Engineering from

Kyungpook National University, and the MS and PhD degree in

Computer Science from Seoul National University. He is now a full

professor in the Department of Informatics, Gyeongsang National

University, where he had served as the first director of GNU Research

Institute of Computer and Information Communication (RICIC), and as

the first operating director of GNU Virtual College. He is now the head

of GNU Computer Science Division and the director of the GNU

Embedded Software Center for Avionics (GESCA), a national IT

Research Center (ITRC) in South Korea. As a scholar, he has produced

both domestic and international publications developed by some

professional interests including parallel/distributed computing,

embedded systems, and systems software. Prof. Jun is a member of

Association for Computing Machinery (ACM) and IEEE Computer

Society.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

http://www.ce.kyungpook.ac.kr/
http://www.kyungpook.ac.kr/
http://cse.snu.ac.kr/
http://www.snu.ac.kr/

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

84 Copyright ⓒ 2014 SERSC

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

