International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014), pp.375-386
http://dx.doi.org/10.14257/ijmue.2014.9.4.38

Two Exploring Experiments on IMS Service Based on SIP AS

Kun Li, Baozhong Cheng, Xiaoyan Zhang and Youzheng Chen

School of Software Engineering
Beijing University of Posts and Telecommunications
Beijing, China
kunsland1990@gmail.com, bzcheng@bupt.edu.cn ‘\)’

Abstract z

The IP Multimedia Subsystem (IMS) has been deploy IdW|d veral years, but
we are still confused about what we can do WI eulng Education
rvice 0

Commission, we did some exploring study on designed two lab
experiments to help students to learn about the focusﬁ} development of two IMS
services, Chat Room and Presence Servi an d SIP Application Server. The
architecture and the detailed design of f vices are ented These two experiments
have been applied to the practical tralr)@nse f rgraduate students.

Keywords: IMS; SIP; SIP Iet Appll a& Server; Teaching Cases; Chat Room;
Presence Service @

1. Introduction \\Q \\’Q

IP Multimeystem @@{)ﬁ getting popular in recent years for its potential to

converge the Iaterdet, T @e network, and telephone network. IMS networks are being
deployed worldwide, th high demand for people who understand the concepts and
master the software (/bopment techniques of IMS. We began to develop an IMS software
development train@bgram. Based on the open source projects, Open IMS and Mobicents,
several IMS iments have been developed. The experiments have been used in practical
training co \%Hd are welcomed by students.

For b LQrs it is usually better to learn by examples. So we introduce the following steps

% easier to start with. First, we explain the environment setup of the experiments.

Seconty, we analyzed the requirements according to a simplified version of IMS
specification, and created a UseCase Model. Finally, we explain the design of the experiments
using Unified Modeling Language (UML) diagrams.

2. The Environment Setup of Our Experiments

In this paper, we focus on the application layer development and try to explain to
beginners how to develop a service on an IMS application server. One of the services
designed uses Session Initiation Protocol (SIP) Instant Message (IM) to implement
Chatroom Service, and another service was designed to implement the Presence

ISSN: 1975-0080 IUMUE
Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014)

Service. There are four types of application servers (AS) in IMS, namely SIP AS,
Parlay/OSA AS, IM-SSF, and Web portals. SIP is defined by IETF. And it is the basic
signaling protocol in IMS. [1] Both of our teaching experiments are designed to work
on SIP AS. SIP AS provides an open plug-and-play platform for service development.
The experiments help beginners to understand the basic architecture of IMS.

IMS Core

iPhon

@re 1. QE@ecture of the IMS Experimental Network

We use Open | ‘@'fe [2] as a test bed and the enhanced JBoss as the container of
AS. The Open IM&re is an open source implementation of IMS core network, which
consists ofﬁ%%x'y-Call Session Control Function (P-CSCF), Interrogating CSCF (I-
CSCFR), Se@w CSCF (S-CSCF), and a lightweight Home Subscriber Server (HSS). As
JBos A@ self does not support SIP Servlet technique, we use a JBoss-based IMS
ap@on server, Mobicents SIP Servlet server (MSS), developed by an open source
organization called Mobicents. In terms of development kit, we choose Eclipse in Java
EE version. The IMS UE used in the experiments includes PC based IMS UE, Android-
based IMS UE, and iPhone-based IMS UE. The IMS core network is connected to the
IMS UE with LAN or WLAN, as shown in the Figure 1. [3]

The IMS core is actually composed of four parts, P-CSCF server, I-CSCF server, S-
CSCF server and HSS server. [4] Each part of IMS core can be deployed on an
independent server and connected with each other. Also, four parts of IMS core can
work together and act as one to the user or application server. The SIP application

376 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014)

server is run on JBoss AS. [5] The Figure 2 shows the general architecture of the AS
application. [6]

To keep the experiments simple, only one IMS domain is used in the design of the
two experiments.

Application Layer |

1 1

Chatroom Presence

O

%
e

Middle Layer |

—

DQ N[0 soss s

[
,@gure 2. Architecture of the AS Application

3. The Regdirement of Our Experiments

Service.

igure 3 shows the UseCase Diagram of Chat Room Service. In this case, users join a
chat room and send messages to the ChatRoom Server. The server forwards the messages to
the other users who are also in the chat room. Furthermore, users can check the online user
list or quit the chat room.

In i@ ion, we will discuss the requirement of our experiments, ChatRoom Service and
Pr
Th

Copyright © 2014 SERSC 377

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014)

ChatRoom Service

Enter the
ChatRoom
- Send
Messages ——] <<actor>>
\ OpenlMSCore
user
Check Online
Users

Quit the / 6
ChatRoom 6 ¢ @
Figure 3. UseCase Diagram %?oo@%}ce

/

/

<<actor>>
OpenIMSCore

Fi %4. UseCase Diagram of Presence Service

subscribes us of other users and gets confirmation from the presence service. Once the
subscripti lationship is established, the status published by one user will be received by
all i ibers. In addition, a user can unsubscribe the Presence Service if needed.

The FiguE§ shows the UseCase Diagram of Presence Service. In this case, a user first

4. Design and Implementation

The class diagram is shown in Figure 5, where the class ChatRoom plays a role of the logic
of Chat Room Service and the class PresenceServer of the Presence Service. Both are
extended from the class SipServlet.

378 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014)

SipServiet
. + doMessage() : void
Session + doSubscribe() : void
- ssn : SipSession + doPublish() : void
- watcherName : String
- presentityName : String

'\\\
\\\\\
Prosentity ‘\‘ : , ChatRoom
~presentityName : String -userlList: ArrayList
- status : String

+ refreshUserList(userName : String) : v
+doCommandMessage(command : S
+ broadcastMessage(msg : String) : v0|d

M | ;
PresenceServer 6

- sessionList : ArrayList

- presentityList : Presentity

+ doSubscribe() : void \)

\
\
\
Y + doMessage() : void
1]
N, '
1
1
1
1
)
1
)
1

+ doPublish() : void

+ refreshPresentityList(usrName : String, status : String) :

+ getWatcherSessionList(presentityName : String) : ArrayL

+ sendNotifyToWatchers(watcherSessionList : ArrayLlst status™String) : v0|

+ sendNotifyTowatcher(session : Session, status : S VOId

+ updateSessionList(presentityName : String, ssn_. ession) : qu

+ getPresentityList(presentityName : String): @
Figure 5. Class

wo Services

When a user entered the ch?km by cal the chat room SIP address, the instance of

ChatRoom on the AS will w the S s both of ChatRoom and the user. Then the
ChatRoom will forwar A

SIP GE which is sent by users with method
broadcastMessage to

embersA%he exact chat room. In addition, the ChatRoom will do
some “comma with method doCommandMessage.
When users

ect to,thetMS with UE like iPhone, Android or PC, the presence service
will automatically trigger \if™he/she enabled the presence service. Then the instance of
PrenseceServer runni the AS will process the SIP request of PUBLISH and
SUBSCRIBE wit tion doPublish and function doSubscribe respectively. The class
Session is igned” for maintaining SIP Session status and the class Presentity is for

maintainin
The

ce Diagram of this service is shown in Figure 6. In terms of Chat Room Service,
n join the chat room, and send message to the server. Then the server will invoke

method doMessage, which is the Application Programming Interface (API) provided by MSS
for responding the user’s request.

Copyright © 2014 SERSC 379

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014)

<<actor>> ChatRoom :
: OpenIMSCore SipServiet

Alice : user Bob : user

1: MESSAGE(), 2: MESSAGE() >

3: doMessage() ||
4:200 OK()

6: refreshUserList() i

5: 200 OK()

7::doCommandMessage()

9:MESSAGE() | o 8:MESSAGE()
[r 10: 200 OK() 11: 200 OK()

2: broadcastMessage()

L -5~

16

5 Misi% - 18200 0KQ T|
docp JT N7 I

(.)

Figure 6. Seﬁt&uce Dlag Chat Room Service

The first action taken server, nd 200 OK Response back to the user agent.
Then the server will eYcorrespon user to the “user list” if he or she joined the chat
room for the first t en, b on the content of the message, the server will take
different steps. kg manw e” like “/who”, which act as a request to check the
names of all @ ers in t%ch room currently, the server will return a corresponding
message to the sérder. Fo messages, the server will broadcast the message to the rest in
the chat room. Some i t codes are shown in Figure 7.

[aN

Y
//%)dle the SIP MESSAGE sent by user agent
\ !(Erotected void doMessage(SipServletRequest req){

C // send 200 OK message back to the user agent
O req.createResponse(SipServletResponse.SC_OK).send;
// get the sip address of user agent
String from = req.getFrom().getURI().toString();
//get the type of message content
String contentType = req.GetHeader('"Content-Type");
// get the message content
Object message = req.getContent();

Figure 7. Handling SIP MESSAGE Request

380 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014)

The Presence Service implemented here is a simplified implementation of the Presence
Service defined by 3GPP [4]. For example, for any subscription messages sent to the presence
server, a simplification was made in our implementation that a subscription is not authorized
by the person being subscribed. [7] All subscriptions will be authorized unconditionally by
the presence server [8]. By using the presence service, a user can watch the status and
communication willingness of people he/she is interested in, and publish his or her own status
and communication willingness to other people. [9]

First of all, one should subscribe the presence status of someone by sending a
SUBSCRIBE SIP message. The Sequence Diagram of SUBSCRIBE service iWn in

Figure 8.
4 = P
% <<actor>> "ﬁ&senceéc;
Alice : user :OpeniMSCore | : pswlset)

1: SUBSCRIBE(‘

3: doSlﬁscribe()

%$OK()
y

| oo © i
=
T__I
T__I

7: getPresentityStatus()

8: sendNotifyToWatcher()

|

\%, 9: NOTIFY()
Q)Y 1 g 10:NOTIFY(<

@0 I:ﬂ 11: 200 OK(12: 200 OK()

T
1
1
1

Figure 8. Sequence Diagram of SUBSCRIBE in Simplified Presence Service

Copyright © 2014 SERSC 381

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014)

protected void doSubscribe(SipServletRequest req){
// accept the subscription
SipServletResponce resp =
req.createResponce(SipServletResponce.SC_OK);

resp.send(); &').
C
Figure 9. Handling SIP SUBSC Iﬁéques@

To respond the SUBSCRIBE messages, the serv@l vok eth doSubscribe (shown
in Figure 9).When someone, Alice for example S CRIB‘% rs, like Bob, the server
will not forward the message to Bob. Instead erver, wit_keep the session and send 200
OK SIP Response which means Bob has ac the subs&%aon

The most important thing in Presen |ce |s quite different from Chat Room
Service, is the SIP Session, Whl h ated atcher like Alice when she sends a
SUBSCRIBE message to Bob Sa un atcher to-presentity relationship. And as
Figure 10 depicts, it will be used to create TIFY message to Alice when Bob sends a
PUBLISH message to ch is stat e server will save the session immediately to
the “session list” elved a IBE message. The following step of the server
is to check the stat ob usi e Allce—to Bob session, which is quite different from
Bob-to-Allce o create aNOTIFY message to Alice.

SipSessi ssion = req.getSession();

// \ég message

/ ate a NOTIFY sip message

Y
// save f—‘@ from the SUBSCRIBE request for doPublish method

ervletRequest notify = session.createRequest("NOTIFY");

// send NOTIFY message to the the session owner
notify.send();

Figure 10. Create SIP NOTIFY Request

382 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014)

<<actor>> PresenceServer
Bob : User : OpenIlMSCore : SipServiet Alice : user
] T
i i
i 1: PUBLISH(), 2: PUBLISH() ’_i_
3: doPublish()
4:200 OK()
5:200 OK()

e
1
1

| 6: refreshPresentityStatus()

O

8: sendNotifyToWatchers()

7: getWatcherSessionList() i |
Y

9: NOTIFY() N

C—;
2y

>

Figure 11. Sequence D$m of P}@ISH in Simplified Presence Service

-.(\@ "N

protecteé\ doPubl:.s ipServletRequest req){

@

// retriev ers’ sessions from instance of the class Session
// hidd saving space

@ each watcher with these sessions
%fy setContent (content, "application/pidf+xml");

notify.send();

ieve the st s of the one who publishes his or her status
t co nt/ /=) req.getContent();

ot

Figure 12. Handling SIP PUBLISH Request

The Sequence Diagram of PUBLISH service is shown in Figure 11. Once Alice subscribed
Bob, the presence server will forward Bob’s each PUBLISH message to Alice in NOTIFY
message. To handle this, the server will invoke method doPublish. But before it sends the
NOTIFY message, the server should finish another two tasks, refreshing Bob’s status (shown
in Figure 12) and retrieving Bob’s ”watcher session list”, which means obtaining anyone-to-
Bob session from the session list”. With these sessions, the server will respectively notify

Bob’s watchers.

Copyright © 2014 SERSC 383

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014)

5. Teaching Cases

We have designed two teaching cases—Chat Room Service and Presence Service—to inspire
the study interest of the students in IMS and value-added service in IMS. In the teaching
cases, students are assigned to two different groups, one group focuses on the aspect of IMS
AS (AS Group) which is depicted above, the other one focuses on the aspect of IMS Client
(Client Group) which is not described in this paper in details. In the AS Group, students are
told to go through the experiments by three steps. The first step is to design a chat room
server on the AS with a test client named UCT IMS Client. In this step, students learn about
the basic knowledge of IMS. The second step is to design a presence server specified in this
paper (in Design and Implementation Section) and test with client group. In this ste&yients
learn about the knowledge of value-added service in IMS. The last step is to desi andard
presence server specified by 3GPP and test it with Client Group.

6. Conclusion 6) @6

In this paper, we designed and implemented tw g experi for IMS beginners.
Both experiments are based on SIP Servlet API, a n be in an IMS AS. Some
UML diagrams are used to explain the requirerment and design he two experiments. The
two experiments have been used for undergra&gstuden practical training course. The

response from the students and teachers % itive. The ‘eXperiments help the students to
grasp the abstract concepts of IMS, an n thei@standing of the IMS services.

Acknowledgements QQ) %

[]
This project is sponsored by<Beijing Equca ommission. It took several months to finish the
Il

design, implementation, an ing of t iments. A lot of people have participated in the
development process. W8 like to th the teachers and students who made contributions to
this project, especially Taj i

iang, a@ian Pan.
References QQ :

[1] J. Rosenberg, H. Schul @ Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley and E. Schooler,
“Sip: Session initiati col”, Internet Engineering Task Force, RFC 3261, (2002) June.

[2] FOKUS, Openimsparegrg — the open source ims core project, (2013).

[3] P. Subramanian . PG, “Convergence of java ee and sip in ims as”, in IP Multimedia Subsystem
Architectute ahd Applications, (2007).

[4] 3GPP, “Ipaumaliimedia subsystem (ims); stage 2”, 3rd Generation Partnership Project (3GPP), TS 23.228,

65, (2002).

[6] J. uelle, “sipservlets - leading html5 webrtc compliant sip/ims application server”, (2013).

[7]1 C.<Chi, R. Hao, D. Wang and Z. Cao, “Ims presence server: Traffic analysis and performance modelling”, in
Network Protocols, (2008).

[8] Y.Yang,J. Luo, J. Peng and J. Huang, “Research and implementation on presence service of ims”, 3rd IEEE
International Conference on Broadband Network and Multimedia Technology 2010, (2010), pp. 803-806.

[91 M. El Maarabani, A. Adala, I. Hwang and A. Cavalli, “Interoperability testing of presence service on ims
platform,” 5th International Conference on Testbeds and Research Infrastructures for the Development of
Networks Communities and Workshops 2009, TridentCom, (2009), pp. 1-6.

(2013) Naqvember.
[5] % ch, “Session initiation protocol (sip)-specific event notification”, Internet Engineering Task Force,

384 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014)

Authors

Kun LI
Graduate Student
School of Software Engineering
Beijing University of Posts and Telecommunications

Baozhong Cheng 4%
Professor \ @
School of Software Englnee
n%tions

Beijing University of Posts,and Teleco

%\Qﬁ .
N \\@

Xiaoyan Z&Q) &

Profe
®of S% ngineering

Beijing ersity of Posts and Telecommunications
uzheng Chen
Student

School of Software Engineering
Beijing University of Posts and Telecommunications

Copyright © 2014 SERSC 385

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014)

386

