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Abstract 

The sparse linear method can reduce or expanse the solution range of integer 

programming problem by using former enumeration method lists all solution space, and then 

constraining them into a scale, after that picking up optimal solution form this scale. 
Calculation time will be reduced by using a revised integer programming model based on 

sparse linear, which can help reduce the number of solution space. 
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1. Introduction 

Concurrent Open-Shop Scheduling Problem is an important research branch of Open-Shop 

Scheduling. It has wide applications in many aspects, such as modern transport and logistics 

industry, modern service industry, large-scale systematic maintenance industry, clothing 

industry, health care and so on [1]. In recent years, artificial intelligence
 
[2], computational 

intelligence, real-time intelligence and other research results have been applied to the solving 

process of Concurrent Open-Shop Scheduling Problem, which achieved remarkable results. 

Therefore, analysis of the Concurrent Open-Shop Scheduling Problem not only for plays an 

important role in promoting scheduling theory, but also has practical significance. 

 Differed from Flow Shop and Job, workpiece can be processed on machines by various 

order, no fixed processing order, so the number of its feasible solution is huge. Compared 

with the traditional open workshop, they have similar features. Their process is not bound by 

the orders, the difference between them is concurrent open-shop can make multiple machines 

work on a workpiece simultaneously, which has more feasible solution space, therefore most 

of the concurrent open-shop scheduling problem is NP-complete problem that makes us 

cannot  get accurate optimal solution in time.  

TEOFILO and SARTAJ [3] are considered the first two to put forward the definition of the 

open-shop scheduling and the open-shop scheduling application examples, and give the open 

workshop the detailed description, and introduce the interruptible and non-interruptible open-

shop scheduling problem which proves that the two machine open-shop scheduling problem 

is polynomial complexity problem. Later scholars have found that most of the open-shop 

scheduling problem is NP problem; it can't give exact solution of the problem. Sergey. V. 

evastianov and Gerhard j. oeginger 
[4]

 used a polynomial time approximation algorithm to the 

solving of open-shop scheduling problem with the minimum manufacturing period.  
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Then many scholars proposed concurrent workshop model of the open-shop scheduling 

based on the open-shop scheduling. Concurrent open-shop scheduling model in 1979 was the 

earliest, [5]
 
Baker put forward m completely machine parallel machine environment of 

workshop, and if the m value is an arbitrary value, will this problem markers for PD, m 

parallel machines in this paper refers to m machine can processing that can be together do 

concurrent processing. Recently, Roemer [6] for concurrent open-shop scheduling problem 

has carried on the classification of the different target summary, the complexity of the 

problem are given for different target.  

NP is also called non-deterministic polynomial problem. Non-deterministic algorithm, 

which consists of conjecture and verification, should be defined firstly to the definition of NP 

problem. When dealing a satisfiability problem, a guess will be made by non-deterministic 

algorithm firstly, and the initial value will be granted, after that, whether the value meets the 

function could be known. If the function requirement is fulfilled, then the guess of non-

deterministic algorithm is correct. If the time complexity of non-deterministic polynomial is a 

polynomial, then this algorithm is called as non-deterministic polynomial problem. 

Otherwise, if the problem can only be solved by non-deterministic polynomial problem, this 

problem is called as NP problem.  

Sparse linear is a popular NP problem solving method in recent years, and can make the 

large scale of integer programming problem sparse appropriately. After sparseness, the 

integer programming model can reduce the number of feasible solution, and get the order of 

approximately optimal solution. (Near optimal solution)The near optimal solution and 

similarity between near optimal solution and optimal solution could be obtained and approved 

by ordering questions, after analyzing the tendency of the sparse result.  

 

2. The Sparse Linear of Integer Programming Model  

The relationship between sparse linear model and unrevised integer 

programming model is followed:   

Goal function of integer programming model and integer programming model based sparse 

linear are the same, but the constraint parameters of sparse linear model turn from integer 

parameters into similar constant parameters. The complexity of integer programming model is 

reduced by minimizing or maximizing the scale the constraint condition of sparse linear 

model. But, the calculation result will be waived from the actual optimal solution after 

altering the constraint parameters and condition. In this paper, the sparse linear aims to reduce 

the constraints of integer programming to optimal solution, time complexity of integer 

programming model, and time consuming.  

   

3.   Integer Programming Model based on Workpiece’s Completion Time 

Workpiece completion time variable integer programming model is based on the 

workpiece completed time nodes, then we establish relationship between relevant workpiece 

completion time and processing time, the relationship between the different constraint 

conditions should be established by the unequal relationship between the workpiece 

completing time node and the beginning time of processing, such as workpiece-j should be 

processed after the workpiece-k, establishing the constraint relations with completion time 

variables can be expressed as:
max( , ) ik ik ij ikc s c p

 

Inequalities are given work-piece k’s completion time to greater than or equal to j’s 

completion time which is ahead of k, and the work-piece ready time in the larger value of k, 

and sum of the processing time of k.  
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There is no accurate solution method for solving multi-objective problems now, thus for 

validating model, we can only model and solve to the target of the minimized manufacturing 

duration. The integer programming model according to the completion time variables is set up 

as follows, notes for IP3-1:  

minimize max ),...,2,1(),,...,2,1( minjcij   (3-1) 

jijiij pcc ''   or ijijji pcc ' )...1(',),...1(),...1( miiminj   (3-2) 

ijikij pcc   or ikijik pcc  )...1(,),...1(, mikjnkj   (3-3) 

jij rs    )...1(),...1( minj   (3-4) 

ijijij psc    )...1(),...1( minj   (3-5) 

ijc  is integer  )...1(),...1( minj   (3-6) 

ijs  is integer  )...1(),...1( minj   (3-7) 

 

4. Sparse Linear of IP3-1  

Sparse linear method, which is called Queyranne-Multi-Dimension Machine Scheduling 

Method of No Interruption, is used to integer programming model IP3-1 built to obtain the 

sparse linear constraints of one machine scheduling problem, which also means that the 

sparse linear based on formula (3-3). Although the constraints focus on one machine 

scheduling, it can also be used to Concurrent Open-Shop Model in this paper, and to get near 

optimal solution combined with algorithm based on principles.  

To one machine scheduling problem, if no leisure exits in machine scheduled, every 

workpieces, which the total quantity of the workpiece is J, have to processed in that machine, 

the time of processing workpiece on each machine is jp  j J
, the processing finished time 

of workpiece is jc
. Q is the feasible solution set in scheduling, q is one of solutions in Q, the 

processing order is q1，q2,…,qn, then the total quantity of feasible solution in Q is n!. 

According to an order of q, the jc
= jp

or jc
= 1+j jp p   is reasonable, due to the no leisure time 

and no interruption processing. 

1

J

j j
j

p c



=

                  
1 1 2 1 2 3 1 2 3 1 2

. . . . . .
n n

p p p p p p p p p p p p p  

(4-2) 

                                       
 

The right side of the formula(4-1) simplifies to:  
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     


           


2 2 2 2 2 2

1 2 1 2 1 2 3 1 2

1 1
. . . . . .

2 2n n
p p p p p p p p p p p

       1 2
. . . . . .

n n
p p p p =  2 2 2 2

1 1 2 2 3 3 1 2

1

1 1 1
2

2 2 2


       



n

i

i

p p p p p p p p p  

     2 2 2

4 5 4 1 2 3 1 2 1

1
... 2 ... 2 ...

2
         n n np p p p p p p p p p p            

(4-2) 

        
Formula (4-2) on the right side of the second part application of mathematical induction 

to prove: 

   2 2 2

1 1 2 2 3 3 1 2 4 1 2 3

1 1
2 2

2 2
p p p p p p p p p p p p           

   2 2 2

1 2 1 4 5

1
... 2 ... ...

2
n n np p p p p p p       =

2

1

1

2 

 
 
 


n

i

i

p  
(4-3) 

            
According to formula (4-1), formula (4-2), formula (4-3) simplifies to type: 

2

2

1 1 1

1 1

2 2  

 
   

 
  

J n n

j j i i

j i i

p c p p  (4-4) 

 

In multi machines concurrent processing problem, presumption that every machine makes 

constant processing to every workpiece, but as the existence of machine interruption, there 

will be workpiece preparation requirement, which causes the waiting spare time to 

workpieces and machines. So, the separate limitation of concurrent open-shop scheduling 

problem made as below, the sparse revised to function (3-3) is following: 

2

2

1 1 1

1 1

2 2  

 
   

 
  

J n n

j j i i

j i i

p c p p        1,2,...,i m       (4-5) 

ijc   is integer               (1,2,..., ), (1,2,..., )j n i m     (4-6) 

              

The IP4-1 is the new integer programming model which consists of formula (3-1), (3-2), 

(4-4), (3-5) and (4-6). IP4-1 is sparse linear integer programming model of IP3-1. The new 

model turns formula (3-3), which means a kind of mechanical separation constraint, into 

formula (4-9), which means a machine can only process one workpiece at a period of time. 

This resource constraint results in a lot of discrete constraints, which is the main reason of the 

huge solution space. The calculation time will increase, as the increasing of solution and time-

complexity. Applying formula (4-9) can improve the time complexity obviously and reduce 

the number of constraints, the problem of IP3-1, which caused by much constraints and large 
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calculation time resulting from huge solution space, can be basically solved by changing the 

NP problem into a formula of polynomial time complexity. IP4-1 is as following: 

minimize max ijc                      (1... ), (1... )j n i m        (4-7) 

' ' ij i j i jc c p
 
or 

'  i j ij ijc c p
  

(1... ) (1... ) ' (1... ) 'j n i m i m i i     , ， 且  (4-8) 

2

2

1 1 1

1 1

2 2

J n n

j j i i

j i i

p c p p
  

 
   

 
           {1,......, }i m      (4-9) 

ij js r                    (1... ), (1... )j n i m        (4-10) 

 ij ij ijc s p                    (1... ), (1... )j n i m     (4-11) 

ijc
 
is integer                 (1... ), (1... )j n i m     (4-12) 

       

5   Simulation Analysis of Sparse Planning 

This section will use five-group  cases to simulate the integer planning model IP3-1 and 

IP4-1 of concurrent open-workshop scheduling , data of cases takes randomly, the matrix 

scales of workpiece processing time window, respectively, are 4*3, 5*4, 6*4, 6*6, 7*5. 

According to the constraints of model, we write CPLEX program, and give the examples of 

processing-time’s matrix, respectively, into a simulation, simulation results data unit is 

minutes. 

Example one: 

A given instance of 4 pieces and 3 machines is in example one, and given processing time 

matrix shows in Table 5.1, additional constraints that machine 3 and machine 2 cannot be 

concurrent processing, table data unit is in minutes. 

 

Table 5.1. Example-processing-time’s matrix  

 machine1 machine 2 machine 3 ready time 

workpiece 1 3 7 5 1 

workpiece 2 1 4 7 2 

workpiece 3 8 2 6 1 

workpiece 4 4 9 4 0 

 

Example two: 

A given instance of 5 pieces and 4 machines is in example two, and given processing 

time matrix shows in Table 5.2, additional constraints that machine 3 and machine 2 

cannot be concurrent processing, table data unit is in minutes. 

 

Table 5.2. Example-processing-time’s matrix 
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 machine1 machine2 machine3 machine4 ready 

time workpiece 1 3 7 5 4 1 

workpiece 2 1 4 7 2 2 

workpiece 3 8 2 6 5 4 

workpiece 4 2 6 9 2 3 

workpiece 5 4 6 3 9 2 

 

Example three: 

A given instance of 6 pieces and 4 machines is in example three, and given 

processing time matrix shows in Table 5.3, additional constraints that machine 3 and 

machine 2 cannot be concurrent processing, table data unit is in minutes. 

 

Table 5.3. Example-processing-time’s matrix 

 machine1 machine2 machine3 machine4 ready 

time workpiece 1 3 7 5 2 1 

workpiece 2 1 4 7 3 7 

workpiece 3 8 2 6 4 4 

workpiece 4 2 6 9 5 3 

workpiece 5 1 2 4 6 5 

workpiece 6 2 7 9 3 4 

 

Example four: 

A given instance of 6 pieces and 4 machines is in example four, and given processing 

time matrix shows in Table 5.4, additional constraints that machine 3 and machine 2 

cannot be concurrent processing, table data unit is in minutes. 

 

Table 5.4. Example-processing-time’s matrix 

 machine1 machine

222 

machine3 machine4 machine5 machine6 ready 

time workpiece1 6 7 5 3 9 4 1 

workpiece2 2 8 0 8 1 3 2 

workpiece3 7 3 6 5 4 5 0 

workpiece4 2 5 9 1 8 7 3 

workpiece5 5 2 9 4 7 9 2 

workpiece6 4 2 8 3 1 7 1 

 

Example five: 

A given instance of 7 pieces and 5 machines is in example five, and given processing 

time matrix shows in table 5.5 additional constraints that machine 3 and machine 2 

cannot be concurrent processing, table data unit is in minutes. 
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Table 5.5 example-processing-time’s matrix 

 machine1 machine2 machine3 machine4 machine5 ready time 

workpiece1 2 7 6 4 6 1 

workpiece2 1 4 7 2 3 2 

workpiece3 8 2 6 3 1 4 

workpiece4 4 9 4 6 7 1 

workpiece5 3 2 8 2 2 3 

workpiece6 5 6 4 1 4 4 

workpiece7 3 9 4 6 4 7 

 

Simulation of IP3-1, the calculation time, number of variables, and number of 

constraints are as Table 5.6 

 

Table 5.6 The Performance Parameters of IP3-1 

 
number of 

variables 

calculation time

（second） 

number of 

constraints 

calculation speed（

second） 

Example 1 24 0.05 156 17948.4 

Example 2 40 5.91 325 22114.8 

Example 3 48 23.07 462 22737.4 

Example 4 60 105.6 574 16575 

Example 5 70 49865.6 784 17723 

 

Simulation of IP4-1, the calculation time, number of variables, and number of 

constraints are as Table 5.7 

 

Table 5.7  The Performance Parameters of IP4-1 

 
number of 

variables 

calculation time

（second） 

number of 

constraints 
calculation speed（

second） 

Example 1 24 0.03 60 1826.9 

Example 2 40 0.05 84 1321.6 

Example 3 48 0.11 108 1217.9 

Example 4 60 0.24 136 2438.9 

Example 5 70 0.37 168 5507.4 

 

From Table 5.7, the number of constraints of sparse linear method has reduced. 

Calculation time has reduced as the reducing number of sparse integer programming 

model, all five numerical examples cost no more than 1 second. So, from the simulation 

comparison above, the calculation time has reduced a lot, as the replacement formula 

(3-3) with formula (4-5) and formula (4-6) in IP4-1 model. 

The begin time and end time of processing are shown as Table 5.8 and Table 5.9 

respectively, the end time of the fifth numerical example is 26 minutes. From the sparse 

result, it can’t be the solution of scheduling problem, as it can’t meet constraints, which 

include no concurrent work in interrupted machines of concurrent open-shop and time 

window of workpiece machining time.    
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Figure 5.1  Calculation speed 
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Figure 5.2  number of Constraints 
 

Table 5.8 the Begin Time of Machining 

 machine1 machine 2 machine 3 machine 4 machine 5 

workpiece 1 18 11 20 15 6 

workpiece 2 22 22 15 22 23 

workpiece 3 4 17 19 4 21 

workpiece 4 18 12 16 1 1 

workpiece 5 21 23 12 23 24 

workpiece 6 5 14 16 12 19 

workpiece 7 7 13 14 7 7 
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Table 5.9. The End Time of Machining 

 machine 1 machine 2 machine 3 machine 4 machine 5 

workpiece 1 20 18 23 19 12 

workpiece 2 26 26 22 24 26 

workpiece 3 12 19 25 7 24 

workpiece 4 22 21 18 7 8 

workpiece 5 24 25 21 25 26 

workpiece 6 10 20 20 16 16 

workpiece 7 10 17 16 13 11 

 

6. Conclusion 

After making sparse linear to mathematics integer programming model of scheduling 

problem, the solutions can’t meet the constraints of scheduling problem model, as the 

maximizing and minimizing of constraints of former model. These solutions can be the 

accordance of regular algorithm, but not the solutions to scheduling problem.  
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