
International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014), pp.221-226

http://dx.doi.org/10.14257/ijmue.2014.9.4.23

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2014 SERSC

Implementation of GP-GPU with SIMT Architecture in the

Embedded Environment

Kwang-yeob Lee and Jae-chang Kwak
1
*

Dept. of Computer Engineering, Computer Science*, Seokyeong Univiersity,

Jeongneung 4-dong, Seongbuk-gu, Seoul, Korea

kylee@skuniv.ac.kr, jckwak@skuniv.ac.kr*

Abstract

Recent embedded processors become to be multi-cored, due to the increased power

consumption by higher operating frequencies. Multi-core processors stimulate applications to

be parallelized. Since general purpose CPU has small number of core, which is optimized for

serial processing, it has a limitation of parallel processing. To overcome this limitation, GPU

is used for the parallel processing. In this paper, we implement GP-GPU of SIMT

architecture for parallel processing in the embedded environment. The performance of the

implemented GP-GPU is compared with the existing multi-core CPU of the embedded

environment. The comparison results show the performance of parallel processing with the

implemented GP-GPU is improved significantly.

Keywords: GP-GPU, SIMT, parallel processing, embedded environment

1. Introduction

The performance of processors has been improved by increasing operating frequencies

based on speeding up transistors. In the 90nm manufacturing process, since the increased

power consumption limits raising the operating frequency, processor designers are started to

increase the number of cores to improve the performance. Multi-core processors stimulate

applications to be parallelized. Since general purpose CPU has small number of core, which is

optimized for serial processing, it has a limitation of parallel processing. To solve this

limitation, GPU is used for the parallel processing.

GPU (Graphic Processing Unit) is kept developed up to GP-GPU (General Purpose

Graphic Processing Unit). GP-GPU is getting to include most of techniques of existing CPU.

GPU is not only for graphic data processing, but also for general purposes. GPU is composed

of simple structured efficient cores. The number of cores is from tens up to thousands. These

cores are suitable for the parallel processing [1].

Recently, applications with parallel processing are appeared in the embedded environment.

Since the CPU used for the embedded environment has low operating frequency and little

number of cores, it has a limitation of parallel processing. In this paper, we design and

implement GP-GPU of SIMT (Single Instruction Multiple Threads) [2, 3] architecture for

parallel processing in the embedded environment. In order to verify the performance, the

image processing application is parallelized. The performance of the implemented GP-GPU is

compared with the existing multi-core CPU of the embedded environment. The comparison

1
 Corresponding author

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

222 Copyright ⓒ 2014 SERSC

results show the performance of parallel processing with the implemented GP-GPU is

improved significantly.

2. SIMT GP-GPU architecture

The structure of the implemented GP-GPU is shown in Figure 1. Each core has 16 stream

processors (SPs). Each SP has three ALUs, so that it can process three instructions at the

same time. Each thread (SP) is grouped on the basis of Warp [2]. Each Warp has maximum

16 threads. Since the implemented GP-GPU is a superscalar structure, maximum two

instructions can be patched per Warp. For a single SP, an odd warp and an even warp are

assigned and processed.

Stream
Processor

Stream
Processor

... Stream
Processor

Interconnection Network

L1 $

Instruction $

Warp Scheduler

DDR3

LD/ST Unit

Stream Processor

Crossbar

OC

ALU

SFU

Crossbar

OC OC OC

Crossbar

ALU ALU

Crossbar

Figure 1. GPU High level architecture

The GPUs with the Single Instruction Multiple Data (SIMD) structure improved its

performance by parallelizing SPs. [4-7] Each SP with the SIMD structure patches a single

instruction and processes several data simultaneously. However, a module that can control the

execution flow, by enabling every SP to independently execute different instructions, should

exist as much as the number of SPs. Meanwhile, for the GPU with the SIMT structure, every

SP processes the same one instruction. As shown in Figure 2, a single SP control unit can

control every SP, reducing the use rate of hardware resources and power consumption.

LD/ST Unit

Stream Processor

Crossbar

OC

ALU

SFU

Crossbar

OC OC OC

Crossbar

ALU ALU DBL

Crossbar

S
tre

a
m

 P
ro

c
e
s
s
o
r C

o
n
tro

l U
n
it

Figure 2. SP Control method

2.1. Superscalar instruction issue

As shown in Figure 3, the Warp Scheduler in the implemented GP-GPU patches four

instructions by choosing an odd warp and an even warp among current enabled Warps. The

implemented GP-GPU is designed to have three ALUs and one LD/ST unit, considering the

usage frequency of instructions. Thus the superscalar mode must be arbitrated so that patched

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

Copyright ⓒ 2014 SERSC 223

instructions are not exceed four ALU instructions or two LS/ST instructions in the Warp

scheduler. When the enabled Warp has the PC value, which references both instructions as

LS/DT instruction, or when two enabled Warp try to patch only ALU instruction, it should be

arbitrated to patch only three instructions, not four instructions.

SP

Crossbar

OC

ALU

Crossbar

OC OC OC

ALU ALU

LDST Unit

INST 0 INST 1 INST 2 INST 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Even Warp Odd Warp

Enable Warp Disable Warp

SFU

Figure 3. Warp arbitration and superscalar issue

2.2. Register file access

Since the processor with the superscalar structure patches more than two instructions at the

same time, Register bank conflict can be occurred, as shown in Figure 4(A). When the

register, which is referenced by each four operands, is located at the same bank, bank conflict

is occurred and causes the pipeline stall. In order to solve this conflict, four read ports of

register bank are required. But Increasing read ports is not an appropriate solution in the

embedded environment, because of larger hardware scale. Another solution is to design the 6

stage operand collector [8], as shown in Figure 5(A). The 6 stage operand collector may

waste the clock cycle in case of Figure 4(B), when each operand refers different register bank

each other. Also, Flip-Flip waste can be occurred by the increased pipeline stage.

OPCODE OPERAND OPERAND OPCODE OPERAND OPERAND

BANK 0

BANK 1

BANK 2

BANK 3

OPCODE OPERAND OPERAND OPCODE OPERAND OPERAND

BANK 0

BANK 1

BANK 2

BANK 3

(A)

(B)

Figure 4. (A) Bank conflict (B) None bank conflict

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

224 Copyright ⓒ 2014 SERSC

INST0
OP0

INST0
OP1

INST1
OP0

INST1
OP1

Stage 0

Stage 1

Stage 2

Stage 3

INST0
OP1

INST1
OP0

INST1
OP1

INST1
OP0

INST1
OP1

INST1
OP1

MUX MUX MUX MUX

BANK0 BANK1 BANK2 BANK3

MUX MUX MUX MUX

INST0
OP0

INST0
OP0

INST0
OP1

INST0
OP1

INST1
OP0

INST1
OP0

INST1
OP1

INST0
OP0

INST0
OP1

INST0
OP0

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

INST0
OP0

INST0
OP1

INST1
OP1

Stage 0

Stage 1 INST0
OP1

INST1
OP0

INST1
OP1

MUX MUX MUX MUX

BANK0 BANK1 BANK2 BANK3

MUX MUX MUX MUX

INST0
OP0

INST0
OP0

INST0
OP1

INST1
OP0

INST1
OP0

INST1
OP1

Stage 1

Stage 2

Stage 3

(A) (B)

Figure 5. (A) 6 Stage operand collector, (B) 4 Stage operand collector

In this paper, the 4 stage operand collector is proposed, as shown in Figure 5(B). Both 6

stage and 4 stage operand collectors are implemented, and compared based on resource usage

and consumption cycle. The results are shown in Table 1. In the comparison, the referenced

register number is randomly generated for the operand of 8192 * 2 instructions. 4 stage

operand collector can process all instructions with less Flip-Flop bits and fewer clock cycles.

Table 1. Comparison of operand collectors

 Used Flip-Flop Bits Consumption Cycle

6 Stage 7728 14930

4 Stage 5156 13141

3. Experimental results

As the experimental environment, the VC707 FPGA Platform by Xilinx was used.

Implemented GP-GPU has one core with 16 Stream Processors. The operating frequency in

the platform is 50 MHz. A verification application was used for parallelizing an integral

image creation algorithm, which is frequently used in the field of image processing and

recognition, and the Gaussian Filter Mask algorithm. For parallelization of the CPU in the

embedded platform, OpenMP was used.

Table 2. Processing time of integral image creation (unit: ms)

 1 Core 2 Core 3 Core 4 Core Frequency

ARM Cortex-A15 19.46 11.43 8.19 7.72 1.6 GHz

ARM Cortex-A9 24.77 14.83 12.63 9.93 1.7 GHz

ARM Cortex-A9 31.24 19.46 14.57 11.46 1.4 GHz

ARM1176JZF 318.14 N/A N/A N/A 700 MHz

Proposed GPU 192 N/A N/A N/A 50 MHz

The size of image, used in the experimentation, is 640 x 480. It has 307,200 pixels. The

image of 307,200 pixels was converted into the integral image. The experiment result is

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

Copyright ⓒ 2014 SERSC 225

presented in Table 2. As runtime difference occurred because of the different core operating

frequency of each platform used in the experiment, clocks used for processing a single pixel

were compared; the experiment result is shown in Figure 7(A) (The clock used for processing

a single pixel = operating frequency × runtime/number of pixels) [10].

Table 3 shows the comparison of runtime with 3x3 Gaussian filter mask. Figure 7(B)

shows the comparison of clock cycles used for processing a single pixel with 3x3 Gaussian

filter mask.

Table 3. Processing time of 3x3 gaussian filter mask (unit: ms)

 1 Core 2 Core 3 Core 4 Core Frequency

ARM Cortex-A15 27.61 13.93 9.57 7.81 1.6 GHz

ARM Cortex-A9 45.79 26.13 17.59 13.82 1.7 GHz

ARM Cortex-A9 50.37 37.59 30.59 25.72 1.4 GHz

ARM1176JZF 173.57 N/A N/A N/A 700 MHz

Proposed GPU 231.76 N/A N/A N/A 50 MHz

Figure 6. (A) Comparison of clock cycles used for processing a single pixel in
case of integral image creation algorithm, (B) Comparison of clock cycles used

for processing a single pixel in case of 3x3 gaussian filter mask

4. Summary

The multi-cored GP-GPU of SIMT architecture is designed and implemented for parallel

processing in the embedded environment. Each core has 16 stream processors (SPs). The

implemented GP-GPU can process maximum 4 instructions at the same time. 4 stage Operand

Collector is proposed to reduce bank conflicts. The performance of the implemented GP-GPU

is compared with the existing multi-core CPU of the embedded environment. The image of

640 x 480 sized 307,200 pixels was converted using three image processing algorithms. The

comparison results show the performance of parallel processing with the implemented GP-

GPU is improved over ARM Cortex-A15 4Core, the most cutting-edge CPU in the embedded

environment. The improvements are 17% in the integral image creation and 7% in 3x3

Gaussian filter mask.

Acknowledgements

This Research was supported by Seokyeong University in 2012.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

226 Copyright ⓒ 2014 SERSC

References

[1] Advanced Micro Devices Inc, ATI CTM Guide, (2006).

[2] E. Lindholm, J. Nickolls, S. Oberman and J. Montrym, “NVIDIA Tesla: A Unified Graphics and Computing

Architecture”, Micro IEEE, vol. 28, (2010), pp. 39-55.

[3] J. Nickolls, I. Buck, K. Skadron and M. Garland, “Scalable Parallel Programming with CUDA”, ACM

Queue, vol. 6, (2006), pp. 40-53.

[4] A. Levinthal and T. Porter, “Chap. A SIMD Graphics Processor”, Computer Graphics, vol. 18, (1984), pp.

77-82.

[5] R. A. Lorie and H. R. Strong Jr, “Method for conditional branch execution in SIMD vector processors”, U.S

Patent 4,435,758, (1982) August 13.

[6] J. Montrym and H. Moreton, “The GeForce 6800”, Micro IEEE, vol. 25, (2005), pp. 41-51.

[7] E. Lindholm, M. J. Kilgard and H. Moreton, “A user-programmable vertex engine”, Proceedings of the ACM

SIGGRAPH 2001, (2001) August 12-17; Los Angeles, USA.

[8] S. Liu, J. E. Lindholm, M. Y. Siu, B. W. Coon and S. F. Oberman, “Operand collector architecture”, U.S.

Patent 7,834,881, (2006) November 1.

[9] W. W. L. Fung, I. Sham, G. Yuan and T. M. Aamodt, “Dynamic Warp Formation and Scheduling for

Efficient GPU Control Flow”, Proceedings of the 40th Annual IEEE/ACM International Symposium, (2007)

December 1-5; Chicago, USA.

[10] K. -y. Lee, N. -w. Eum and J. -c. Kwak, “Superscalar GP-GPU design of SIMT architecture for parallel

processing in the embedded environment”, Advanced Science and Technology Letters, vol. 43, (2013),

(Multimedia 2013), pp. 67-70.

Authors

Kwang-yeob Lee

He received a B.S. degree in the Department of Electronics

Engineering at Seogang University in 1985. He received M.S. and Ph.D.

degrees in the Department of Electronics Engineering at Yonsei

University in 1987 and 1994. He is a professor in the Department of

Computer Engineering at Seokyeong University since 1995. His research

interests include Microprocessor, Embedded System, and 3D Graphics

System.

Jae-chang Kwak

He received a B.A. degree at Yonsei University in 1983. He received

M.S. and Ph.D. degrees in the Department of Computer Science at The

University of Iowa in 1990 and 1993. He is a professor in the Department

of Computer Science at Seokyeong University since 1995. His research

interests include network protocols, QoS, network performance

evaluation, and image processing algorithm

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

