International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014), pp.221-226
http://dx.doi.org/10.14257/ijmue.2014.9.4.23

Implementation of GP-GPU with SIMT Architecture in the
Embedded Environment

Kwang-yeob Lee and Jae-chang Kwak™*

Dept. of Computer Engineering, Computer Science*, Seokyeong Univiersity,
Jeongneung 4-dong, Seongbuk-gu, Seoul, Korea

kylee@skuniv.ac.kr, jckwak@skuniv.ac.kr* x)

Abstract

[]
Recent embedded processors become to be multi-cored, “due to%)ncreased power
consumption by higher operating frequencies. Multi- esso imulate applications to
be parallelized. Since general purpose CPU has s ber h|ch is optimized for
serial processing, it has a limitation of parallel processing. % me this limitation, GPU
imple

is used for the parallel processing. In thi er, w ment GP-GPU of SIMT
architecture for parallel processing in the @ dded en ent The performance of the
implemented GP-GPU is compared wi e ex stl ti-core CPU of the embedded
environment. The comparison results the nce of parallel processing with the
implemented GP-GPU is improv cantly %

Keywords: GP-GPU, SIMT, parallel {%o@g embedded environment

1. Introduction \pQ N

The performanc? roce been improved by increasing operating frequencies
based on speeu transistorsh/In the 90nm manufacturing process, since the increased
power consumptien limit @g the operating frequency, processor designers are started to
increase the number of to improve the performance. Multi-core processors stimulate
applications to be par, ﬁ@led. Since general purpose CPU has small number of core, which is
optimized for serj@ocessing, it has a limitation of parallel processing. To solve this
limitation, GP d for the parallel processing.

GPU (Gr pkrie~ Processing Unit) is kept developed up to GP-GPU (General Purpose
Gl’aphIC mg Unit). GP-GPU is getting to include most of techniques of existing CPU.

nly for graphic data processing, but also for general purposes. GPU is composed
of @ structured efficient cores. The number of cores is from tens up to thousands. These
cores are suitable for the parallel processing [1].
Recently, applications with parallel processing are appeared in the embedded environment.
Since the CPU used for the embedded environment has low operating frequency and little
number of cores, it has a limitation of parallel processing. In this paper, we design and
implement GP-GPU of SIMT (Single Instruction Multiple Threads) [2, 3] architecture for
parallel processing in the embedded environment. In order to verify the performance, the
image processing application is parallelized. The performance of the implemented GP-GPU is
compared with the existing multi-core CPU of the embedded environment. The comparison

! Corresponding author

ISSN: 1975-0080 IJMUE
Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014)

results show the performance of parallel processing with the implemented GP-GPU is
improved significantly.

2. SIMT GP-GPU architecture

The structure of the implemented GP-GPU is shown in Figure 1. Each core has 16 stream
processors (SPs). Each SP has three ALUs, so that it can process three instructions at the
same time. Each thread (SP) is grouped on the basis of Warp [2]. Each Warp has maximum
16 threads. Since the implemented GP-GPU is a superscalar structure, maximum two
instructions can be patched per Warp. For a single SP, an odd warp and an even warp are
assigned and processed.

Instruction $ ‘ y ;
L ¢ ¢ Stream Processor
| . ﬂ@ﬂﬁﬂﬂ@r({)

' ' '

Stream Stream Stream
Processor Processor Process

'

N~

“$AD/ST Unit
Q i Crossbar

performance by parallgli s. [4- SP with the SIMD structure patches a single

instruction and proces%@‘? eral data sinfaltaneously. However, a module that can control the

execution flow, by ing e% to independently execute different instructions, should
f

- ' -
The GPUs with the %@Pmstru@tiple Data (SIMD) structure improved its
|

exist as much mber o eanwhile, for the GPU with the SIMT structure, every
SP processes me o struction. As shown in Figure 2, a single SP control unit can
control every SP, reducin&s use rate of hardware resources and power consumption.

'&‘b

C%? Stream Processor
QO
A\ g s —+00000000
O § %‘ Crossbar ‘ ‘ Crossbar ‘
Q 2w loc]oc] [oc]Loc]
s > \ Crossbar |
@ S > [ALU | ALU][ALU | DBL
3 > SFU
c > LD/ST Unit
] Crossbar iz8

Figure 2. SP Control method

2.1. Superscalar instruction issue

As shown in Figure 3, the Warp Scheduler in the implemented GP-GPU patches four
instructions by choosing an odd warp and an even warp among current enabled Warps. The
implemented GP-GPU is designed to have three ALUs and one LD/ST unit, considering the
usage frequency of instructions. Thus the superscalar mode must be arbitrated so that patched

222 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014)

instructions are not exceed four ALU instructions or two LS/ST instructions in the Warp
scheduler. When the enabled Warp has the PC value, which references both instructions as
LS/DT instruction, or when two enabled Warp try to patch only ALU instruction, it should be
arbitrated to patch only three instructions, not four instructions.

0T 2 3 456 7 /,s/ 9 10 11124314 15

Even Warp Odd Warp)
| INsTO | INSTI INsT2 [INsT3 | Y’
A\ \ SP \/ &

Crossbar
\ oc]|

N

Enable W le Warp

Figure 3. Vvi@iratlon% perscalar issue

2.2. Register file access

Since the processor wit upersc@v cture patches more than two instructions at the
same time, Register b nflict can occurred, as shown in Figure 4(A). When the
register, which is refg d by eadn%:r operands, is located at the same bank, bank conflict
is occurred ang-e $ the pip Il. In order to solve this conflict, four read ports of
register bank & . But Increasing read ports is not an appropriate solution in the
embedded envirohment, of larger hardware scale. Another solution is to design the 6
stage operand collect

waste the clock cy se of Figure 4(B), when each operand refers different register bank
each other. Also, PHip3Flip waste can be occurred by the increased pipeline stage.

Qé y [OPCODE | OPERAND | OPERAND | [OPCODE| OPERAND [OPERAND |

[BaNKO

\

O [BANK1]
[BANK2]

\

[Banka

[OPCODE | OPERAND | OPERAND | [OPCODE| OPERAND [OPERAND |
]]
[ewo [T] /T T [[T AT T [T[]
(et [T T T [[VT [T][]
Leawe [[[[[T [[T T[T T/T T[]
4
[] [T T T T T T " T]

Figure 4. (A) Bank conflict (B) None bank conflict

Copyright © 2014 SERSC 223

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014)

TINSTO | [INSTO | [INSTi INSTT
Stage 0 ‘5pg OP1 0OPO oP1
Stage 1 INSTO ‘ ‘ INST1 ‘ ‘ INST1 ‘
OoP1 OPO oP1
Stage 2 ”\C‘)SF'TOW
Stage 3
INSTO | [INSTO | [INSTT | [(INST1
Wi i i Wi coovo || [0] [6’| [|
[mox][mox][mox][mox] Stage 1 ‘ a1 '%SPT ‘
[Banko | [Banki | [Bankz | [Banks | ¥ = ‘ = - ‘
PAR & & & AN A & A AR & A]
i‘) Ll ol [mux][mox] [mox] [mux]
‘*V YYVY YYVY yvvY
[mox | [mox][mox][wox | [Banko | [Banki | [Bankz | [BANK3]
1 T .
Stage 1 S0 l H—Hw —Hm hh
stage WET0 ‘ Muj(| [mux]| Muf | [mux]
oPo OP1
INSTO INSTO INSTT INSTO INSTT
Stage 3 “opg ‘ OP1 H OPO Stage 1| oo ‘ il
= = INSTO | [INSTO{, [NSTT | [N
s+ T [57] (18] 57 | === [5G
Stage 5 ‘ 4 L ¢ Stage 3
) Q, (

Figure 5. (A) 6 Stage operand collecto4 Sta@}ﬁnd collector

In this paper, the 4 stage operand collqcto@posed hown in Figure 5(B). Both 6
stage and 4 stage operand collectors are i nted, an pared based on resource usage
and consumption cycle. The results are in 'B% . In the comparison, the referenced

register number is randomly gen r@ r the % of 8192 * 2 instructions. 4 stage
operand collector can process @@t ions wit Flip-Flop bits and fewer clock cycles.

Tableg Compw operand collectors

RN) wFlip-Flop Bits Consumption Cycle
6 Stage \A\ 4% 7728 14930
O 5156 13141

3. Experimental reSL%QJ

As the experime nvironment, the VC707 FPGA Platform by Xilinx was used.
Implemented GP- as one core with 16 Stream Processors. The operating frequency in
the platformais(50 MHz. A verification application was used for parallelizing an integral
image crea’@(gorithm, which is frequently used in the field of image processing and

d the Gaussian Filter Mask algorithm. For parallelization of the CPU in the

recogniti
em%ﬁlatform, OpenMP was used.

Table 2. Processing time of integral image creation (unit: ms)

1 Core 2 Core 3 Core 4 Core Frequency
ARM Cortex-Al5 19.46 11.43 8.19 7.72 1.6 GHz
ARM Cortex-A9 24.77 14.83 12.63 9.93 1.7 GHz
ARM Cortex-A9 31.24 19.46 14.57 11.46 1.4 GHz
ARM1176JZF 318.14 N/A N/A N/A 700 MHz
Proposed GPU 192 N/A N/A N/A 50 MHz

The size of image, used in the experimentation, is 640 x 480. It has 307,200 pixels. The
image of 307,200 pixels was converted into the integral image. The experiment result is

224 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014)

presented in Table 2. As runtime difference occurred because of the different core operating
frequency of each platform used in the experiment, clocks used for processing a single pixel
were compared; the experiment result is shown in Figure 7(A) (The clock used for processing
a single pixel = operating frequency x runtime/number of pixels) [10].

Table 3 shows the comparison of runtime with 3x3 Gaussian filter mask. Figure 7(B)
shows the comparison of clock cycles used for processing a single pixel with 3x3 Gaussian
filter mask.

Table 3. Processing time of 3x3 gaussian filter mask (unit: ms)
1 Core 2 Core 3 Core 4 Core Freq

ARM Cortex-Al5 27.61 13.93 9.57 7.81 1)

ARM Cortex-A9 45.79 26.13 17.59 13. 82 :

ARM Cortex-A9 50.37 37.59 30.59\ o 25. 4 GHz
ARM1176JZF 173.57 N/A % VQ) 700 MHz
Proposed GPU 231.76 N/A 50 MHz

;ttkmﬂgmvpuﬂ A 4:?kwji;:;:::, (“;::;:,,!"> (8

3855

400

350

300

50

200

150

100

%z
=
SoSe%el]

o2e!
<50
sy

23
5
=
s

5%
7

s

SESEES
et

S5

e
° B
pesiie]
1056 55 £ B8 540 5148 5201
sl focol N
£ 1 | NN
Ve ol b boocd

5

Iz
s
352

s

pherrypi(ARM1176J2F

B Proposed GPU(Vertex 7 FPGA @5OMRZ) B
5 Odoidd-X2(ARM Corfex-A9 @1.7GHz)

=2 0droid-X(ARM Cortex-A9 @1. 4GH1

Core 1 2 3 4
B Proposed GPU(Vertex 7 FPGA @50MHz) B Raspberrypi(ARM1176/ZF @700MHz)
E Odroid-XU(ARM Cortex-A15 @1.6GHz) B 0doidd-X2(ARM Cortex-A9 @1.7GHz)

m Odroid-XU(ARM Cortex-A15 @. [0droid-X(ARM Cortex-A9 @1.4GHz)
Figure 6. (A %nso \gock cycles used for processing a single pixel in
case of integ mag tion algorithm, (B) Comparison of clock cycles used
for processi ingle pixel in case of 3x3 gaussian filter mask

4. Summary

The multi%%d GP-GPU of SIMT architecture is designed and implemented for parallel
processing embedded environment. Each core has 16 stream processors (SPs). The
implem P-GPU can process maximum 4 instructions at the same time. 4 stage Operand
C proposed to reduce bank conflicts. The performance of the implemented GP-GPU
is compared with the existing multi-core CPU of the embedded environment. The image of
640 x 480 sized 307,200 pixels was converted using three image processing algorithms. The
comparison results show the performance of parallel processing with the implemented GP-
GPU is improved over ARM Cortex-Al5 4Core, the most cutting-edge CPU in the embedded
environment. The improvements are 17% in the integral image creation and 7% in 3x3
Gaussian filter mask.

Acknowledgements
This Research was supported by Seokyeong University in 2012.

Copyright © 2014 SERSC 225

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014)

References

[1]
(2]

(3]
(4]
(5]

[6]
(7]

(8]
(9]

[10]

226

Advanced Micro Devices Inc, ATI CTM Guide, (2006).

E. Lindholm, J. Nickolls, S. Oberman and J. Montrym, “NVIDIA Tesla: A Unified Graphics and Computing
Architecture”, Micro IEEE, vol. 28, (2010), pp. 39-55.

J. Nickolls, I. Buck, K. Skadron and M. Garland, “Scalable Parallel Programming with CUDA”, ACM
Queue, vol. 6, (2006), pp. 40-53.

A. Levinthal and T. Porter, “Chap. A SIMD Graphics Processor”, Computer Graphics, vol. 18, (1984), pp.
77-82.

R. A. Lorie and H. R. Strong Jr, “Method for conditional branch execution in SIMD vector processors”, U.S
Patent 4,435,758, (1982) August 13.

J. Montrym and H. Moreton, “The GeForce 68007, Micro IEEE, vol. 25, (2005), pp. 41-51. ‘

E. Lindholm, M. J. Kilgard and H. Moreton, “A user-programmable vertex engine”, Proceedi ACM
SIGGRAPH 2001, (2001) August 12-17; Los Angeles, USA. %

S. Liu, J. E. Lindholm, M. Y. Siu, B. W. Coon and S. F. Oberman, “Operand coIIec@ cture”, U.S.

Patent 7,834,881, (2006) November 1. o

W. W. L. Fung, I. Sham, G. Yuan and T. M. Aamodt, “Dy! arp Formation,and Scheduling for

Efficient GPU Control Flow”, Proceedings of the 40th Annual I% | rr&% Symposium, (2007)

December 1-5; Chicago, USA. § w

K. -y. Lee, N. -w. Eum and J. -c. Kwak, “Superscalar dew architecture for parallel
2 h

processing in the embedded environment”, Advanced ace and gy Letters, vol. 43, (2013),

(Multimedia 2013), pp. 67-70. Q '
° %
‘O N

Kwangé&@e
eived a Q&egree in the Department of Electronics
) & at Seq%p' niversity in 1985. He received M.S. and Ph.D.
ALY e D . L :

in th artment of Electronics Engineering at Yonsei
ersity, in ﬁ%? and 1994. He is a professor in the Department of

puter ring at Seokyeong University since 1995. His research

Jae-chang Kwak

He received a B.A. degree at Yonsei University in 1983. He received
M.S. and Ph.D. degrees in the Department of Computer Science at The
University of lowa in 1990 and 1993. He is a professor in the Department
of Computer Science at Seokyeong University since 1995. His research
d interests include network protocols, QoS, network performance
evaluation, and image processing algorithm

Copyright © 2014 SERSC

