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Abstract C}Z

[ ]
Data races are the hardest defect to handle in multit %yd prog due to the non-
deterministic interleaving of concurrent threads. It ip expensSiye cpsts of dynamic data
race detection to monitor all of memory operationh red ndemory”locations. This paper
presents a hierarchical filtering method that remoeves unnegeSsdry monitoring memory
operations from three levels of binary image @»evalu.at empirically the effectiveness of
the filtering method for dynamic data race ction. Th$ pirical results using a set of

benchmarks show that our filtering meth uce th@ve age runtime overhead to over 50%
of dynamic data race detection. '& \

Keywords: Dynamic data r tection, n'%ito ng, memory operations, filtering

1. Introduction Q,QJ \\9

Multithreaded pr@g ng isbecoming a natural consequence to achieve improved
performance of applicgtions in‘{@l— re systems. However, it is still difficult to ensure the
reliability of r@ ograms due te’ concurrency bugs which cause the potential for subtle
interactions betWeéenh con % threads, because the concurrency bugs are hard to reproduce
with traditional seque %(esting or debugging methods due to the non-deterministic
interleaving of conc g&threads.

Data races [1-2§§%e most notorious class of concurrency bugs that occur when two
concurrent threads decess a shared memory location without proper synchronization, and one
7 It is important to detect data races for debugging multithreaded programs,
ay lead to non-intended results. Detection techniques can be classified into
stati is [3-5] which analyzes source codes without any execution and dynamic analysis
[6—@% locates data races from an execution of multithreaded program.

Dynamic analysis for detecting data races usually uses an instrumentation framework to
insert extra codes into target sources or binaries for monitoring every memory and thread
operation. Binary instrumentation is more useful than source code instrumentation, because it
is possible to precisely trace the execution of target programs without source codes and its
analysis.

Generally, dynamic race detectors can reduce additional runtime overhead by improving
detection algorithm or inserting minimal monitoring codes [13]. This paper presents a
hierarchical filtering method that removes unnecessary monitoring of memory operations for
inserting minimal monitoring codes. For the minimal insertion of monitoring codes, we use
three levels of binary image which consists of binary object images, sections, and instructions.
We evaluate empirically the effectiveness of our method by applying the experimentation of

because

ISSN: 1975-0080 IJMUE
Copyright © 2014 SERSC



International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.4 (2014)

dynamic data race detection with a set of benchmarks. The empirical results show that our
filtering method reduces the average runtime overhead to over 50% of dynamic data
race detection.

1
2 int SV =0; /* a shared variable */ T,
3 const int templ = 3;
4
5 void *funcl (void *t) {
6 fork
7 SV =templ+4; ( )<>
8 .
9
10 int main (void) {
11
12 res = pthread_create(&t1, NULL, funcl, NULL);
13 int temp;
14 temp = SV+1; Q
15 res = pthread_join(t1, NULL);
16 prmtf( 'Final SV, temp: %d, %d\n", SV, te@,
17 . .
18 }
(a) A multithreaded program u5| ead Qb) A data race in the program
Figure 1. An examﬂ data ragbra multithreaded program

2. Background

This section illusta tﬁ a races |mlthreaded programs which are widely used for
high performance f i-core OK%JHI processor systems, and introduces instrumentation
techniques for @E@data ra&@ ion.

2.1. Data Races In Multi gﬂed Programs

Multithreaded pro r@mmg is becoming a natural consequence to achieve the improved
performance of a@ﬂons in multi-core systems. We usually use the POSIX thread for
standard (Pthread) as'a model of concurrent threads for multithreaded programs. Pthread is
widely used%ﬂly on C/C++ applications, but also on many Unix-like operating systems
(e.g., Linu aris, Mac OS, FreeBSD, etc.), because it provides various APIs and libraries

for creatingland manipulating threads.
%ad T of execution in a multithreaded program is a sequence of programed

instructions, and a block of T that is partially serially executed is represented as a thread
segment, denoted by t. Therefore, a thread can be represented as a set of thread segments,
denoted by T = t;, t,, .-+, t, (n = 1). A thread segment t contains a finite sequence o that
consists of at least one event e, denoted by ¢ = e, e, - , e,, and o; denotes the sequence
of events generated on a thread segments t. A thread segment t is delimited by thread
operations, where the thread operations take one of following forms:

e init( ) models the creation of a thread segment t and the start of the execution of
thread T.
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e fork( ) models the creation of a thread segment t; on a new thread T; from the
current thread segment t; and the start of a new thread segment t;> on the same
thread T;.

e join(') models the termination of a thread segment t; and Tj, and the creation of a
new thread segment t;” from the same thread T;.

Figure 1 shows an example of a multithreaded program using Pthread. In Figure 1(a), the
program is spawned a new thread for the execution of funcl by the pthread_create( ) of line
12, and the program is joined by the pthread_join( ) of line 15. Figure 1(b) represents an
execution of the program shown in Figure 1(a) as a directed acyclic graph, called a pattial
order execution graph (POEG). A vertex of POEG means a fork or a join M for
concurrent threads, and an arc represents a thread execution. The access R a v%ﬁmn with
disks upon the arcs represent a read and a write access to a shared me 0 cation for

variable SV.

A data race may occur in the program of Figure 1(a) I s a on, because two
concurrent threads access a shared memory Ioca ut any ropér synchronization.
With POEG, we can easily understand the partial or hap efare relation of accesses
occurred in an execution instance of the pro Because ‘theYinstruction of line 14 is
executed between creating and joining a new& both t instructions, line 7 and line 14,
are concurrently executed on each thread? hey con f a data race. From the POEG

of Figure 1(b), both accesses R and W repr e read of SV (line 14 in Figure 1(a))
and a write to SV (line 7 in Figure 1@&@0 involved in a data race, because it
shows that R on thread T; on thr are concurrent without any proper
synchronization.

Detecting such data races in muI |t programs is important to guarantee the
reliability of the program ever, i icult to figure out whether a program runs into
data races, because : T e datg raCes are hard to reproduce with traditional sequential

testing or debuggin
Thus, sophisti
for debugging

8thods due e non-deterministic interleaving of concurrent threads.
Q nigues oned to monitor and analyze the program executions

ad of i er@mg the bug manually.

2.2. Data Race Detectj Multithreaded Programs

We have much@ous work which progresses some techniques for data race detection.
These technigugs have focused on static and dynamic analysis. Static analysis techniques [3]-
[5] are soun imprecise because they report unfeasible races by analyzing only source
code witho y execution, therefore they lead to many false positives. Moreover, using
these (@ques for detecting feasible races in a multithreaded program with dynamically
aIIdata is NP-hard problem [1-2].

Dyramic analysis includes trace based post-mortem techniques and on-the-fly techniques,
which report only feasible data races occurred in an execution of the programs. Post-mortem
techniques [6], collect occurred accesses information into a trace file during an execution of a
program. Then, these techniques analyze the traced information or replay the program to
detect feasible data races. However, this approach is inefficient because it requires large time
and space cost for tracing accesses and threads.

On-the-fly methods [7-16] dynamically detect data races with still less overhead in storage
space than other dynamic techniques, because unnecessary information are removed as the
detection advances. On-the-fly methods are based on three different analysis methods: lockset
analysis, happens-before analysis, and hybrid analysis. Figure 2 illustrates the classification
of data race detection techniques using a hierarchical structure.
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Data Race Detection

Static Analysis Dynamic Analysis

Post-mortem Methods On-the-fly Methods
\)
Happens-before Lockset i E
Analysis nalysis naly
[ ]
Figure 2. The classification of race c%gti nt cr@es

Lockset analysis [14, 16] reports data races of r@ored P cﬁ%@ y checking violations
of a locking discipline, and happens-before analysis [/-10] repoits data races between current
access and maintained previous accesses by ¢ ng their%opens—before relation based on
the usage of a logical time stamp, such as r clocks. lockset analysis is simple and
can be implemented with low overhea %) everal et analysis may lead to many false
positives, because it ignores synchronj n pri i%m hich are non-common lock such as
signal/wait, fork/join, and barri% appensgf e analysis is precise, since it does not
report false positives and can be applied to.all@gynchronization primitives. However, it is quite
difficult to be efficiently implemented du performance overheads. The hybrid method
[11-13] tries to reduce th i drawb%o pure lockset analysis and to get more improved
performance than pu b&ms-bef e analysis. Most hybrid detectors improved accuracy on
reporting data races Xa tiall ing the happens-before analysis on lockset analysis, but
still report fal ifives. The nigue for reducing false positives cannot guarantee the
credibility of a free exegtition of a multithreaded program with one input.

Several dynamic data etect ion techniques are performed in automatic tools with
their significant adva . These techniques used in detectors have some limitations,
because they analy; y the dynamic execution of a program with a single input. Most
dynamic detector: 0 cover the limitations by considering the ordering of synchronization

operations, ork-join, locks, signal-waits, and barriers, obtained in an actual execution
of the pr ., but they still provide limited advantages (e.g. supporting particular
synchro n primitives, improving the efficiency or the preciseness of execution overhead,
et ic analysis for detecting data races usually uses an instrumentation framework to

inserfNextra codes into target sources or binaries for monitoring every memory and thread
operation.

3. Motivation

Program instrumentation [17-20] is a technique that inserts extra codes into target
applications to monitor the execution of the program and to collect runtime information,
while attempting to preserve the visible behavior of the original codes. By the instrumentation,
the extra codes can be inserted at various stages, such as source code modification stage,
compile-time stage, and link-time stage, and the original codes are transferred to modified
executable codes to analyze runtime information. The instrumentation approach can be
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classified into source code instrumentation and binary instrumentation that use either static or
dynamic method. Source code instrumentation [17] is used to modify source code by inserting
appropriate code. The source code instrumentation is simple and can be apply multiple
compilers and platforms. However, it is difficult proper considering to change data cache
behavior, interactions with optimizing compilers, and the runtime overhead of instru-
mentation library calls.

Binary instrumentation [18-20] inserts the extra codes into binaries considering a program
form which consists of the codes and data to execute the program, like binaries lack source
code, often lack symbols, and debugging information [20]. Binary instrumentation also uses
either static or dynamic method. Static binary instrumentation occurs in a phase th@r&tes

object or executable codes before the program is ran.

Dynamic binary instrumentation is a popular technique to analyze the run 'm?(avior of
applications, because it does not require any modlfylng the target bmaneséﬁ ers all the
execution of the application. However, the overheads o |c bina entation can
be high for complex programs, such as multlthreade t is hard to be
implemented because of the difficulty of the ¢ |t|n a ime. Nonetheless,
dynamic analysis for complex programs can be bUI the mary instrumentation

frameworks, such as DynamoRIO [21], Valgrin and Pin

The executable binaries are loaded into @areaan placed as an objective image.
Usually, the binaries are executed with® dynam ked libraries (DLL) such as
standard libraries, and it is mapped wit dress,aréa of a process for the execution of the
program when the main function 'f&“ ive image which mapped with the
address area of a process consists erse ses% at include distinct information for the
execution. These sections are € only consists of Code Section which includes executable
machine codes, Data Sectio hich saves ormation of variables, and Debug Section for
supporting debugglng &

The Code Sectlo |n target onitor accesses to memory locations because the
instructions for the r th wﬁ%f data are mainly existed in the section. Thus, it is
important to inima rt n of the monitoring codes in Code Section to reduce
additional run rr‘verh d @ynamlc data race detection.

4. The Filtering f ynamic Data Race Detection

We present a hi ical filtering method that removes unnecessary monitoring operations
at the each ree’levels, Image Level (IML), Section Level (SEL), and Instruction Level
(INL), tor %untime overhead of dynamic data race detection. This section introduces
the key i@our filtering method

D~ n o
2 ..globl SV 22 main:

3 .bss 23

4 .align 4 24 call pthread_create

5 type SV, @object 25 movl  %eax, -12(%ebp)
6 size SV, 4 26 movl SV, %eax

7 27 addl  $1, %eax

8 ..globl temp1l 28 movl  %eax, -8(%ebp)
9 .section .rodata 29 movl  -16(%ebp), %eax
10 .align 4 30 movl  $0, 4(%esp)

11 type  templ, @object 31 movl  %eax, (%esp)

12 Size  templ, 4 32 call pthread_join

13 33
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14 funcl: 34 call printf
15 . 35 e

16 movl  templ, %eax

17 addl  $4, %eax

18 movl  %eax, SV

19 movl  $0, %eax

20

Figure 3. Symbolic binaries for the program shown in Figure 1(a)

4.1. The Filtering for IML .
The objective images which have been loaded into a memory area include t Naries
for user application, system libraries, and other APIs. However, detecting ?c?’focuses
only on the user applications and its libraries rather than system libfarie d others.
Therefore, we selectively filter out memory operations w@je’lated libraries and
other APIs by using the path of linked images and the n rarjes.
Figure 3 indicates symbolic binaries for the pr gra '@bwn 1(a). The binaries
linked with system libraries, like pthread_create, d_]0| &)rmtf (e.g., lines 24, 32,
and 34 in Figure 3). We simply filter out such system Ilbxgs for IML. Thus, we never

insert any monitoring codes for the system I|

4.2. The Filtering for SEL

There exist several dynamlc areas%r ta Section, such as global variable
area, static variable area, a p area e areas are used to read or write data
during the execution of the_program. I\/T er, the special areas are located for read
only data and constant les. T e, we simply filter out such the read only
memory areas for S

For example, ingﬁm arlable templ is read only data, because it was
declared as a ¢ an varl although it is a global variable similar to SV. The
constant varidbles)are indi as .rodata in the data section of the binaries (see the

line 9 in Figure=3). WeE fllter out such the read only data for SEL by using this
information of the Se?bh herefore, the instruction of line 16 in Figure 3 is excluded
from a point to in'se& itoring code for data race detection.
4.3. The Filtexing Tor INL

The me operations should be monitored with each instruction to precisely insert
corre @ g monitoring codes into the Code Section. We analyze the opcode and
ope@ instructions to decide which operations access shared memory locations.
Figur®4 depicts memory allocations for important areas of the executable binaries
shown in Figure 3. The local variables, temp in Figure 1(a), are usually allocated in

stack area. Thus, we can simply filter out the local variables which related only stack
area of memory allocations.
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Code Area Stack Area Data Area
;ﬁ.ain :
movl % esp, %ebp temp sV
pushl %ecx °t ot templ
call printf

Figure 4. Memory mapping for the execution of the binaries sho N ine

Figure 3
For example, we can estimate two memory locations, ebp and esp w@i 3, which
are the pointer to stack area of memory by analyzin ahd of ctions and

comparing their address with information of stack area, Thus, the ost of memory
operations are excluded from the conflicting ace

hierarchical filtering, we filter out unnecessar atjons for dynamic data
race detection. Therefore, we are possible tg, insert monitefing codes into the target
binaries of Figure 3 with considering only d vari
5. Evaluation

We evaluated empirically th e@: Iveness r flltermg method by applying the
experimentation of dynamlc ace detec th a set of benchmarks. We employed a
state-of-the-art algorithm fo ynamlc dat e detection and seven benchmarks for the
experiments. The emp|r| ults S @ our hierarchical filtering method practically
reduces the runtlme for dyn ata race detection.
5.1. Impleme nd EX léntation

For the ev on o fllterlng method, we employed FastTrack [8] algorithm
which is a state-of-the- a%or dynamic data race detection. We use seven benchmarks of
PARSEC 2.1 suite %whlch targets different areas with applications such as data
mining, financial sis, and computer vision. All benchmarks were executed with
Sim-Medium s'm& inputs of the PARSEC benchmark suite to produce proper
runtime oveﬁé&.

We im q ted FastTrack algorithm as a detector on top of the Pin instrumentation
fram which uses a just-in-time compiler to recompile target program binaries for
dyh% Instrumentation. Our hierarchical filtering method was implemented on a
detectef as a modified version of FastTrack. The experimentations were carried on a
system with Intel Xeon Quad-core 2CPUs and 8GB main memory under Linux
operating system. The benchmarks were compiled with gcc 4.4.4, and the average
runtime overhead of benchmarks was measured for five executions.

5.2. Results and Analysis

Figure 5 depicts the reduced runtime overhead of data race detection by each filtering for
three levels. The graph in Figure 1 shows that IML and SEL reduce average runtime
overhead to 16.6% and 6.1% of the original overhead of FastTrack, respectively. From the
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figure, the most effective level for filtering is INL, because the filtering for INL reduces the
runtime overhead to 37.7% of the original FastTrack, in the average case.

We compared the hierarchical filtering which combines the filtering method of three levels
to get more practice, such as IML+SEL and IML+SEL+INL. The compared results appear in
Figure 6. From the results, the step of IML and the step of IML+SEL reduced the average
runtime overhead to 17% and 23% of FastTrack, respectively. In the Final step,
IML+SEL+INL, it reduced average runtime overhead to under of 50% of FastTrack,
excluding dedup benchmark. In case of blackscholes, the average runtime overhead is only
about 10% of the original overhead of FastTrack by our hierarchical filtering method.

These empirical results from Figure 5 and Figure 6 show that our hierarchical filtesing
method practically reduces runtime overhead for dynamic data race detection. v
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Figure 6. The measured runtime overheads for hierarchical filtering
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6. Conclusion

It is important to locate data races for debugging multithreaded programs. However, the
dynamic detection techniques are needed large amount of runtime overhead. This paper
presented a hierarchical filtering method that removes unnecessary monitoring memory
operations from three levels of binary image. The empirical results using a set of benchmarks
show that our hierarchical filtering method offers the practical dynamic data race detection
for multithreaded programs due to fact that it reduces the average runtime overhead to over
50% of pure dynamic data race detection.
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