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Abstract 
 

Data races are the hardest defect to handle in multithreaded programs due to the non-

deterministic interleaving of concurrent threads. It incurs the expensive costs of dynamic data 

race detection to monitor all of memory operations to shared memory locations. This paper 

presents a hierarchical filtering method that removes unnecessary monitoring memory 

operations from three levels of binary image, and evaluates empirically the effectiveness of 

the filtering method for dynamic data race detection. The empirical results using a set of 

benchmarks show that our filtering method reduces the average runtime overhead to over 50% 

of dynamic data race detection. 

 

Keywords: Dynamic data race detection, monitoring, memory operations, filtering 

 

1. Introduction 

Multithreaded programming is becoming a natural consequence to achieve improved 

performance of applications in multi-core systems. However, it is still difficult to ensure the 

reliability of the programs due to concurrency bugs which cause the potential for subtle 

interactions between concurrent threads, because the concurrency bugs are hard to reproduce 

with traditional sequential testing or debugging methods due to the non-deterministic 

interleaving of concurrent threads. 

Data races [1-2] are the most notorious class of concurrency bugs that occur when two 

concurrent threads access a shared memory location without proper synchronization, and one 

of them is a write. It is important to detect data races for debugging multithreaded programs, 

because they may lead to non-intended results. Detection techniques can be classified into 

static analysis [3-5] which analyzes source codes without any execution and dynamic analysis 

[6-16] which locates data races from an execution of multithreaded program. 

Dynamic analysis for detecting data races usually uses an instrumentation framework to 

insert extra codes into target sources or binaries for monitoring every memory and thread 

operation. Binary instrumentation is more useful than source code instrumentation, because it 

is possible to precisely trace the execution of target programs without source codes and its 

analysis.  

Generally, dynamic race detectors can reduce additional runtime overhead by improving 

detection algorithm or inserting minimal monitoring codes [13]. This paper presents a 

hierarchical filtering method that removes unnecessary monitoring of memory operations for 

inserting minimal monitoring codes. For the minimal insertion of monitoring codes, we use 

three levels of binary image which consists of binary object images, sections, and instructions. 

We evaluate empirically the effectiveness of our method by applying the experimentation of 
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dynamic data race detection with a set of benchmarks. The empirical results show that our 

filtering method reduces the average runtime overhead to over 50% of dynamic data 

race detection. 
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int SV = 0;                           /* a shared variable  */ 

const int temp1 = 3; 

… 

void *func1 (void *t) { 

… 

   SV = temp1+4; 

…   } 

… 

int main (void) { 

… 

  res = pthread_create(&t1, NULL, func1, NULL); 

  int temp; 

  temp = SV+1; 

  res = pthread_join(t1, NULL); 

  printf("Final SV, temp: %d, %d\n", SV, temp); 

… 

} 

 

               (a) A multithreaded program using Pthread                  (b) A data race in the program 

Figure 1. An example of a data race in a multithreaded program 
 

2. Background 

This section illustrates data races in multithreaded programs which are widely used for 

high performance for multi-core or multi-processor systems, and introduces instrumentation 

techniques for dynamic data race detection. 

 

2.1. Data Races in Multithreaded Programs 

Multithreaded programming is becoming a natural consequence to achieve the improved 

performance of applications in multi-core systems. We usually use the POSIX thread for 

standard (Pthread) as a model of concurrent threads for multithreaded programs. Pthread is 

widely used not only on C/C++ applications, but also on many Unix-like operating systems 

(e.g., Linux, Solaris, Mac OS, FreeBSD, etc.), because it provides various APIs and libraries 

for creating and manipulating threads. 

A thread T of execution in a multithreaded program is a sequence of programed 

instructions, and a block of T that is partially serially executed is represented as a thread 

segment, denoted by t. Therefore, a thread can be represented as a set of thread segments, 

denoted by T = t1, t2,   , tn (n   1). A thread segment t contains a finite sequence   that 

consists of at least one event e, denoted by               , and    denotes the sequence 

of events generated on a thread segments t. A thread segment t is delimited by thread 

operations, where the thread operations take one of following forms: 

● init( ) models the creation of a thread segment t and the start of the execution of 

thread T. 
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● fork( ) models the creation of a thread segment tj on a new thread Tj from the 

current thread segment ti and the start of a new thread segment ti’ on the same 

thread Ti. 

● join( ) models the termination of a thread segment tj and Tj, and the creation of a 

new thread segment ti’ from the same thread Ti. 

Figure 1 shows an example of a multithreaded program using Pthread. In Figure 1(a), the 

program is spawned a new thread for the execution of func1 by the pthread_create( ) of line 

12, and the program is joined by the pthread_join( ) of line 15. Figure 1(b) represents an 

execution of the program shown in Figure 1(a) as a directed acyclic graph, called a partial 

order execution graph (POEG). A vertex of POEG means a fork or a join operation for 

concurrent threads, and an arc represents a thread execution. The access R and W drawn with 

disks upon the arcs represent a read and a write access to a shared memory location for 

variable SV. 

A data race may occur in the program of Figure 1(a) during its any execution, because two 

concurrent threads access a shared memory location without any proper synchronization. 

With POEG, we can easily understand the partial order or happens-before relation of accesses 

occurred in an execution instance of the program. Because the instruction of line 14 is 

executed between creating and joining a new thread, both the instructions, line 7 and line 14, 

are concurrently executed on each thread. Thus, they consist of a data race. From the POEG 

of Figure 1(b), both accesses R and W which represent a read of SV (line 14 in Figure 1(a)) 

and a write to SV (line 7 in Figure 1(a)), respectively, are involved in a data race, because it 

shows that R on thread T1 and W on thread T2 are concurrent without any proper 

synchronization. 

Detecting such data races in multithreaded programs is important to guarantee the 

reliability of the programs. However, it is difficult to figure out whether a program runs into 

data races, because a lot of the data races are hard to reproduce with traditional sequential 

testing or debugging methods due to the non-deterministic interleaving of concurrent threads. 

Thus, sophisticated techniques are employed to monitor and analyze the program executions 

for debugging instead of identifying the bug manually.  

 

2.2. Data Race Detection in Multithreaded Programs 

We have much previous work which progresses some techniques for data race detection. 

These techniques have focused on static and dynamic analysis. Static analysis techniques [3]-

[5] are sound, but imprecise because they report unfeasible races by analyzing only source 

code without any execution, therefore they lead to many false positives. Moreover, using 

these techniques for detecting feasible races in a multithreaded program with dynamically 

allocated data is NP-hard problem [1-2].  

Dynamic analysis includes trace based post-mortem techniques and on-the-fly techniques, 

which report only feasible data races occurred in an execution of the programs. Post-mortem 

techniques [6], collect occurred accesses information into a trace file during an execution of a 

program. Then, these techniques analyze the traced information or replay the program to 

detect feasible data races. However, this approach is inefficient because it requires large time 

and space cost for tracing accesses and threads. 

On-the-fly methods [7-16] dynamically detect data races with still less overhead in storage 

space than other dynamic techniques, because unnecessary information are removed as the 

detection advances. On-the-fly methods are based on three different analysis methods: lockset 

analysis, happens-before analysis, and hybrid analysis. Figure 2 illustrates the classification 

of data race detection techniques using a hierarchical structure. 
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Figure 2. The classification of race detection techniques 
 

Lockset analysis [14, 16] reports data races of monitored program by checking violations 

of a locking discipline, and happens-before analysis [7-10] reports data races between current 

access and maintained previous accesses by comparing their happens-before relation based on 

the usage of a logical time stamp, such as vector clocks. The lockset analysis is simple and 

can be implemented with low overhead. However, lockset analysis may lead to many false 

positives, because it ignores synchronization primitives which are non-common lock such as 

signal/wait, fork/join, and barriers. The happens-before analysis is precise, since it does not 

report false positives and can be applied to all synchronization primitives. However, it is quite 

difficult to be efficiently implemented due to the performance overheads. The hybrid method 

[11-13] tries to reduce the main drawback of pure lockset analysis and to get more improved 

performance than pure happens-before analysis. Most hybrid detectors improved accuracy on 

reporting data races by partially applying the happens-before analysis on lockset analysis, but 

still report false positives. The technique for reducing false positives cannot guarantee the 

credibility of a race free execution of a multithreaded program with one input.  

Several dynamic data race detect ion techniques are performed in automatic tools with 

their significant advantages. These techniques used in detectors have some limitations, 

because they analyze only the dynamic execution of a program with a single input. Most 

dynamic detectors try to cover the limitations by considering the ordering of synchronization 

operations, such as fork-join, locks, signal-waits, and barriers, obtained in an actual execution 

of the program, but they still provide limited advantages (e.g. supporting particular 

synchronization primitives, improving the efficiency or the preciseness of execution overhead, 

etc). Dynamic analysis for detecting data races usually uses an instrumentation framework to 

insert extra codes into target sources or binaries for monitoring every memory and thread 

operation. 

 

3. Motivation 

Program instrumentation [17-20] is a technique that inserts extra codes into target 

applications to monitor the execution of the program and to collect runtime information, 

while attempting to preserve the visible behavior of the original codes. By the instrumentation, 

the extra codes can be inserted at various stages, such as source code modification stage, 

compile-time stage, and link-time stage, and the original codes are transferred to modified 

executable codes to analyze runtime information. The instrumentation approach can be 
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classified into source code instrumentation and binary instrumentation that use either static or 

dynamic method. Source code instrumentation [17] is used to modify source code by inserting 

appropriate code. The source code instrumentation is simple and can be apply multiple 

compilers and platforms. However, it is difficult proper considering to change data cache 

behavior, interactions with optimizing compilers, and the runtime overhead of instru-

mentation library calls. 

Binary instrumentation [18-20] inserts the extra codes into binaries considering a program 

form which consists of the codes and data to execute the program, like binaries lack source 

code, often lack symbols, and debugging information [20]. Binary instrumentation also uses 

either static or dynamic method. Static binary instrumentation occurs in a phase that rewrites 

object or executable codes before the program is ran. 

Dynamic binary instrumentation is a popular technique to analyze the runtime behavior of 

applications, because it does not require any modifying the target binaries and covers all the 

execution of the application. However, the overheads of dynamic binary instrumentation can 

be high for complex programs, such as multithreaded programs. Thus, it is hard to be 

implemented because of the difficulty of the code rewriting at run-time. Nonetheless, 

dynamic analysis for complex programs can be built with the dynamic binary instrumentation 

frameworks, such as DynamoRIO [21], Valgrind [212], and Pin [23-24]. 

The executable binaries are loaded into memory area and replaced as an objective image. 

Usually, the binaries are executed with several dynamic linked libraries (DLL) such as 

standard libraries, and it is mapped with the address area of a process for the execution of the 

program when the main function is loaded. Each objective image which mapped with the 

address area of a process consists of diverse sections that include distinct information for the 

execution. These sections are commonly consists of Code Section which includes executable 

machine codes, Data Section which saves the information of variables, and Debug Section for 

supporting debugging. 

The Code Section is a main target to monitor accesses to memory locations because the 

instructions for the read or the write of data are mainly existed in the section. Thus, it is 

important to make the minimal insertion of the monitoring codes in Code Section to reduce 

additional runtime overhead of dynamic data race detection.  

 

4. The Filtering for Dynamic Data Race Detection 

We present a hierarchical filtering method that removes unnecessary monitoring operations 

at the each of three levels, Image Level (IML), Section Level (SEL), and Instruction Level 

(INL), to reduce runtime overhead of dynamic data race detection.  This section introduces 

the key idea of our filtering method. 
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..globl SV 

  .bss 

  .align 4 

  .type SV, @object 

  .size SV, 4 

… 

..globl temp1 

  .section .rodata 

  .align 4 

  .type temp1, @object 

  .size temp1, 4 

… 
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31 

32 

33 

… 

main: 

 … 

  call pthread_create 

  movl %eax, -12(%ebp) 

  movl SV, %eax 

  addl $1, %eax 

  movl %eax, -8(%ebp) 

  movl -16(%ebp), %eax 

  movl $0, 4(%esp) 

  movl %eax, (%esp) 

  call pthread_join 

 … 
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14 

15 
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18 

19 

20 

func1: 

… 

  movl temp1, %eax 

  addl $4, %eax 

  movl %eax, SV 

  movl $0, %eax 

  

34 

35 

  call printf 

… 

Figure 3. Symbolic binaries for the program shown in Figure 1(a) 

 

4.1. The Filtering for IML 

The objective images which have been loaded into a memory area include target binaries 

for user application, system libraries, and other APIs. However, detecting data race focuses 

only on the user applications and its libraries rather than system libraries and others. 

Therefore, we selectively filter out memory operations which related standard libraries and 

other APIs by using the path of linked images and the name of libraries. 

Figure 3 indicates symbolic binaries for the program shown in Figure 1(a). The binaries 

linked with system libraries, like pthread_create, pthread_join, and printf (e.g., lines 24, 32, 

and 34 in Figure 3). We simply filter out such the system libraries for IML. Thus, we never 

insert any monitoring codes for the system libraries. 

 

4.2. The Filtering for SEL 

There exist several dynamic section areas in Data Section, such as global variable 

area, static variable area, and heap area, that the areas are used to read or write data 

during the execution of the program. Moreover, the special areas are located for read 

only data and constant variables. Therefore, we simply filter out such the read only 

memory areas for SEL. 

For example, in Figure 3, the variable temp1 is read only data, because it was 

declared as a constant variable, although it is a global variable similar to SV. The 

constant variables are indicated as .rodata in the data section of the binaries (see the 

line 9 in Figure 3). We easily filter out such the read only data for SEL by using this 

information of the section. Therefore, the instruction of line 16 in Figure 3 is excluded 

from a point to insert monitoring code for data race detection. 

 

4.3. The Filtering for INL 

The memory operations should be monitored with each instruction to precisely insert 

corresponding monitoring codes into the Code Section. We analyze the opcode and 

operand of instructions to decide which operations access shared memory locations. 

Figure 4 depicts memory allocations for important areas of the executable binaries 

shown in Figure 3. The local variables, temp in Figure 1(a), are usually allocated in 

stack area. Thus, we can simply filter out the local variables which related only stack 

area of memory allocations.  
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Figure 4. Memory mapping for the execution of the binaries shown in 
Figure 3 

 

For example, we can estimate two memory locations, ebp and esp in Figure 3, which 

are the pointer to stack area of memory by analyzing operand of the instructions and 

comparing their address with information of stack area. Thus, the almost of memory 

operations are excluded from the conflicting accesses to memory locations. With our 

hierarchical filtering, we filter out unnecessary memory operations for dynamic data 

race detection. Therefore, we are possible to insert monitoring codes into the target 

binaries of Figure 3 with considering only a shared variable SV. 

 

5. Evaluation 

We evaluated empirically the effectiveness of our filtering method by applying the 

experimentation of dynamic data race detection with a set of benchmarks. We employed a 

state-of-the-art algorithm for dynamic data race detection and seven benchmarks for the 

experiments. The empirical results show that our hierarchical filtering method practically 

reduces the runtime overhead for dynamic data race detection. 

 

5.1. Implementation and Experimentation 

For the evaluation of our filtering method, we employed FastTrack [8] algorithm 

which is a state-of-the-art for dynamic data race detection. We use seven benchmarks of 

PARSEC 2.1 suite [25] which targets different areas with applications such as data 

mining, financial analysis, and computer vision. All benchmarks were executed with 

Sim-Medium simulation inputs of the PARSEC benchmark suite to produce proper 

runtime overhead. 

We implemented FastTrack algorithm as a detector on top of the Pin instrumentation 

framework which uses a just-in-time compiler to recompile target program binaries for 

dynamic instrumentation. Our hierarchical filtering method was implemented on a 

detector as a modified version of FastTrack. The experimentations were carried on a 

system with Intel Xeon Quad-core 2CPUs and 8GB main memory under Linux 

operating system. The benchmarks were compiled with gcc 4.4.4, and the average 

runtime overhead of benchmarks was measured for five executions. 

 

5.2. Results and Analysis 

Figure 5 depicts the reduced runtime overhead of data race detection by each filtering for 

three levels. The graph in Figure 1 shows that IML and SEL reduce average runtime 

overhead to 16.6% and 6.1% of the original overhead of FastTrack, respectively. From the 

…

Code Area

… … …

Stack Area Data Area

…

main :

movl % esp, %ebp

pushl %ecx

call    printf

…

…
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temp1

…

…

temp

…
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figure, the most effective level for filtering is INL, because the filtering for INL reduces the 

runtime overhead to 37.7% of the original FastTrack, in the average case.  

We compared the hierarchical filtering which combines the filtering method of three levels 

to get more practice, such as IML+SEL and IML+SEL+INL. The compared results appear in 

Figure 6. From the results, the step of IML and the step of IML+SEL reduced the average 

runtime overhead to 17% and 23% of FastTrack, respectively. In the Final step, 

IML+SEL+INL, it reduced average runtime overhead to under of 50% of FastTrack, 

excluding dedup benchmark. In case of blackscholes, the average runtime overhead is only 

about 10% of the original overhead of FastTrack by our hierarchical filtering method.  

These empirical results from Figure 5 and Figure 6 show that our hierarchical filtering 

method practically reduces runtime overhead for dynamic data race detection. 

 

 

Figure 5. The ratio of runtime overheads for each filtering level 
 

 

Figure 6. The measured runtime overheads for hierarchical filtering 
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6. Conclusion 

It is important to locate data races for debugging multithreaded programs. However, the 

dynamic detection techniques are needed large amount of runtime overhead. This paper 

presented a hierarchical filtering method that removes unnecessary monitoring memory 

operations from three levels of binary image. The empirical results using a set of benchmarks 

show that our hierarchical filtering method offers the practical dynamic data race detection 

for multithreaded programs due to fact that it reduces the average runtime overhead to over 

50% of pure dynamic data race detection. 
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