
International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014), pp.187-198

http://dx.doi.org/10.14257/ijmue.2014.9.4.20

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2014 SERSC

Research and Development of Mobile Application for

Android Platform

Li Ma

1,2,3
, Lei Gu

1,2
 and Jin Wang

1,2,3

1
Jiangsu Engineering Center of Network Monitoring, Nanjing University of

Information Science & Technology, Nanjing 210044
2
School of Computer & Software, Nanjing University of Information Science &

Technology, Nanjing 210044
3
Key Laboratory of Meteorological Disaster of Ministry of Education Nanjing

University of Information Science & Technology, Nanjing 210044

Abstract

Today, as the developing of hardware of mobile is getting better, the performance index is

much higher than the actual requirements of the software configuration. Phone's features

more depend on software. As the Android operating system is getting more popular, the

application based on Android SDK attracts much more attention. But now, some of the

Android application interface is too cumbersome, pop-up ads is overmuch and the function is

too single, these cause some inconvenience to the users. This article presents the application

by eliminating the redundancy. Three kinds of applications are developed base on Java and

Android SDK --- Weibo client, video player and audio player. The audio player uses the

ContentResolver and Curor to obtain music files and plays the music by using the Service

Components to call the Media Player class in the background. The video player uses the

Media Player class provided by Android SDK. This class loads the file through URL, realize

the multimedia file parsing by calling the OpenCore Library, which is at the bottom of

Android, through JNI and by calling the SurfaceFlinger interface to realize the video files’

playback. The users’ data is collected through the Sina open platform called by Sina client

and the data will be returned under the format of JSON by the Sina server. The system uses

the OAuth authentication method for user authorization to complete the login process. The

specific functions of this system are developed based on Android Weibo SDK. The interfaces

of these Android apps are pretty and the operation is smooth. What’s more, the cumbersome

interface and excessive advertising are eliminated, so that users are able to manipulate these

apps more conveniently and smoothly.

Keywords: Android, Weibo client, Video Player, audio player, Android SDK

1. Introduction

In recent years, the emergence of smart phones has changed the definition of mobile

phones. Phone is no longer just a communication tool, but also an essential part of the

people's communication and daily life. Various applications added unlimited fun for people's

lives. It is certain that the future of the network will be the mobile terminal.

Now the Android system in the electronics market is becoming more and more popular,

especially in the smartphone market. Because of the open source, some of the development

tools are free, so there are plenty of applications generated. This greatly inspired the people to

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

188 Copyright ⓒ 2014 SERSC

use the Android system. In addition, it provides a very convenient hardware platform for

developers so that they can spend less effort to realize their ideas. This makes Android can

get further development [1-4].

As the smart phones and Android system getting popular, the operations like listening to

music, watching videos, tweeting and some others can be moved from the computer to a

phone now.

The applications on the market today are mostly commercial applications, and contain a

large number of built-in advertising. If the user prefers to remove the built-in advertising, a

certain price must be paid to reach that and this is not convenient. Meanwhile, because of the

unfair competition of IT, many applications built illegal program to steal user information and

cause some damage to user’s personal privacy. Sometimes, users will pay more attention to

the user experience of software. Therefore, the development of the application can not only be

limited to the function, more attention should be paid to the user's experience. After studying

some previous Android applications and access to large amounts of materials, we utilize the

Java language, the Eclipse platform, Android ADT and the Android SDK to develop these

three mobile applications. These systems have a nice interface and smooth operation. These

Apps won’t steal any personal information, but can exclude useless information and bring a

wonderful user experience.

2. Android Architecture

We studied the Android system architecture. Android system is a Linux-based system,

Use of the software stack architecture design patterns [1-2].

As shown in Figure 1, the Android architecture consists of four layers: Linux kernel,

Libraries and Android runtime, Application framework and Applications [5-8].

Each layer of the lower encapsulation, while providing call interface to the upper.

Applications

Applications Framework

 Libraries Android Runtime

Linux Kernel

Home Phone ...Browser

Activity
Manager

Window
 Manager

Content
Providers

...

Core Libraries

Dalvik

Surface
Manager

Media
Framework

...

Display
Driver

Camera
Driver

USB
Driver

...

Figure 1. Android Architecture

2.1. Applications

Android app will be shipped with a set of core applications including client, SMS

program, calendar, maps, browser, contacts, and others. All these application programs are

developed in Java.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

Copyright ⓒ 2014 SERSC 189

2.2. Application Framework

The developer is allowed to access all the API framework of the core programs. The

application framework simplifies the reuse of its components. Any other app can release its

functional components and all other apps can access and use this component (but have to

follow the security of the framework). Same as the users can be able to substitute the program

components with this reuse mechanism.

2.3. Libraries and Android Runtime

The library is divided in to two components: Android Runtime and Android Library.

Android Runtime is consisted of a Java Core Library and Dalvik virtual machine. The Core

Library provides Java core library with most functions. Dalvik virtual machine is register

virtual machine and makes some specific improvements for mobile device.

Android system library is support the application framework, it is also an important link

connecting between application framework and Linux Kernel. This system library is

developed in C or C++ language. These libraries can also be utilized by the different

components in the Android system. They provide service for the developers through the

application framework.

2.4. Linux Kernel

The kernel system service provided by Android inner nuclear layer is based on Linux 2.6

kernel, Operations like internal storage, process management, internet protocol, bottom-drive

and other core service are all based on Linux kernel.

3. Experimental Methods

3.1. Video Player

Video Player is achieved through the Eclipse platform. In order to develop android app,

we will install a plug-in for Eclipse: Android Development Tools (ADT). Once installed,

download Android SDK [10, 12], install and configure the SDK, then we can develop a video

player.

Our research begins with the study of operating mechanism, Android platform media layer

structure, xml customizable interface, Content Providers [9] achieves file scanning to get a

list of media files, MediaPlayer class, file parsing, Surface Flinger interface. After that, we

could develop an Android-based mobile video player. Realize media library, video player, file

opening, audio, video, photographs and other functions. Figure 2 is system flow chart.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

190 Copyright ⓒ 2014 SERSC

 the Xml file definition interface
(Included in the application

Framework layer)

File list obtained through the
Content Providers

(Included in the application
Framework layer)

Using multimedia framework for video
file playback

(Included in the Libraries layer)

Figure 2. System Flow Chart

The software interface is defined through XML files. XML layout files control view, is not

only simple, but also isolated the View control logic from Java code and controlled by

inserted into XML files. Reflects the MVC principle in a better way and also reflects the

principle of separation of logic and views. This software obtains the list of media files by

scanning through Content Providers. Content Providers is recognized as a bridge between the

data storing and searching across programs. The function is to achieve data sharing among

different Apps, it is the only way to share data with other apps. Figure 3 shows the media

layer structure [13].

APP（Java）

JNI（libmedia_jni.so）

libmedia.so

mediaplayerserver

mediaplayer interface

MIDI Player Vorbis Player
OpenCore

Player

AudioFlinger

AudioFlinger

Figure 3. Media Layer Structure

The upper applications of Android-MediaPlayer are implemented by JAVA, realized logic

processing. JAVA program realizes the playback of video file and online video by calling the

underlying media library libmedi.so through JNI interface.

MediaPlayer can be roughly divided into two parts at run time: Client and Server. They

are running in two separated processes. Binder used between them to achieve IPC

communication. Mediaplayerservice in Figure 3 is a server-side implementation repository.

MediaPlayer calls media playback capabilities provided by Opencore [14] to implement

video file playback, Opencore responsible media file format parsing, decoding audio and

video data, and outputs the media data. Opencore calls SurfaceFlinger interface to realize the

showing of video data and by applying AudioFlinger interface to realize the playback of

audio data.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

Copyright ⓒ 2014 SERSC 191

In the Android media layer, the most important class is MediaPlayer. MediaPlayer class

and its associated structures are shown in Figure 4.

Class
MediaPlayer

（Java）

JNI

Class
MediaPlayer

Class IMediaPlayerService

Class
BPMediaPlayerService

Class IMediaPlayer

Class BPMediaPlayer

Class IserviceManager

Class BPServiceManager

Client

Class parcel Class parcel Class parcel

Class
BnMediaPlayerService

Class MediaPlayerService

Class BnMediaPlayer

Class MediaPlayerService：：client

Class BnServiceManager

Class BServiceManager

Class MediaPlayerBase

Class MediaPlayerInterface

Class PVPlayer（opencore）

Server

Create() getService()

operations

Figure 4. MediaPlayer Class Hierarchy Diagram

Upper JAVA program calls the underlying MediaPlayer class to implement Media

streaming. First, the MediaPlayer class obtains a name for media.player services through

IService _Manager getService interface. After that, all the operations are conducted through

this MediaPlayer player and the interface is IMediaPlayer. All BpXXXX classes in Figure 4

are proxy classes, the responsibility is to realize message forwarding by sending the client

requests to the service through the Binder mechanism. A corresponding BnXXXX subclass

on the service side is responsible for implementing specific functions. The play of final

broadcast media stream is achieved by calling the underlying Opencore libraries through

MediaPlayerInterface interface. This class loads pre-played files through Uri，calling the

OpenCore multimedia libraries to implement file parsing via JNI, by calling the

SurfaceFlinger interface to realize the playing of video file, by calling the AudioFlinger

interface to realize the playback of audio data. The software interface is simple, feature-rich,

smooth operation and also by calling an external program to achieve audio and image

playback. Figure 5 shows the video player interface.

Figure 5. Video Player

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

192 Copyright ⓒ 2014 SERSC

3.2. Audio Player

The audio player development tool is the same as the one of video player. System

structure and the process is the same as the process of video player. Also defines the interface

in the Application Framework layer, and then acquires music files through ContentResolver

in the Android Framework layer. Finally, plays the music by using the Service component

calling the MediaPlayer class in the Libraries layer. The system structure is shown in Figure

6.

Main Interface

Music List Artist List Album List

Audio Playback
Interface

backstage service

Figure 6. System Structure

The main interface module is the entrance of the application. Users will see the main

interface modules after starting the application. The module itself does not reflect any of the

information to the user, just call list module to display. Three lists are demonstrated: music

list, album list and artists list. The main interface module is realized by calling

MusicListActivity, AlbumListActivity and ArtistListActivity [15] module. The main interface

logic diagram is shown in Figure 7.

MainActivity

MusicListActivity AlbumListActivity ArtistListActivity

Intent Intent Intent

Figure 7. Main Interface Logic Diagram

Figure 8 is the specific flow chart.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

Copyright ⓒ 2014 SERSC 193

SongManager

SD ContentResolver Cursor

List

Adapter

ArtistListActivity MusicListActivity AlbumListActivity

List

MusicActivity

Intent
Intent

Intent

View Logic

MusicService

Figure 8. Audio Player Flow Chart

Audio file scanner module is responsible for scanning all the audio files on the SD card.

The SongManager in this module is a class, this class has a static method to access to the SD

card. The static method acquires the SD card audio resources by using Cursor class method

provided by Android system, and will turns the received audio resources into a List class

instance objects. The members of List are the JavaBean – Music used in the app. The List

Array will eventually be returned to the other modules that they calling it. List module

MusicListActivity, AlbumListActivity and ArtistListActivity module will call this module.

Adapter module is a tool that maps instance objects of the List<?> class to the ListView.

The adapter module in this application will get a List < Music > instance objects that

produced by SongManager module, and map it to the ListView view components in the

MusicListActivity and other modules.

List module will not show to the user alone, but called by the main interface module. This

module has three parallel parts: MusicListActivity, ArtistListActivity and AlbumListActivity.

The function of them is to display the song list, artist and album list in the main interface.

These parallel modules will call the static method in the SongManager class to acquire a List

<Music> instance object, and then call the adapter module to handle the obtained List

<Music> instance objects. Then, map List <Music> to its own ListView component. When

the user selects an element of the ListView, this module will encapsulate the information into

an intent object and sent it to music playback module.

Music playback module collects the intent sent from List module and analyzed it, then

calls the background music services to play the audio file. The View components provides

player with some basic functions, such as play, pause, fast forward, fast rewind, single play,

random play, etc. This module will make the corresponding logical analysis after the users did

operations to the components. Appropriate response and changes will be done according to

the results analyzed. Audio player interface is shown in Figure 9.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

194 Copyright ⓒ 2014 SERSC

Figure 9. Audio player

3.3. Sina Weibo Client

The development tools of this system are the same as the ones of the video player and

audio player, but except these tools, Sina open platform is also applied to acquire data and

writing data.

In the design phase, logicality and scalability of the whole system are considered. Our

system is divided into four layers, namely the UI layer, logic layer, Weibo interface layer, the

network access layer. Figure 10 is system architecture.

UI layer is responsible for displaying the various forms of the system and the coordination

between the various forms of invocation logic.

The logical layer core control scheduling module is used to access the data transferred by

UI, tasks need to be performed are calling Weibo interfaces, accessing network data,

returning message, refreshing UI, etc.

Sina Weibo interface layer (Sina API [11] encapsulated) provides various interfaces

accessing to the open platform Sina Weibo and used to help the system access data and return

data from Sina Weibo system.

Network Access Layer (Sina API [11] encapsulated) is responsible for the system and the

server's network connection and data transfer.

form form form form

Core control scheduling module

Sina Weibo interface

Network connection and data transmission module

UI layer

logical layer

data upload/
download

Sina Weibo
interface

layer

Network
Access Layer

Figure 10. System Architecture

Figure 11 is System flow chart.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

Copyright ⓒ 2014 SERSC 195

Start

Enter the user
name and
password

whether or not

authorized

OAuth

certification

Verify the user name and

password

The system main

interface

Weibo list
Release
weibo

Check

information

Weibo
square

My

profile
…

Y

N

Insert
the

topic

Insert
the

picture

@

friends

Image
processing

Click on the release

View
detailed

weibo

Comment

weibo

Forwarding

weibo

Collect

weibo

Over

View
@

info

View
comments

Info

View
Collection

Info

View
popular
Weibo

View
Popular

Comments

View
Top

Favorites

View
personal
Profile

Figure 11. System Flow Chart

User login and authorization are processed by calling the pages provided by Sina, the

system doesn't make intervention. Then, the third-party application can access the users’ data

without knowing the user account and password.

The system uses the Android Weibo SDK of Sina Weibo to assist the development, which

has been integrated with an open source Java OAuth [11] authentication package: Signpost,

developers have to register as a developer in Sina Weibo developer platform and obtain the

corresponding App Key and App Secret to finish the guided registration.

Authentication needs to be done before Sina Weibo SDK interacts with the server. SDK

provides a Weibo class, when start the program, the following code needs to be executed to

create a Weibo object, and set App Key, App Secret and URL.

 weibo = Weibo.getInstance(); // Create Weibo object

 weibo.setupConsumerConfig(Consumer.consumerKey,

 Consumer.consumerSecret); // set App Key, App Secret

 weibo.setRedirectUrl(Consumer.redirectUrl); // Set the redirect URL

 weibo.authorize(activity, new AuthDialogListenerImpl(activity));

After executing the above code, the login interface will appear, enter user name and

password, after that, click the Login button. If it is the first time of login, the Authorization

page appears. The main screen will show up after the user login.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

196 Copyright ⓒ 2014 SERSC

Specific functions of this system development are based on Android Weibo SDK, calling

its wrapper classes to complete the corresponding task.

For example, the main interface is divided into three parts: the top is a toolbar, the middle

area is a ListView, bottom is the button bar. Weibo List is in the middle of the main interface

part, displayed through the ListView. As long as Weibo data was obtained from the service

side, it will be shown directly on the ListView control through the Adapter.

The function of posting is achieved through WeiboManager.update method. This method

can submit text and message containing pictures.

Browse Weibo interface is used to display all the information of Weibo and realize

forwarding and commenting. The Weibo browse window class is WeiboViewer and the

interface layout file is weibo_viewer.xml. When displaying the Weibo information, accessing

the current Weibo Status objects and transfers them to the WeiboViewer, and then calls the

loadContent method to load Weibo information. The completed client's main interface is

shown in Figure 12.

Figure 12. The Client's Main Interface

4. Conclusion

The test involves three environments including hardware, software and network. Test

hardware environment is Lenovo Y460 laptop and millet M1 phone; software environment is

windows 7 and phone system environment is Android 4.0.3. Network environment is China

Mobile which is 10M broadband, WIFI LAN and China Mobile GPRS network.

By testing each function on mobile phone and the computer simulator, the result showed

that video player and audio player run well and no advertising. Sina weibo client can

successfully complete OAuth2.0 certificate authority and login and collect the basic data of

the user information from sina server and no redundant information. Expected effect is

achieved after testing all the functions.

Since the Weibo client has to access to the network, when tested on an Android phone, the

performance under the environment of WIFI network and mobile 2G GPRS network can meet

the expected requirements.

Acknowledgements

This research work was supported by the Natural Science Foundation of China youth project

(61103142). It was also supported by the by the Industrial Strategic Technology Development Program

(10041740) funded by the Ministry of Trade, Industry and Energy (MOTIE) Korea.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

Copyright ⓒ 2014 SERSC 197

References

[1] M. Butler, “Android: Changing the Mobile Landscape”, Pervasive Computing, (2011), pp. 4-7.

[2] B. Proffitt, “Open Android-For better and for worse”, Spectrum, (2011), pp. 22– 24.

[3] K. W. Tracy, “Mobile Application Development Experiences on Apple’s iOS and Android OS”, Potentials,

(2012), pp. 30 – 34.

[4] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev and C. Glezer, “Google Android: A Comprehensive

Security Assessment”, Security & Privacy, (2010), pp. 35 – 44.

[5] A. Shabtai, Y. Fledel and Y. Elovici, “Securing Android-Powered Mobile Devices Using SELinux”, Security

& Privacy, (2010), pp. 36 – 44.

[6] M. Song, J. Sun, X. Fu and W. Xiong, “Design and Implementation of Media Player Based on Android”,

WICOM, (2010), pp. 1 – 4.

[7] D. Gavalas and D. Economou, “Development Platforms for Mobile Applications: Status and Trends”,

Software, (2011), pp. 77 – 86.

[8] X. Zhao and D. Tian, “The Architecture Design of Streaming Media Applications for Android OS”, ICSESS,

(2012), pp. 280 – 283.

[9] W. Enck, M. Ongtang and P. McDaniel, “Understanding Android Security”, Security & Privacy, (2009), pp.

50 – 57.

[10] Amirante, Castaldi, Miniero and Romano, “Meetecho Mobile: Accessing an IETF-compliant conferencing

framework from cellular devices”, Communications Magazine, (2011), pp. 36 – 43.

[11] C. Wang, W. Duan, J. Ma and C. Wang, “The research of Android System architecture and application

programming”, ICCSNT, (2011), pp. 785 – 790.

[12] J. P. Conti, “The androids are coming [Comms]”, Engineering & Technology, (2008), pp. 72 – 75.

[13] X. Zhao and D. Tian, “The architecture design of streaming media applications for Android OS”, ICSESS,

(2012), pp. 280 – 283.

[14] Barbosa, Goncalves, Ribeiro and Costa, “Integration of SIP protocol in Android Media Framework”,

EUROCON, (2011), pp. 1 – 4.

[15] S. Jin, H. Li and Y. Liu, “Research on media player based on Android”, FSKD, (2012), pp. 2326 – 2329.

Authors

Li Ma

She received her B.S. degree in 1985 from the Chengdu Institute

of Meteorology and her Ph. D degree in 2011 from Nanjing

University of Information Science and Technology. She is a

professor and tutor for graduates in Nanjing University of

Information Science and Technology. Her main research interests

include image processing, pattern recognition, and meteorological

information processing and data assimilation.

Lei Gu

He obtained his B.S. degree in the Computer and Software

Institute from Nanjing University of Information Science and

technology, China in 2012. Now, he is working toward the M.S.

degree in the Computer and Software Institute. His main research

interests include Data mining and cloud computing.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6248786&refinements%3D4291944246%26rowsPerPage%3D100%26queryText%3Dandroid
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=45
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5396322&refinements%3D4291944246%26rowsPerPage%3D100%26queryText%3Dandroid
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5396322&refinements%3D4291944246%26rowsPerPage%3D100%26queryText%3Dandroid
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8013
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Maoqiang%20Song.QT.&searchWithin=p_Author_Ids:37536329200&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5654492&refinements%3D4291944246%26queryText%3Dandroid+application
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5654492&refinements%3D4291944246%26queryText%3Dandroid+application
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6260028
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Amirante,%20A..QT.&searchWithin=p_Author_Ids:37945866600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Castaldi,%20T..QT.&searchWithin=p_Author_Ids:37943860400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wei%20Duan.QT.&searchWithin=p_Author_Ids:38242150500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jianzhang%20Ma.QT.&searchWithin=p_Author_Ids:38240822200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chenhui%20Wang.QT.&searchWithin=p_Author_Ids:37899278100&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4621823&refinements%3D4291944246%26queryText%3DAndroid
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10908
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xueliang%20Zhao.QT.&searchWithin=p_Author_Ids:38468401800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dan%20Tian.QT.&searchWithin=p_Author_Ids:37677779100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Barbosa,%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Goncalves,%20J..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ribeiro,%20A.N..QT.&searchWithin=p_Author_Ids:37705803000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shuangyan%20Jin.QT.&searchWithin=p_Author_Ids:38251903700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Haoliang%20Li.QT.&searchWithin=p_Author_Ids:38241164100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yongfei%20Liu.QT.&searchWithin=p_Author_Ids:38252135200&newsearch=true

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.4 (2014)

198 Copyright ⓒ 2014 SERSC

Jin Wang

He received the B.S. and M.S. degree in the Electronical

Engineering from Nanjing University of Posts and

Telecommunications, China in 2002 and 2005, respectively. He

received Ph.D. degree in the Ubiquitous Computing laboratory from

the Computer Engineering Department of Kyung Hee University

Korea in 2010. Now, he is a professor in the Computer and Software

Institute, Nanjing University of Information Science and

Technology. His research interests mainly include routing method

and algorithm design, performance evaluation and optimization for

wireless ad hoc and sensor networks. He is a member of the IEEE

and ACM.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

