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Abstract 

The high speed CPU based routers currently in use could not handle the massive data 

required for real-time multimedia communication. Graphics processing units (GPUs) offer an 

appreciable alternative due to high computation power which results from their parallel 

execution units. This paper presents the implementation of the Dijkstra’s link state IP routing 

algorithm using GPU. Experimental results show that the proposed GPU-based approach 

outperforms the same sequential CPU-based implementation in terms of execution time for 

the same dense graph. In addition, the proposed GPU-based approach reduces about 99% 

energy consumption over the CPU-based implementation.  
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1. Introduction 

The world is connected by the internet. Among the various network devices, internet 

routers play a significant role by serving as the internet backbone due to its strategic function 

of handling traffic packets between networks. Across the internet landscape, conventional 

hardware routers initially proved to be a relative success with its high processing speed. 

However, for many instances those routers become insufficient to ensure the high speed 

communication such as multimedia internet. The custom hardware struggles to meet the 

numerous packet specifications and throughput needs [1]. On the other hand, software routers 

(SR) were deployed with more flexible features and lower costs. However, their performances 

were also curtailed by limited traffic throughput less than 10Gbps. As a result, SR ultimately 

fails to support the needs for high data rate (100Tbps) real time applications such as 3G and 

4G [2]. 

Nowadays, graphic processing units (GPUs) are playing a significant role in large scale 

applications, where massive parallel processing is needed [3, 4]. The advent of the GPU is 

quite appreciable in graph processing as it works without graph reductions. However, even 
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though GPUs are optimized for graph processing and operations, they are quite challenging to 

use their highly restrictive programming models. It is also challenging to understand the 

performance boundaries of the GPU relative to multi-core CPU implementations [5]. In [6], 

authors examined the performance boundary of a fine-tuned GPU implementation of the 

genetic algorithm against the performance of an optimized CPU implementation. In [2], the 

performance of a GPU based linear search framework for packet classification was evaluated. 

A GPU-based high-performance software router such as PacketShader was proposed for 

general packet processing [7]. Zhu et al. proposed Herms which is an integrated CPU/GPU 

micro-architecture for quality of service aware high speed routing [8]. 

A number of researchers often make a comparison between highly parallelized GPU 

implementation and an un-optimized single core CPU implementation. It often makes the 

speedup ratio to be skewed in the favor of the GPU. This paper establishes a fair speedup 

comparison between parallel GPU implementation and a four core CPU implementation (e.g. 

Intel(R) Core(TM) i5 CPU). In this paper, we proposed a GPU-based implementation of the 

Dijkstra’s algorithm, where some parts of the algorithm are implemented on the host (hosting 

CPU) while some other parts implemented on the device (GPU). We have also separated the 

performance index to identify several different interactions between the CPU and the GPU. 

Our CPU/GPU comparison metrics include execution time, throughput, power and energy 

consumption between CPU and GPU. 

The rest of this paper is organized as follows. Section 2 includes the background study 

with a detailed overview of compute unified device architecture and the Dijsktra’s algorithm. 

Section 3 describes the proposed parallel implementation of Dijkstra ’ s algorithm using 

CUDA. Section 4 presents a short overview of different performance metrics, and Section 5 

presents experimental results and discussion. Finally, Section 6 concludes the paper. 

 

2. Background Information 

 

2.1. GPU and CUDA Interaction  

CUDA is a suite of combined software and hardware architecture. The ease programming 

features of CUDA enable the transformation of the GPU to the data parallel computing 

device. In addition, CUDA becomes enjoyable among GPU programmers for the similarity of 

programming features of the C programming language [9, 10]. Commonly used CUDA 

compatible GPU devices include NVidia’s G100, GeForce 400, and NVidia’s Fermi or Tesla 

series. 

If we program the GPU to execute some instructions on a batch of data threads using 

CUDA programming language, the GPU acts as a co-processor to the CPU. As a co-

processor, GPU is capable to execute a high volume of threads in parallel pattern using a 

CUDA program. The body of the CUDA program to be executed on the GPU is called a 

kernel. In the memory hierarchy of GPU, a CUDA kernel executes directly on the SPs 

(streaming processors) or cores. Figure 1 presents detailed of GPU and CUDA interaction 

along with memory allocation. 
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Figure 1. GPU and CUDA interaction with memory allocation 
 

In order to ensure seamless programmability and to avoid the problem of data and 

instruction association, the device maintains dynamic random access memory (DRAM) 

separated from that of the host (i.e., CPU). The DRAM enables both the host and the device 

to be able to dynamically access any location in memory in real time in other to fetch or to do 

some other needed operation with any chunk of data. Whenever a CUDA kernel is called on 

the GPU, it can perform its set of instructions on a block of data organized in threads. Each 

thread in a block has a unique identifier which enables it to maintain its identity separated 

from other threads in a block. Thread indexing is further maintained on the block by 

organizing the threads in the form of uni-dimensional or multi-dimensional blocks. Threads 

of the same blocks communicate with each other, which is separated from the communication 

paths of other threads in other blocks [11]. 

  

2.2. Graph Mapping on CUDA  

A graph G could be defined as a set of nodes (V) and edges (E); i.e., G = (V, E). A 

dense graph will have |E| very close to |V|
2
 whereas a sparse graph will have |E| quite 

less than |V|
2
. For non-weighted dense graphs, the construction of an adjacency matrix 

which is a 2-D array of Booleans representing the graph topology is often very useful 

for the purpose tracking graph edges [12]. This property tends to be quite useful for 

CUDA since the adjacency matrix allows graphs of arbitrary sizes to be created and 

manipulated in a parallel fashion. Using an adjacency matrix, the vertexes of a graph can 

be stored in an array while the edges are stored in another adjacency list array. If we 

denote the array of edges as V and the array of edges as E, then we can utilize Figure 2 

to describe the representation of graphs with adjacency lists of arrays and edges in 

CUDA. Each vertex array entry in V will map to the starting index of its corresponding 

adjacency list in the edge array E. 
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Figure 2. CUDA’s graph mapping with a vertex list pointing to an edge list 
 

Thus, a dense graphs containing numerous edges and vertices may be contained in two 

lists: one is a list of edges and the other is a list of vertices with appropriate pointers of 

mapping the array of edges to array of vertices in CUDA. The important contribution of this 

mapping paradigm is that we do not need for graph reductions/sparse matrix computation in 

order to process the matrices associated with these two graphs. As a result, we do not loose 

crucial graph specific information. The graphs are processed as is with each element in the 

array of edges and their associated elements in the array of vertices. They can be processed 

concurrently in different GPU threads using thread indexing to associate the array list with 

relevant processing instructions. 

 

2.3. The Dijkstra’s Algorithm  

The Dijkstra’s algorithm is commonly known as the shortest path first (SPF) which works 

by iterating on a graph to find the paths with the least cost for traversing from a start node to a 

destination node using a routing database [13]. It is a graph search algorithm and solves the 

single source shortest path problem for a graph with non-negative edge path cost. Let K be the 

nodes whose least cost paths are definitely known. Initially, K = u, where u is the source node. 

For each iteration, another node with a known path cost will be added to K until the routing 

database is completed. We then assign C(v) to be the current cost of paths from source u to 

node v. At the onset of the iteration, let C(v) = c(u,v) for all nodes v adjacent to the starting 

node u and let C(v) be infinity for all other nodes v which are not directly connected to u. We 

can now update C(v) continually until all shorter paths on the entire graph are known. 

Dijkstra’s is one of the best implementation of the general link state algorithms. 

For a given source vertex in the graph, the algorithm finds the path with the lowest cost 

between the source vertex and every other vertex. Three basic steps including insert, extract-

min and update-cost are involved in the Dijkstra’s algorithm. The insert phase is an 

initialization phase where numerous positive costs between the vertices are generated. In this 

stage, the source node is assigned to 0 and for other vertices is assigned to ∞. In the second 

stage, the neighbour vertex of each vertex is sorted out. In the third stage, the cost for finding 

out the shortest possible router is updated based on one condition: C(v)=min(C(v), 

C(w)+c(w,v)) in Algorithm 1. 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol.9, No.3 (2014) 

 

 

Copyright ⓒ 2014 SERSC  273 
 

Algorithm 1: Dijkstra’s Algorithm 

1: Initialization  

2:   K = {u}  

3:   for all nodes v  

4:   if v is adjacent to u, then  

C(v) = c(u,v)  

5: else C(v) = infinity  

6: Loop  

7:   ExtractMin: Find w not in K with the smallest C(w) 

8:  Add the w to K 

9:  Update C(v) for each neighbour v adjacent to w and not in K  

10: Set C(v) = min(C(v), C(w) + c(w,v)) 

11: Until K nodes in K  

 

3. Implementation of Parallel Dijkstra’s Algorithm Using CUDA 

The device used for the proposed GPU-based implementation of the Dijkstra’s algorithm is 

the GeForce GT 630, which is a DirectX 11 GPU [14]. It has 96 CUDA cores equipped with a 

chip-level power enhancements and a GDDR5 memory interface, where GPU clock 

speed is 810MHz. The processor clock rate is 1620MHz while the graphics clock rate is 

810MHz.  

CUDA is useful in computing the link states of the entire graph whenever the graph 

topology changes. The routers are the nodes of a graph and the link weight which should not 

be negative is the associated costs with each link. Each router has a whole network map and 

the router recognizes the link states periodically whenever the network topology changes. 

Each router runs the Dijkstra’s algorithm locally where thread parallelization scheme is 

offered by CUDA [15]. 

Figure 3 shows a flow diagram of the proposed parallel algorithm, where extract-min and 

update-cost kernels of the Dijkstra’s algorithm are implemented on a GPU. Step 2 to step 6 of 

the pseudo code of Algorithm 2 is indicative of the whole transactions for the extract-min and 

the update-cost. The proposed algorithm runs on a heterogeneous system [16] including CPU 

and GPU.  

 

 

Figure 3. A block diagram of the proposed GPU implementation of the 
Dijsktra’s algorithm 
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Figure 4. A sample scenario of the proposed parallel algorithm implemented on 
NVIDIA’s GPU with memory allocation 

Algorithm 2: CUDA Dijkstra’s Pseudo code 

1: Step 1:  

2:   Generate the cost matrix for the scenarios with different number of routers; in this stage the  

3: source-node is assigned to 0 and for other vertices is assigned to ∞ 

4:   Step 2:  

5:   Allocate the memory in CUDA depending on the number of routers 

6: Step 3: 

7: Transfer the scenarios information (Costmat) from CPU to GPU 

8:   Step 4: 

9:  (i.)Extract Min 

10:  (ii.) Updating once for every edge 

11: v.predecessor = u 

12: Step 5 

13: Transfer the processed data from GPU to CPU 

14: Step 6:  

15: Free CUDA function 

 

Algorithm 3 presents a CUDA C main program that includes a kernel function dij. In the 

experiment, we set the kernel function using 2-D blocks and grids in the following ways [17]: 

blockDim.x=32 and blockDim.y=32, gridDim.x= n/32 and gridDim.y= n/32, where n varies 

depending on the number of vertex. More explicitly, the Dijkstra’s global computation 

function is shown in Algorithm 4; where, a variable i is used which depends on the two 2-D 

variables (x and w). A detailed of 2-D global memory allocation in GPU is presented in 

Figure 5. 
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Figure 5. 2-D global memory allocation in GPU  

 

4. Performance Metrics 

In order to obtain a reasonable performance comparison between the Intel(R) Core(TM) i5 

CPU and the NVIDIA GeForce GT 630, we segment the performance index into different 

parameters in order to be able to completely examine the performance of the CUDA 

implementation of the Dijkstra’s algorithm. In this paper, we consider the following 

performance metrics including throughput, execution time, speedup, and power and energy 

consumption. 

 

4.1. Throughput 

GPU throughput is a measure of how much work gets done every second, which is 

measured in bit/sec. It can be affected by bandwidth and latency.  

 

4.2. Speedup 

GPU speedup over CPU is the rate of the speed increment of the parallel instruction 

execution of the GPU over an equivalent sequential execution on the CPU. It can be 

computed as where,  is the total time taken by the sequential CPU 

instruction execution while  is the total time taken for the GPU-based implementation. 

 

4.3. Power and Energy Consumption 

Power consumption is measured in unit of watt (joules/sec). In this paper, we measure the 

consumed power by subtracting the power by CPU/GPU during the kernel execution and the 

power consumed in the ideal state of CPU/GPU, such as power consumption (  =  -  

where  is the consumed power by a device (CPU/GPU) during the kernel execution and  

is the consumed power by a device in ideal state. Energy is power integrated over time such 

as  

 

5. Experimental Results and Analysis 

To evaluate of the performance of the proposed GPU-based approach, we use a standard 

NVIDIA tool called Visual Profiler (nvprof) [18] which enables the collection of a timeline of 

any applications for CPU and GPU activities including kernel execution, memory transfers 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol.9, No.3 (2014)  

 

 

276  Copyright ⓒ 2014 SERSC 
 

and CUDA API calls. The profiling results are displayed in the console after the application is 

completed. All values are reliable as it collects the average values by running a program 21 

times. In this section, the number of available nodes for processing in numerous network 

scenarios is analyzed. 

 

Table 1. Execution time of the GPU-based implementation for varying the 
number of vertices 

 
 

5.1. Performance of the GPU-based Approach 

In this section, the performance of the proposed GPU-based approach is evaluated in terms 

of execution time. Table 1 shows a performance summary of the GPU-based approach. In 

addition, the performance of the GPU-based approach is compared with that of the 

equivalent CPU-based implementation, which includes five cores. 

Execution time of the CPU-based implementation exponentially increases when the 

number of nodes increase, while execution time of the GPU-based approach shows almost 

steady due to the parallel execution pattern of the GPU. In other words, the extract-min and 

update-cost kernels of each vertex are calculated in different blocks of GPU. Figure 10In 

addition, and. Since numerous blocks and similar threads execute concurrently on streaming 

multiprocessors, the execution time to sort out the cost matrix in extract-min and updating 

cost is reduced significantly. On the other hand, owing to the sequential execution pattern 

CPU latency continues to rise. The CUDA implementation of the algorithm is highly 

beneficial when significant amount of nodes are processed because this is what the GPU is 

optimized for. As shown in Figure 10, the speedup of the entire CUDA implemented 

Dijkstra’s algorithm exhibits an increasing pattern when the graph becomes denser. It 

happens due to the higher execution time of CPU for the scenarios with large amount of 

nodes. 

In the heterogeneous system for CPU and GPU, memory transfer time becomes 

performance bottleneck of GPU computing. This memory transfer time plays a significant 

role where massive data transfer is demanded. In the proposed GPU-based implementation, 

the memory transfer time of CPU to GPU (CPU2GPU) and vice versa is very small for small 

amount of nodes as depicted in Figure 8. However, memory transfer time gradually increases 

with the number of nodes, which significantly hampers the overall system performance. It is 

noted that the transfer time of GPU to CPU is slightly greater than that of reverse direction 

due to the lower clock frequency of GPU.  
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Figure 6. Execution time of GPU 
and CPU 

 

Figure 7. Speedup of GPU over CPU 

 

 
Figure 8. Transfer time of GPU and CPU 

 

5.2. Average Power and Energy Consumption of GPU over CPU 

The power consumption of the GPU-based and CPU-based implementations is measured 

by using the INSPECTOR tool (INSPECTOR II SE).Detailed statistics of power and energy 

consumed by the GPU and CPU is presented in Table 2.  
 

Table 2. Power and energy consumption for varying the number of vertices 

 
 

Although the consumed power of both GPU- and CPU-based approaches slowly increases 

with the number of vertices, the average power consumption of the GPU-based approach is 

comparatively larger than that of the CPU-based implementation, as presented in Figure 9, 

due to the use of CPU and GPU together to run the CUDA kernels. However, for energy 

consumption of the GPU-based approach requires significantly less energy compared to the 
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CPU-based implementation because the energy consumption is proportional to the execution 

time and power consumption. Therefore, although the proposed GPU-based implementation 

consumes more power than the CPU-based implementation, it consumes significantly less 

energy than the CPU-based implementation by highly reducing the execution time as shown 

in Figure 10. The average energy consumption is measured by the following equation: 

)/ where  is the consumed energy by CPU and is the consumed energy 

by GPU. The proposed GPU-based approach reduces above 98% for the average energy 

consumption of the sequential implementation. 

 

 

Figure 9. Average power consumption 
by CPU and GPU 

 

 

Figure 10. Percentage of average 
energy consumption reduction by 

GPU over CPU

 

6. Conclusions 

In this paper, we implemented the link state Dijkstra’s algorithm using GPU.  In addition, 

we compared the performance of the proposed GPU-based implementation with the 

equivalent sequential algorithm using CPU in terms of execution time and energy 

consumption. The proposed GPU-based approach outperforms the CPU-based program for all 

the number of vertices in terms of execution time. In addition, the proposed GPU-based 

implementation reduces about 99% energy consumption of the CPU-based implementation. 

In the future, we will explore other performance metrics, such as power and energy 

efficiency, and kernel optimization of the proposed algorithm.   
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