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Abstrac

The high speed CPU based routers currentlyNin use could handle the massive data
required for real-time multimedia commumc&raphﬁ cessing units (GPUs) offer an
appreciable alternative due to high co |on 0 h results from their parallel
execution units. This paper presents t leme )f the Dijkstra’s link state IP routing
algorithm using GPU. Experlmeza sults sh t the proposed GPU-based approach
outperforms the same sequentia U-base plementation in terms of execution time for

the same dense graph. In addition, th d GPU-based approach reduces about 99%
energy consumption over U-bas lementation.
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1. Introducti

The world is conn by the internet. Among the various network devices, internet
routers play a 99@ role by serving as the internet backbone due to its strategic function
of handling traffi kets between networks. Across the internet landscape, conventional
hardware r %’mmally proved to be a relative success with its high processing speed.
Howeve&many instances those routers become insufficient to ensure the high speed
con% ion such as multimedia internet. The custom hardware struggles to meet the
numerpuds packet specifications and throughput needs [1]. On the other hand, software routers
(SR) were deployed with more flexible features and lower costs. However, their performances
were also curtailed by limited traffic throughput less than 10Gbps. As a result, SR ultimately
fails to support the needs for high data rate (100Thps) real time applications such as 3G and
4G [2].

Nowadays, graphic processing units (GPUs) are playing a significant role in large scale
applications, where massive parallel processing is needed [3, 4]. The advent of the GPU is
quite appreciable in graph processing as it works without graph reductions. However, even
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though GPUs are optimized for graph processing and operations, they are quite challenging to
use their highly restrictive programming models. It is also challenging to understand the
performance boundaries of the GPU relative to multi-core CPU implementations [5]. In [6],
authors examined the performance boundary of a fine-tuned GPU implementation of the
genetic algorithm against the performance of an optimized CPU implementation. In [2], the
performance of a GPU based linear search framework for packet classification was evaluated.
A GPU-based high-performance software router such as PacketShader was proposed for
general packet processing [7]. Zhu et al. proposed Herms which is an integrated CPU/GPU
micro-architecture for quality of service aware high speed routing [8].

A number of researchers often make a comparison between highly para GPU
implementation and an un-optimized single core CPU implementation. akes the
speedup ratio to be skewed in the favor of the GPU. This pe; estabhi t@falr speedup
comparison between parallel GPU implementation and a re CPUN
Intel(R) Core(TM) i5 CPU). In this paper, we prop U baw lementation of the
Dijkstra’s algorithm, where some parts of the algor re i ented on the host (hosting
CPU) while some other parts implemented on Wevice (GPU)N\We have also separated the
performance index to identify several differ eractio s%tween the CPU and the GPU.
Our CPU/GPU comparison metrics incl&ecutlo% 7 throughput, power and energy
consumption between CPU and GPU.

The rest of this paper is orgafijz follov\% tion 2 includes the background study
with a detailed overview of co unified gdeyice architecture and the Dijsktra’s algorithm.
Section 3 describes the pr sed paral plementation of Dijkstra’s algorithm using
CUDA. Section 4 presenQ& ort oveligew of different performance metrics, and Section 5
presents experlmenta %I nd d%ssmn. Finally, Section 6 concludes the paper.

2. Backgro@ nfor&@)n

2.1. GPU and CUDA frfteraction

CUDA is a sui combined software and hardware architecture. The ease programming
features of enable the transformation of the GPU to the data parallel computing
device. In a@ion, CUDA becomes enjoyable among GPU programmers for the similarity of
pro @g features of the C programming language [9, 10]. Commonly used CUDA
corﬁ%le GPU devices include NVidia’s G100, GeForce 400, and NVidia’s Fermi or Tesla
series.

If we program the GPU to execute some instructions on a batch of data threads using
CUDA programming language, the GPU acts as a co-processor to the CPU. As a co-
processor, GPU is capable to execute a high volume of threads in parallel pattern using a
CUDA program. The body of the CUDA program to be executed on the GPU is called a
kernel. In the memory hierarchy of GPU, a CUDA kernel executes directly on the SPs
(streaming processors) or cores. Figure 1 presents detailed of GPU and CUDA interaction
along with memory allocation.
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Figure 1. GPU and CUDA interaction wih\ mory @n

In order to ensure seamless programmability '@avoid ppoblem of data and
instruction association, the device maintains dy ran acgess memory (DRAM)
separated from that of the host (i.e., CPU). The RRAM enable the host and the device

to be able to dynamically access any Iocaﬂor@ moryﬁ'p}g\? time in other to fetch or to do
some other needed operation with any clzu@ data. Whenever a CUDA kernel is called on
the GPU, it can perform its set of instrlictiens o a“ﬁ{g of data organized in threads. Each
thread in a block has a unique i n@p Whichgebl s it to maintain its identity separated
from other threads in a bloc‘ﬁ&wread indexing” is further maintained on the block by
organizing the threads in thesform of upi sional or multi-dimensional blocks. Threads
of the same blocks com iCale with éac er, which is separated from the communication
paths of other threads\ r blocks{11].

2.2. Graph M %n CU@}O

A graph G could be defined as a set of nodes (V) and edges (E); i.e., G = (V, E). A
dense graph will hz;é@l very close to |V|? whereas a sparse graph will have |E| quite

less than |V|%. F -weighted dense graphs, the construction of an adjacency matrix
which is a array of Booleans representing the graph topology is often very useful
for the pu 2%Tracking graph edges [12]. This property tends to be quite useful for
CUDA g the adjacency matrix allows graphs of arbitrary sizes to be created and
ma@ ed in a parallel fashion. Using an adjacency matrix, the vertexes of a graph can
be stored in an array while the edges are stored in another adjacency list array. If we
denote the array of edges as V and the array of edges as E, then we can utilize Figure 2
to describe the representation of graphs with adjacency lists of arrays and edges in
CUDA. Each vertex array entry in V will map to the starting index of its corresponding
adjacency list in the edge array E.
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Figure 2. CUDA’s graph mapping with a vertex Iis@gng to an edge list

Thus, a dense graphs containing numero ;ges and* ces may be contained in two
lists: one is a list of edges and the ot a list of-wertices with appropriate pointers of
mapping the array of edges to array of\ertices :% . The important contribution of this

mapping paradigm is that we dofio d for g ductions/sparse matrix computation in

order to process the matrices jated with these”two graphs. As a result, we do not loose
crucial graph specific information. The gr re processed as is with each element in the
array of edges and thelr ted elw n the array of vertices. They can be processed
concurrently in diffe @O threads thread indexing to associate the array list with

relevant processing ; |ons
2.3. The Dljk Igo 1t

The Dijkstra’s algorith(n' commonly known as the shortest path first (SPF) which works
by iterating on a graph nd the paths with the least cost for traversing from a start node to a
destination node u}ﬁa routing database [13]. It is a graph search algorithm and solves the
single source short ath problem for a graph with non-negative edge path cost. Let K be the
nodes whose\&peost paths are definitely known. Initially, K = u, where u is the source node.
For each it n, another node with a known path cost will be added to K until the routing

ompleted We then assign C(v) to be the current cost of paths from source u to

5@ the onset of the iteration, let C(v) = c(u,v) for all nodes v adjacent to the starting
nod d let C(v) be infinity for all other nodes v which are not directly connected to u. We
can now update C(v) continually until all shorter paths on the entire graph are known.
Dijkstra’s is one of the best implementation of the general link state algorithms.

For a given source vertex in the graph, the algorithm finds the path with the lowest cost
between the source vertex and every other vertex. Three basic steps including insert, extract-
min and update-cost are involved in the Dijkstra’s algorithm. The insert phase is an
initialization phase where numerous positive costs between the vertices are generated. In this
stage, the source node is assigned to 0 and for other vertices is assigned to «. In the second
stage, the neighbour vertex of each vertex is sorted out. In the third stage, the cost for finding
out the shortest possible router is updated based on one condition: C(v)=min(C(v),
C(w)+c(w,v)) in Algorithm 1.
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Algorithm 1: Dijkstra’s Algorithm
Initialization

K ={u}

for all nodes v

if v is adjacent to u, then

C(v) =c(u,v)

else C(v) = infinity

Loop

ExtractMin: Find w not in K with the smallest C(w)

Add the w to K

Update C(v) for each neighbour v adjacent to w and not in K

Set C(v) = min(C(v), C(w) + c(w,v)) °
Until K nodes in K
3. Implementation of Parallel Dijkstra’s Algorithm Using Cl@ E

[ ]

The device used for the proposed GPU-based impleme?h%tlg of the‘%f)ra’s algorithm is
the GeForce GT 630, which is a DirectX 11 GPU [14 I@ CW s equipped with a
chip-level power enhancements and a GDDR5 @ ry interfac®’” where GPU clock
speed is 810MHz. The processor clock rate is 1628MHz \m&wgraphics clock rate is

810MHz. %

CUDA is useful in computing the link of thé@e graph whenever the graph
topology changes. The routers are the no a graph=and the link weight which should not
be negative is the associated costs witb% lin uter has a whole network map and
the router recognizes the link sta: s@l dicall% ever the network topology changes.
Each router runs the Dijkstrals.&orlthrzl lgll where thread parallelization scheme is

offered by CUDA [15].
Figure 3 shows a flow ;i@m of tmmed parallel algorithm, where extract-min and
m

1
1

update-cost kernels of t stra’s al m are implemented on a GPU. Step 2 to step 6 of

the pseudo code of A 2 is jndicative of the whole transactions for the extract-min and
the update-cost osed N@it runs on a heterogeneous system [16] including CPU
and GPU.

66
&
S

b T e Relox Edges
Repeatedy

Figure 3. A block diagram of the proposed GPU implementation of the
Dijsktra’s algorithm
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Algorithm 2: CUDA Dijkstra’s Pseudo code &\, '\ ) ”
1: Step 1
2:  Generate the cost matrix for the scenarios with diﬁgumber ;in thls stage the
3:  source-node is assigned to 0 and for other ver S aSS|gned to o
4. Step 2: L@
5:  Allocate the memory in CUDA dependm e number oﬁg
6: Step 3:
7:  Transfer the scenarios mformatlon t) fro x PU
8: Step 4:
9:  (i.)Extract Min
10:  (ii.) Updating once for ever
11:  v.predecessor =
12: Step5
13:  Transfer the proc s@ata from G
14: Step 6: &
15:  Free CUDA fugc
N \") p)
Algorithm ents a, CUDA C main program that includes a kernel function dij. In the

experiment, we set the ke
blockDim.x=32 and bl
depending on the
function is shown
variables (x

Figure 5. Q
P 1

m.y=32, gridDim.x=

nction using 2-D blocks and grids in the following ways [17]:

n/32 and gridDim.y= n/32, where n varies

er of vertex. More explicitly, the Dijkstra’s global computation
Igorithm 4; where, a variable i is used which depends on the two 2-D
). A detailed of 2-D global memory allocation in GPU is presented in

m 3: Main function of CUDA C code

Algorithm 4: Global function

mai

.../lomitted: allocate and initialize memory
/linvoke parallel dij kernel with 1024 threads /block
/MNumber of blocks/grid is varied depending on the
total edges

dim3 dimGrid(n/32,n/32);

dim3 dimBlock(32,32)

dij<<<n/threads per block,
threads per block>>>(dev_cost, dev_dist, v);
//omitted: transfer results from GPU to CPU }

_gclobal  void dij(int *cost, int *dist, int v){
/lomitted initialization

int x= blockIdx.x*blockDim.x+threadldx.x;
int w=blockldx.y*blockDim.y+threadldx.y;
int i=x+w*n;

if(i<n&&w<n){

//omitted some part of program
if((dist[u]+cost[u*(n-1)+]<dist[i]) &&!flag[i])
dist[i]=dist[u]+cost[u*299%(n-1)+];

135
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Figure 5. 2-D global memory aIIo |o n@
4. Performance Metrics Q

In order to obtain a reasonable performance arison t we the Intel(R) Core(TM) i5
CPU and the NVIDIA GeForce GT 630- nt t formance index into different
parameters in order to be able to co y exa e performance of the CUDA

implementation of the Dijkstra’s al ﬁl\ aper we consider the following
performance metrics mcludmg thto t exe ime, speedup, and power and energy
consumption.
4.1. Throughput Q) \Q

GPU throughput %h;&wasure c!;( much work gets done every second, which is

measured in bit/sec Q y bandwidth and latency.

4.2. Speedup

b’ls the rate of the speed increment of the parallel instruction
er an equivalent sequential execution on the CPU. It can be

= Tc / Tg; where, T, is the total time taken by the sequential CPU

while Ty is the total time taken for the GPU-based implementation.

GPU speedup over
execution of the G
computed as Spe

instruction e)%ti'o

4.3. Pow; Energy Consumption

@ consumption is measured in unit of watt (joules/sec). In this paper, we measure the
consuriied power by subtracting the power by CPU/GPU during the kernel execution and the
power consumed in the ideal state of CPU/GPU, such as power consumption (P,) =P, - P,
where P, is the consumed power by a device (CPU/GPU) during the kernel execution and P;
is the consumed power by a device in ideal state. Energy is power integrated over time such
as Energy = Power x Time.

5. Experimental Results and Analysis

To evaluate of the performance of the proposed GPU-based approach, we use a standard
NVIDIA tool called Visual Profiler (nvprof) [18] which enables the collection of a timeline of
any applications for CPU and GPU activities including kernel execution, memory transfers
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and CUDA API calls. The profiling results are displayed in the console after the application is
completed. All values are reliable as it collects the average values by running a program 21
times. In this section, the number of available nodes for processing in numerous network
scenarios is analyzed.

Table 1. Execution time of the GPU-based implementation for varying the
number of vertices

Execution time(sec) Speedup
Vv T T'.’ T T:m 54 Sy
300 0.129 0.000946 0.0005021 0.00144854 136x SQX ’\ \®
500 0.591 0.001535 0.0009793 0.00251468 385x 235my, V
1000 4.574 0.007717 0.0031237 0.01084026 593x 422x
1500 12.98 0.019922 0.0061010 0.02602259 652x 09& y
2000 35.74 0 059353 0.0101254 0.06947846 60&; ° A 14
V: Number of Vertex. T : CPU execution time Algorithm 1 in sec. T" GP ion time Whm 2 in sec without
considering memory transfer. Ty, : Memory transfer time in sec = CPU2 PU .gm: of execution time and
memory transfer time for Algorithm 2 in GPU in sec. 58: Speed up gats Algorithm 2 Witlout memory transfer time.

S :. Speed up gained by Algorithm 2 with memory transfer time.

5.1. Performance of the GPU-based Appro : ¢ %

In this section, the performance of the@osed PWrbased approach is evaluated in terms
of execution time. Table 1 shows a anc %?ry of the GPU-based approach. In
addition, the performance o% U-base 5%roach is compared with that of the
equivalent CPU-based implemertation, w includes five cores.

Execution time of the @J—basem entation exponentially increases when the
number of nodes mcre ile exe time of the GPU-based approach shows almost
steady due to the pa a xecutlo ttern of the GPU. In other words, the extract-min and
update-cost ke each ve calculated in different blocks of GPU. Figure 10In
addition, and. numMero Iocks and similar threads execute concurrently on streaming
multiprocessors, the exe time to sort out the cost matrix in extract-min and updating
cost is reduced signi iQ@n y. On the other hand, owing to the sequential execution pattern
CPU latency co to rise. The CUDA implementation of the algorithm is highly
beneficial when sigrificant amount of nodes are processed because this is what the GPU is
optimized %Ys shown in Figure 10, the speedup of the entire CUDA implemented
Dl]kStl‘a rithm exhibits an increasing pattern when the graph becomes denser. It
hap @ e to the higher execution time of CPU for the scenarios with large amount of
nodes

In the heterogeneous system for CPU and GPU, memory transfer time becomes
performance bottleneck of GPU computing. This memory transfer time plays a significant
role where massive data transfer is demanded. In the proposed GPU-based implementation,
the memory transfer time of CPU to GPU (CPU2GPU) and vice versa is very small for small
amount of nodes as depicted in Figure 8. However, memory transfer time gradually increases
with the number of nodes, which significantly hampers the overall system performance. It is
noted that the transfer time of GPU to CPU is slightly greater than that of reverse direction
due to the lower clock frequency of GPU.
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5.2. Average Power ergy ‘ﬂu ption of GPU over CPU

based and CPU-based implementations is measured
SPECTOR Il SE).Detailed statistics of power and energy
|s presented in Table 2.

The power
by using the |

Table 2. Powe;;éanergy consumption for varying the number of vertices

‘er Consumption (Watt) Energy Consumption(Watt-Sec)
g r

A A = M T E :
300 /@ 47.43 0.129 0.0014485 4.27377 0.068704

500 48.53 0.591 0.0025147 21.0573 0.122037
10007y \.36.43 51.13 4.574 0.0108403 166.631 0.554262
1500 ) 41.33 53.53 12.98 0.0260226 536.463 1.392989
2000 7  47.94 59.03 35.74 0.0694785 1713.38 4.101313

7: Number of vertex. F-: CPU power consumption in watt. R_;,- : GPU power consumption in watt. Ty : Execution time of
CPU in sec. Teg: Execution time of GPU in sec. E.: Consumed Energy by CPU (watt/sec). E§ : Consumed Energy by
GPU (watt/sec).

Although the consumed power of both GPU- and CPU-based approaches slowly increases
with the number of vertices, the average power consumption of the GPU-based approach is
comparatively larger than that of the CPU-based implementation, as presented in Figure 9,
due to the use of CPU and GPU together to run the CUDA kernels. However, for energy
consumption of the GPU-based approach requires significantly less energy compared to the

Copyright © 2014 SERSC 277



International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.3 (2014)

CPU-based implementation because the energy consumption is proportional to the execution
time and power consumption. Therefore, although the proposed GPU-based implementation
consumes more power than the CPU-based implementation, it consumes significantly less
energy than the CPU-based implementation by highly reducing the execution time as shown
in Figure 10. The average energy consumption is measured by the following equation:
(E. — E.)/E.x100, where E. is the consumed energy by CPU and E_is the consumed energy

by GPU. The proposed GPU-based approach reduces above 98% for the average energy
consumption of the sequential implementation.

[ ]
# Power comsumption by CPU Il Power comsumption by GPU %300 500 | 1000 =1500 5%

100
=)
60 7 e 3 o
p £ A B
so 4 ) P e . g 99.5‘ ® %
g S 3 Y
Sa0 b "N — 2. g - .
: - N N N N §E N o
S0 bR N N Q Q EE S
ER PR BN SN S ] S— 7 =
EIPTE N = N = g / r
gl PN || EEEN|| BN B BN B o 'u
S0 N = N N N o
N N N N N 3 N
—N N N N~ 37507
o -+ . 0 \ 500 1000 1500 2000
300 500 1000 Number of vertex

1500 20
Number of vertex %\ @
Figure 9. Average power co L@ﬁon %"‘é e 10. Percentage of average

: Flﬂi rgy consumption reduction by

by CPU and G \% GPU over CPU

6. Conclusions - Q \\9’
In this paper, w@en‘%&%nk state Dijkstra’s algorithm using GPU. In addition,

we compared rformancen gf “the proposed GPU-based implementation with the
equivalent se@ial a @n using CPU in terms of execution time and energy
consumption. The prop I&PU—based approach outperforms the CPU-based program for all
the number of verti terms of execution time. In addition, the proposed GPU-based
implementation r about 99% energy consumption of the CPU-based implementation.
In the futur e will explore other performance metrics, such as power and energy
efficiency,%rnel optimization of the proposed algorithm.
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