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  Abstract  

This paper presents a design and analyzes the performance of a relocation planner for 

electric vehicle sharing system, aiming at reducing management cost and enhancing service 

ratio by avoiding service degradation stemmed from stock imbalance. The proposed planner 

creates a set of relocation pairs, each of which consists of an overflow station and an 

underflow station for respective relocation teams. To simultaneously determine the team-by-

team number of staff members and relocation pairs based on the genetic algorithm, each plan 

is encoded by an integer-valued vector composed of relocation pair and staff allocation parts. 

The relocation pair part translates individual station matching, complementarily combining 

overflow and underflow indices as well as including negative number separators. The staff 

part indicates the number of staff members for each team and thus how many identical pairs 

can be merged. Genetic operators are allowed only in the relocation pair part, while the 

fitness function gives precedence to a balanced plan. The performance measurement result, 

obtained by a prototype implementation, shows that our planner outperforms the reference 

scheme by up to 53.0 % for given parameter setting. 
 

Keywords: Electric vehicle sharing system, relocation schedule, multiple teams, genetic 

algorithm, relocation cost 
 

1. Introduction 
1
An electric vehicle, or EV in short, and a carsharing system are two most important 

entities in eco-friendly smart transportation [1]. EVs are powered by battery-stored 

energy, not burning fossil fuels as in gasoline-powered vehicles. Here, we can get 

electricity from many energy sources such as nuclear power, hydroelectric power, and 

diverse renewable energies. On the other hand, vehicle sharing systems can reduce the 

number of vehicles especially in downtown area, which is highly likely to suffer from 

lack of parking space. The drivers don’t have to purchase their own cars, but rent and 

return a car just on necessary basis. Now, combining both advantages, EV sharing 

systems can achieve energy efficiency and greenhouse gas reduction. It can relieve the 

users of a burden of maintaining EVs, inevitably stemmed from long charging time and 

short driving range. 

In carsharing, one-way rental is the most convenient way from the viewpoint of 

sharing users, as they are not required to return EVs to the same station they rented out 

                                                           
1 Prof. Junghoon Lee is the corresponding author. 
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[2]. However, uneven demand distribution, be it spatial or temporal, over different 

stations surely leads to stock imbalance, hence some stations have no EV to serve rent-

out requests [3]. In this case, EVs must be relocated for better service ratio, under the 

coordination of a control system which definitely benefits from sophisticated 

information technologies. They can fully take advantage of ubiquitous connectivity 

provided by modern communication networks. For example, the PICAV system selects  

a return station for a flexible rent-out transaction based on the simulated annealing 

mechanism [4]. Next, Intellishare implements a user-oriented relocation mechanism 

with the combination of trip joining and trip splitting operations [5].  In addition, [6] 

proposes an explicit relocation scheme consisting of optimizer,  trend filter, and 

simulation phases. 

According to a specific relocation strategy, EVs in overflow stations must be moved 

to underflow stations. The coordinator triggers the relocation procedure either 

incrementally during operation hours [6] or in entire system scale during nonoperation 

hours, necessarily based on the future demand forecast [7]. The problem is to find a set 

of relocation pairs, each of which consists of one overflow station and one underflow 

station, to achieve the given performance goal. Considering that the relocation can be 

carried out by multiple teams having different number of staff members, how to make a 

relocation plan is quite a complex problem [8]. In this regard, this paper designs a 

relocation planner capable of harmoniously allocating staff members to each team and 

deciding relocation matching for each team. Based on the genetic algorithm, one of the 

most widely used suboptimal search techniques, our scheduler reduces the relocation 

distance and time, saving the management cost as well as improving the service ratio. 

The rest of this paper is organized as follows: After issuing the problem in Section 1, 

Section 2 describes the system model and relation to our previous work. Section 3 

explains how to encode a relocation schedule by an integer vector and subsequent 

genetic operators. Next, performance measurement results are demonstrated and 

discussed in Section 4. Finally, Section 5 summarizes and concludes this paper with a 

brief introduction of future work. 

 

2. System Model 

In a sharing station, let there be n stations, namely, S = {S1, S2, ..., Sn}. For the current and 

target distribution of EVs at a relocation time, the relocation vector, R = {R1, R2, ..., Rn}, can 

be calculated. Here, how to decide the target distribution and when to trigger the relocation 

procedure are another problems, and this paper just focused on the relocation procedure for 

the given target distribution. If Ri is positive, Si is an overflow station, and as many EVs as Ri 

must be moved to an underflow station, say Sj, having negative Rj. Due to the high cost and 

uneasy maintenance of towing vehicles, it is a better option to make human staff relocate 

EVs. This strategy allows multiple relocations teams to move EVs in parallel. Here, a 

relocation team consisting of h staff members can move h−1 vehicles at the same time as 

follows: h staff members go to an overflow station together in a service vehicle. h−1 

members drives respective EVs to the same underflow station, while 1 follows them in the 

service vehicle. Now, h staff members go to another overflow station. h is limited by the 

capacity of a service vehicle. 

For a relocation procedure, the number of relocation teams and the number of total staff 

members are given in advance. Then, the coordinator decides how many staff members to 

allocate to each team and matches overflow and underflow stations, considering the team-by-

team number of staff members and the number of mergeable operations. To solve this 

complex problem using genetic algorithms for reasonable response time, it is necessary to 
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denote an allocation, or relocation schedule, by an integer vector. Our previous work has 

designed an encoding scheme for the allocation of relocation operations [9], so it is necessary 

to extend to include staff assignment for each team. Then, genetic operators such as selection, 

crossover, and mutation, are tailored to make populations, composed of a set of feasible 

schedules, evolve. Additionally, the cost function estimates the relocation distance by 

individually calculating the distance between each of two relocation pair elements. 

 

3. Relocation Scheduler 

Figure 1 illustrates our encoding scheme. It begins with two indices, one for overflow 

stations and the other for underflow stations [9]. Each index sequentially stores 

overflow/underflow stations, and an overflow station, Si, will appear Ri times. In an encoded 

vector, each element represents a relocation pair consisting of an overflow station and an 

underflow station. If we just consider a single team case, the index in an encoded vector 

points to an overflow station while the value to an underflow station. In Figure 1, there are 5 

stations from S1 to S5. S1 and S3 are overflow stations as R1 and R3 are 3 and 5, respectively. S1 

appears 3 times in the overflow index. In the figure, the value at the location 1 is 5 in the 

encoded vector. The element at the location 1 in the overflow index is S1, while the element at 

the location of 5 in the underflow index is S4. Likewise, 1 at the location of 2 in the encoded 

vector represents a relocation pair (S1, S2). 

 

 

Figure 1. Main idea and encoding scheme 
 

This encoding scheme will be extended for a multiple team schedule, where negative 

numbers are inserted to separate respective team schedules [10]. Basically, for Nt relocation 

teams, Nt−1 numbers are needed [11]. For example, Figure 1 contains 2 negative numbers for 

3 teams. The relocation vectors for 3 teams from T1 to T3 are (3, 5, 1), (2, 6, 4), and (0, 7), 

respectively. The separators must be skipped in mapping an overflow station. This relocation 

plan corresponds to the relocation pair assignment of {(S1, S2), (S1, S4), (S1, S2)}, {(S3, S2), (S3, 

S5), (S3, S4)}, and {(S3, S2), (S3, S5)}, respectively. T1 has two (S1, S2) pairs. If T1 has 3 staff 

members, these two can be processed at the same time, reducing the relocation distance. 

Identical pairs can be merged depending on the number of staff members in the team. Hence, 

Nt elements are added to the encoded vector, making the total vector length Nm+Nt−1+Nt, 

where Nm is the number of EVs to move. Above integration is the main difference from our 

previous work [10]. 
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For a complete relocation plan, we can estimate the relocation distance for each team. 

Basically, each team has 2 staff members and additional members can be assigned. Even 

though relocation pairs for T2 and T3 have no identical pairs in Figure 1, they unnecessarily 

have 4 and 3 staff members, that is, 3 and 2 EVs can be moved simultaneously. On the 

contrary, T1 has just two staff members, so all relocation pairs must be processed one by one 

[10]. The cost function estimates the relocation distance for each team, considering such 

mergeable pairs. Maximum of them will be the final cost for a relocation plan. The selection 

procedure sorts chromosomes according to the cost, to give better chromosomes more 

chances to mate for the creation of next generation. The crossover operator swaps substrings 

from two parents. However, the last Nt should not be swapped, as the number of total staff 

members must be kept constant. The crossover barrier indicates this bound. After crossover, 

duplicated genes must be replaced by disappearing ones. 
 

4. Experiment Result 

This section measures the performance of our relocation scheme via a prototype 

implementation using Microsoft Visual Studio. This genetic scheduler version takes the 

Roulette wheel selection, random population initialization, and two-point crossover. For 

better population diversity, identical chromosomes are not allowed to coexist in the 

population. In addition, the inter-station distance exponentially distributes with the 

average of 3 km. The number of overflow stations is equal to that of underflow stations. 

Whether a station is an overflow or underflow station is selected randomly. The 

performance metric is relocation distance, while performance parameters consist of 

population size, the number of teams, the number of total staff members, the number of 

moves, and the number of stations, respectively. The default parameter values are listed 

in Table 1. For each parameter setting, 20 sets are generated and their results are 

averaged. 
 

Table 1.  Default parameter values 

Parameters Values 

Population size 64 

The number of stations 15 

The number of teams 3 

The number of extra staff members 2 

The number of EVs to move 30 

The number of EVs in the system 100 

 

The first experiment traces the relocation distance, or relocation cost, along the 

evolutionary iterations, and the result is shown in Figure 2. It shows 3 curves,  where e 

means the number of extra staff members. Basically, each team is assigned 2 staff 

members to be able to move at least 1 EV (e=0). For the case of e=1, a member is 

assigned to one of 3 teams. The team schedule having mergeable pairs can better 

benefit from more staff members. The case of e=0 converges in the much earlier stage 

of genetic iterations, as its scheduling complexity is not so high, compared with other 

cases. The case of e=2 keeps improving the relocation cost until 550 iterations. This 

case definitely shows better relocation distance compared with the cases of e=0 and 

e=1 by 40.2 % and 8.4 %, respectively. For more complex conditions, computational 
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intelligence achieves better optimization. Above result indicates that our scheduler can 

make an efficient relocation plan within a reasonable time bound. 

 

 

Figure 2. Relocation distance according to the iteration 
 

Subsequent experiments compare the performance of the proposed scheme with the 

random scheduling scheme which generates feasible plans during the  approximately 

same amount of the execution time of our scheme and selects the best  one. Actually, 

there is no similar planning mechanism for EV relocation, this scheme can give us a 

reference for the performance assessment. First, Figure 3 plots the effect of the number 

of teams to the relocation distance when the number of teams changes from 1 to 5. For 

one team, there is no influence from the staff allocation as all staff members are 

included in a single team. The difference results solely from relocation matching 

efficiency, and our scheme outperforms by 45.3 %. Both schemes benefit from the 

increased number of staff members and the performance gap reaches 49.0 %, when the 

number of teams is 5. Hence, our scheme can better  take advantage of available staff 

members. 

 

 

Figure 3. Effect of the number of teams 
 

Next experiment measures the effect of the number of staff members to relocation 

distance to find out the efficiency of assigning members to each team. Here, after 

basically assigning 2 members for each team out of total staff, remaining ones, called 

extra staff members, are subject to staff allocation. As shown in Figure 4, both schemes 

largely improve the relocation distance according to the increase in the number of staff 
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members. However, our scheme outperforms by at least 42.1 % for the range of 0 to 7 

extra staff members. Moreover, its performance behavior changes quite stably, 

indicating that the search space visited by our scheme includes sufficiently reasonable 

quality solutions, even not the best one. From the point of 2 members, an addition of 

members hardly contributes to the reduction of relocation efficiency. That is, our 

scheme can find this point much earlier, saving the cost of hiring service staff members 

as well as improving the system efficiency. 

 

 

Figure 4. Effect of the number of staff members 
 

Figure 5 plots the effect of the number of EVs to move to relocation distance.  With 

more EVs to move, the search space will get larger and the effect of wrong search scope 

will be severe. The experiment changes the number of moves from 10 to 40. For the 

case of just 10 moves, there is almost no difference between two schemes. However, 

according to the increase in the number of moves, the efficiency of our scheme becomes 

clearer. Particularly, for the interval from 20 to 35 moves, the relocation distance of our  

scheme rarely increases, resulting from the efficient combination of relocation  matching 

and staff assignment. During this interval, many relocation pairs are merged. The 

performance gap begins from 8.1 % and reaches 53.0 % when the number of moves is 

35. This result finds out that our scheme can efficiently cope with the complexity 

stemmed from the increased number of EVs to move. It must be mentioned that the 

execution time of genetic algorithms is not affected by the number of EVs but just by 

the number of iterations. 

 

 

Figure 5. Effect of the number of moves 
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Finally, Figure 6 shows the relocation distance according to the number of  stations. 

With more stations, there are more options in selecting overflow and underflow stations 

for a relocation pair. Hence, it is possible to find a pair having a shorter distance. The 

experiment changes the number of stations from 10 to 20. The reference scheme does 

not show reduction in the relocation distance regardless of this advantage. The 

relocation distance ranges from 15.5 to 18.2 km. As contrast, our scheme significantly 

and consistently improves the relocation distance according to the increase in the 

number of stations. The performance gap begins from 15.5 % and reaches 54.5 % when 

there are 20 stations. However, this improvement will be dependent also on the 

locations of sharing stations and the current distribution of EVs. Hence, it is necessary 

to further investigate the effect of geographic factors and demand patterns of EV 

sharing systems. 

 

 

Figure 6. Effect of the number of stations 
 

5. Concluding remarks 

Not just for its eco-friendliness, EV sharing is a promising business model capable of 

coping with EVs’ high price and uneasy maintenance. One-way rental systems 

inevitably suffer from stock imbalance due to spatially and temporally different demand 

patterns. For the given number of relocation teams and the number of total staff  

members, how to allocate staff members to each team, how to match overflow and 

underflow stations, and how to assign relocation pairs to each team are quite complex 

problems. This paper has designed a relocation planner to systematically make a 

relocation schedule based on genetic algorithms. For encoding a feasible plan, a 

chromosome is consist of two parts, one for relocation pairs and the other for staff 

allocation. Each relocation pair is represented by an integer associated with overflow 

and underflow indices as well as including negative number separators. The genetic 

operators can work just in the first part. 

The performance of the proposed scheme has been extensively measured by means of 

a prototype implementation. Most importantly, our scheme can find a relocation plan 

even when the number of moves increases, efficiently allocating staff members to those 

teams having many mergeable pairs. It outperforms the reference scheme by up to 

53.0 % in terms of the relocation distance, when the number of EVs to relocate is 40 in 

our experiment environment. Moreover, the proposed scheme finds the point from 

which additional staff members are not necessary, saving the employment cost as well 

as achieving system efficiency. Those results indicates that our scheme stably calculates 
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a reasonable quality schedule even if the problem complexity gets worse by the 

increased number of EVs to move and the number of stations. 

As future work, we are planning to develop a city-wide telematics system which 

coordinates all EV entities including taxis, rent-a-cars, sharing vehicles, and the like 

[12]. Based on real-time tracking of each vehicle object as well as continuous 

monitoring of charging facilities, this system intelligently coordinates charging 

activities between heterogeneous objects having different charging demand dynamics, 

aiming at achieving respective vehicle type-specific goals. From the global viewpoint, 

the relocation scheme developed in this paper is not restricted to shared vehicles. The 

taxi system can take advantage of the vehicle relocation mechanism to enhance the 

service ratio by making empty taxis wait at a specific location which is expected to 

have high demand density. Such a systematic design will enrich the smart grid services, 

further obtaining sophisticated orchestration of activities in different domains such as 

renewable energy and power generation [13]. 
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