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Abstract @

The work at hand presents a novel data- dmven@zewor full body human motion
reconstruction from uncalibrated monocular v data. To thtyend, we develop a knowledge
base by taking 2D samples of the motign &?@ libr&@ym different viewing directions.
This allows later steps to handle 2D 1de hott any information on the viewing
direction. We detect and track feahg fTO ideo sequences by utilizing low-level
image based feature detection te s like @ nd SURF. This process is stabilized by

ati

back projection of high-level ior mfor obtained from the motion capture library
to the image plane. E:Btmc n of suztabl@um sets from both, input control signals and

motion capture data, en us to e the best relevant prior poses from the motion
capture library by e A& ast Z retrieval techniques. Finally, 8D motion sequences
are reconstructed b -linegr y minimization, that takes into account multiple prior
terms. Furthe e propo ethod to estimate camera parameters from input video
itself and sam capture library.

Keywords: Featu ection and tracking, Motion retrieval, Camera parameters, 3D

motion reconstru@
1. Int rO(S%'on

D@ﬁ Teconstruction from uncalibrated video data has been remained a major research
topic the last decade. A lot of techniques have been proposed but one of the most
widespread and successful approaches for 3D motion reconstruction is the data-driven ap-
proach that makes use of a knowledge base which might be developed from a huge motion
capture library just like in our case. Although a bulk of research has already been con-
ducted in this specific direction, yet there are still open challenges that have to be tackled by
further research in order to meet the massive demands of growing industries like animated
characters in movies, computer games, medical sciences and sport sciences etc.

In this paper, we present a 3D motion reconstruction approach from static uncalibrated
monocular video data. As we are dealing with 2D input signals, having no information
on the actual viewing direction, we first sample our motion capture database into various
2-dimensional viewing directions as combination of different azimuth and elevation angles
in a preprocessing step. The input video stream is prepared to be a query to our system by
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detecting and tracking feature sets. Here, we utlhz 1 al S&Extremal Regions
(MSER) and Speeded Up Robust Features (SU ture % n techniques together

Online Lazy
Neighbourhood

Online motion
reconstruction

with some prior knowledge obtained from the ca oCap) library. By using
this prior knowledge from the database, we le t ke ture detection and tracking
more robust. After getting suitable fe&t bot]\g@\ input signals as well as from
motion capture database, we are abl erform ciént similarity search and retrieve
nearest neighbours from database hat , we have developed a kd-tree data
structure and the so called nezg& ood graph (OLNG) along the lines of
Tautges et al. [1]. In our do we haye apted these methods to work with 2D feature
sets extracted either from Cap data eo data used as control input signal.
Additionally, we hav ssed t lem of camera parameter estimation from un-
calibrated monocul input work. Camera parameters are estimated from the
input video and f mplgiﬁ;@ap database at different viewing directions. More
precisely, we @ ranslatio ormation from the input control video signal and the
orientation in tion amples of the MoCap database, that are similar according to
the derived feature sets. @the end, the 3D human motion sequences are reconstructed by
gradient-based ener imization process that considers multiple energy prior terms. We
have tested our ed algorithm on real video data as well as synthetically generated

2D input sig&ﬁ.’
2. l@a Work

Motion retrieval and reconstruction in 3-dimensions from 2-dimensional video input is
the current strand of research. Some general methods to reconstruct human motion found
in prior literature can be categorized into data-driven approaches either generative or dis-
criminative like in [2, 3] 4] [5] [6l, [7], geometric constraint based approach as in [8, 9] and
physics based modeling [10} [11]. Sminchisescu et al. [2] estimate full body human motion
using discriminative density propagation approach. A compact conditional Bayesian mix-
ture of experts models is utilized in order to learn multi-modal conditional distributions.
They synthesize human configurations together with rendered 2D silhouettes using MoCap
data and 3D human model. Hornung et al. [I2] animate 2D pictures with the help of
user interaction in the form of selection of joints as well as the use of prior information
in 3D motion capture database. They have presented shape deformation method in order
to animate the still image projectively. Wei and Chai in [9] reconstruct 3D human pose
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by using a set of geometric constraints from 2D images. They estimate human skeleton as
well as camera parameters with weak perspective model in order to reconstruct 3D pose.
They optimize their reconstruction framework with two steps gradient based optimization
process without use of some data-driven prior knowledge. Rosenhahn et al. [13] employ
data-driven geometric ground plane prior constraints for human movement patterns in the
process of pose tracking. Vondrak et al. [I0] perform Bayesian filtering based human motion
tracking by full body physics based dynamic simulation priors together with interpolation
of joint data. Wei and Chai in [11] reconstruct human motion form video input data E)y em-
ploying physics-based modeling and minimal user interaction to annotate key&?nediate
frames for tracking error correction. Yasin et al. [I4] first detect and traCW features
by constructing a dictionary of features (DoF) using MSER and SU re detection
techniques and make data-driven 3D reconstruction from'\these 2 d feature sets.
Dantone et al. [15] estimate 2D human pose from sﬁ age l&gﬂ linear body part
dependent joint regressor using two layered randewyMonests. Fi l ver classifies different
independent body parts while second layer con es to dict”joint locations. Jain et
al. [16] reconstruct 3D animation from 2D hand drawn anim characters and make inter-
action between 3D reconstructed charac.ter @Vlrtual . First, they use user defined
orthographies camera model and then tb@smma‘ce caméra by minimizing the geometric

projection error. They formulate thei %’ca—drl @ nstructlon approach by using three
energy terms like input-match rré@tlon %d m and regularization term.

Kriiger et al. [17] developlg& ighbourh graph (LNG) for similarity search into
the motion capture database. They emp'l -dimensional feature sets based on positions
of hands, feet and head f ast si search. Later on, Tautges et al. [I] enhance
the LNG into incre hne Verg&u named online lazy neighbourhood graph (OLNG)

r&15'10‘5101% l%g sparse accelerometer data. They reconstruct human

o of data
OC tabase.

prior model which measures a-priori likelihood of the

3. Feature Desi nd Tracking

In this sebtipbn, we demonstrate how we search into motion capture library for similar
motion se of video input or synthetically generated input, with the help of some
suitable @ Te sets. We discuss both scenarios one by one in detail as follows.

3.1. tion Capture Data

We make no any assumption regarding the 2D view direction, so we have sampled our
database at various 2D viewing directions. For database sampling and construction of our
knowledge base, we first extract 3D feature sets F,; based on positions of hands, feet and
head like Kriiger et al. have done in [I7]. We project these 3D feature sets F,3 onto 2D
plane at different viewing directions similar to Yasin et al. [14] and as a consequence, we
get 2D feature sets F,3. To achieve previously mentioned goal, we have specified azimuth
angles from 0 to 350 degrees with 10 degree step size and elevation angles from 0 to 90
degrees with step size 15 degree, as shown in Figure 2] The extracted 2D feature sets are
further normalized by translating the mean (center of mass) of the feature sets to its origin
of the coordinate system. In this way, we get such type of feature sets in our knowledge
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Figure 2. Sampling of MoCap database onto 2D im;e plane a@e;ent viewing

directions on which basis kd-tree has been devel @

base which are comparable to the feature sets from in video, where we have

no any root node and articulated skeleton of mrfor As a result, we can

perform comparison between both types of f re sets, e}r{l&ted either from MoCap data

or input video stream. Sampling of da&g or mo% msely developing of knowledge
e

base by projection of 3D feature sets nt v1 directions supports us in order to
estimate orientation information of rfo or in video input stream.

Our developed system takes count %b e positions of hands, feet and head to
access the relevant mformatl m MoCa ase, so we have prepared our query in the

format of 2D feature sets Z.2 based on ns of hands, feet and head. The 2D feature
sets, synthetically gene @ﬁ"om t ion clip of the MoCap database and given as

input, are named h mfhetzc: da

3.2. Video

ta, we prepare our query input signal first based on extracted
t streaming. For that purpose, we detect and track the positions
only in order to develop video based feature sets FJ.

Similarly, in case of vi
feature sets from vide
of hands, feet and e

etection and Tracking

3.2.1. Feat

For fe LX tection and tracking, we employ together low-level image based feature
dete chmques like MSER and SURF, and high-level 3D prior information available
in ICQ;;p database. First, we extract features by utilizing these MSER and SURF feature
detection techniques and develop a dictionary of features (DoF) along the lines of Yasin
et al. [I4]. We stabilize feature detection process by 3D prior information retrieved from
MoCap database by developing a kd-tree and the online lazy neighbourhood graph. This
retrieved prior information (k-nearest neighbors) is back projected onto current image frame
by a weak perspective camera model to make the feature detection and tracking more
robust. The continuous process of detection and tracking is performed by matching feature
sets of the current image frame with already extracted feature sets of the previous frames
collected in DoF, and with addition of back projection of extracted 3D prior information.

For high-level feature detection and tracking, we formulate Bayes decision function D =
{dy,...,dr} to obtain similar features’ patterns x from current image frame of input video,

di(x) = p(x|w;) P(w;). (1)
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Figure 3. This figure shows probability ,@sny meas@nﬁent of each end effec-
tor, used in process of feature detecti nd tra%‘ . The current image frame

extracted from video input query, wi n bac ected into image plane is rep-
resented in (a). The Probability ent of each end effectors is rep-
resented in: (b) Right Hanm Hand{ ead. (€) Right Foot. (f) Left Foot.
where P(w;) is the prior probablhty of w; with I number of classes W = {wq, ..., wr}
and p(x|w;) is the h-dime al Ga obability density function of the pattern vector
and is calculated wi @bnobl nce as,

x|wz e B o) T ) (2)

(27)> \/W

where || is the determi&of covariance matrix €, p is the mean vector, (x — y;)7 is the
transpose of the diffe between the features’ pattern vector x and the mean vector p,
and h is the dim@xs of feature vector x. Some examples of the Gaussian probability
density measuremént for each end effector (right hand, left hand, right foot, left foot and
head) has b(%@lored in the Figure [3] where the Gaussian probability density in log has
been color ed. The darker region shows higher probability density of the end effector in
the cmgrént)image frame. On the basis of Bayes decision function, we select those pixels of
the%nt image frame for feature sets, that explore the largest Bayes decision function
value. ”By combining low-level (MSER and SURF) and high-level (back projection of 3D
prior information retrieved from MoCap database) feature detection techniques, the feature
sets retrieval equation has become in the form of,

FIo = ¥ + B3. (3)

where W represents the feature sets obtained through MSER and SURF feature detec-
tion techniques, ® represents the feature sets obtained from back-projection of 3D prior
information, a and § are the user defined weights.

3.2.2. Camera Model

In this paper, we assume static monocular uncalibrated camera and deal with a weak
perspective camera model. We estimate our camera model parameters from input video
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signal as well as from our knowledge base developed by sampling of the MoCap database at
different viewing directions. We estimate parameterized camera projection matrix p which
consists of intrinsic calibration K, extrinsic orientation R, g ) and translation T, ,).
p=K[Rapm | Teya)] - (4)

Intrinsic Camera Parameters, K. For intrinsic camera parameters with 4 degree of

freedom in our case, we have computed the focal length by employing the 3D azld 2D

information of first frame. The skew coefficient is fixed to be zero. The scai&i flactor is

updated across the M number of frames. We consider mean of J numberw ture sets
d

F to coincide principal points O = {o},..., oM ol,... M} which a ed regularly
across M number of image frames. In other words, th i c1ple p %m t frame m is,

om =3 zh@@r 5)
o

Extrinsic Camera Parameters, R, 5), 'QV . Inc trinsic camera parameters
which has 6 degree of freedom, we extract@a tation® tion R, g,) from our knowl-
edge base and translation informatio@,z) = {tl !K,EX ,t;, o ,ty',t%, .t from in-
put video. On the basis of regularly \% d princ Qomt scaling factor and focal length,
we get an estimation of the tra 1@ . For % e, translation along x and y-directions
T'(‘;’y) at current image frameﬁ& calculat

7

Q) W o™ — ot (6)

where O! = {o},0 oint of the first frame and O™ = {o]', o7} is the prin-
cipal point at. mber hi$ translation is added to the normalized reconstructed
pose to get re t rec @ted translated motion.

We estimate orientati ormation from our knowledge base which is developed on the
basis of sampling of p database at different viewing directions (azimuth and elevation
angles) as mentio rlier. We obtain N number of best poses from the MoCap database
through our,developed knowledge base at various viewing directions and build a histogram
on the basi %‘n’ese retrieved indices of best poses. The top three peaks of the histogram
are selec@ be candidates of the current azimuth angle of the performing actor. That
azi gle has been selected among the candidates, which is very close to already
selec azimuth angles for previously two reconstructed poses. We have smoothen these
selected azimuth angles with low-pass filter as well.

4. Motion Retrieval

As we are dealing with 2-dimensional scenario, so we sample our database into different
views as mentioned in Subsection [3.I} To retrieve similar poses from the MoCap database,
2-dimensional feature sets, extracted either from real video data or synthetically generated
sequences, are given as input to the system. For this similarity search into database, we
develop a kd-tree, build upon 2-dimensional feature sets F,5, and a graph structure, online
lazy neighbourhood graph, in a similar fashion as described in [I, I7]. In our case, we
are dealing with sparse continuous stream of 2D input data (video data or synthetic data)
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Figure 4. Averag @tructl or graph for walking motion, with different
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Yasin et al. ur reconstruction method with control energy term

case 1. (c) O ons u@n method with control energy term case 2.
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Figure 5. (a) Reconstruction methods’ comparison by taking average of all recon-
structions at different views for same motion class. (b) Reconstruction methods’
comparison by taking average of all reconstructions of different motions at fixed
azimuth and elevation angles (60 and 45 degrees).

rather than using accelerometer input data as in [I]. As a result of similarity search, we
obtain k-nearest neighbours (knn) from MoCap database. We select the best N poses from
these retrieved nearest poses through OLNG by considering step sizes and minimum cost
of the paths of k-nearest neighbours. The cost attached to the pose’s path is the result of
the input feature sets’ similarities. In the construction of OLNG, we consider only those
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paths which have minimum costs. On the cost basis, we have build the penalty normalized
weights as,
wt—1— Gt — mz’n(.Gt)

max (Gt — min(G?))
where W! and G!, are the associated weights and costs for the selected paths at current
frame ¢ respectively. The online version of lazy neighbourhood graph imposes the fact that
there is no any need to construct whole graph structure for every frame cycle, rather it
is more efficient to build graph incrementally considering previously constructed @ths of
minimum cost. In our experiments, the value of k for nearest neighbours is fix be 212
and the value of NV for best poses is set to be 256. These values migh C;%endmg on

n=12,...,N. (7)

the size of the MoCap database.

5. Online Motion Reconstruction x)@
We have developed our reconstruction ap r(@ on t% s of low dimensional 2D
J‘éy@a et

feature sets obtained from video data and p data rieve similar poses in the
form of joints angle configurations Qt’ ,...,qAﬂ} well as in relevant positional
information X* = {x},...,x%} from p data or current frame ¢. Like Tautges

et al. [I], we have taken into acco& uare nel in order to estimate probability
density for local modeling in contrast/'to multi ()Qﬁ'te normal distribution. Our data-driven
approach takes 2D feature se d reco cts into input like motion frame by frame.
We have formulated our r structl odology as energy minimization problem and
solved with gradient de&ased zation.

C = arg% wpEp +wiEj + wsEs + w.E). (8)
where P is nstruct and wy, wj, ws and w. are user defined weights asso-
ciated with en gy ter

rr%’ are computed accordingly.
5.1. Pose Energy@%

It measures a-pripri likelihood of the synthesized joints angle configuration, called as syn-
thesized pos&m the MoCap library. The pose has been synthesized in low dimensional
principal ¢ onent analysis (PCA) space from N best retrieved poses and then synthe-
size ets minimized from these retrieved N the best poses as well. This energy term
den%ates that how likely the synthesized pose is according to the prior joints angle
configurations already exists in the MoCap database. As mentioned earlier, we formulate
symmetric square root kernel function X to estimate probability density as,

N
Pyoc Y wh - K(la), — o). 9)

n=1
where w!, are the normalized weights mentioned in Section @, ql, is the joints angle config-
urations of the best retrieved poses including previously reconstructed pose and q' is the
joints angel configuration obtained in a PCA space at current frame t. For energy term,

the Equation [9] is reformulated as,

B, =Y wh-\/d, — |- (10)
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5.2. Joint Energy Term

This energy term play a vital role in 2D and 3D positions correspondence and minimize
the unwanted artifacts arises due to 2D-3D transformation. It basically compels the joints
positions, resulted from the forward kinematic of the synthesized pose, according to the
prior true joints positional information of the best extracted poses from the MoCap library,

N
Ej:waLw/bE%—xtL . 11)
where x!, is the joints positions of the N best poses and x' is the posi gectors of the
current synthesmed pose at frame t. :
5.3. Smooth Energy Term \ @
In order to avoid the jittering and jerkiness eff&Qsmoo wnergy term is introduced.
It imposes smoothness in a way that new construgted Jpose has been bound to be

according to the previously two reconsbru@i poses 5} 1 as the prior knowledge about
smoothness between neighbouring cangdi S ex'st@ oCap database. Mathematically,

N
Q@;wt WISt — st (12)

where S = x! —2x!~! +@ ith posi ectors xt, %1 and %12 of the NV best retrieved
poses; and S = x? 2 with pd&ition vectors x!, x!~! and x'~2 of the reconstructed

poses at frames ¢ é&nd — pectively.

5.4. Control rgy

motion. More pre ;- with control energy term, we minimize the distance between feature

This energy term (‘@eis the synthesized motion to be according to the performed input
sets of the igpﬁt ﬁtion and the synthesized motion. We have performed control energy

minimizati(é 0 ways as;
Ca; Qn first case, we are dealing with 3-dimensional scenario. We extract 3D feature
sets ands, feet and head of current synthesized pose, represented as X34, and get min-

imized with the extracted 3D feature sets of the already reconstructed previous pose as,

E; = \/Ixb, — %55 |. (13)
Case 2. In case 2, we project 3D feature sets of hands, feet and head of the current
synthesized pose into 2D plane at specific view direction which is obtained from the process
of camera parameters estimation, and normalize these 2D feature sets too. The estimated
2D feature sets X st.oq from input motion ¢ are then get subtracted from these normalized
2D feature sets fcéd of current frame ¢ as,

E? = Kb — iést,2d|‘ (14)

c
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(a) Image with occlusion of left hand.  (b) Occlusion handling with Ann.

S

Figure 6. The process of occlusion handling by 3D prior infor 'oz (a) Image
frame shows occlusion of left hand which is totally disappe Image frame
shows that how occlusion has been handled by b?s‘ oject&gl 3D prior knn.

(a) Image with blurring effects.

Figure 7. The process ndling blurring effect by 3D prior information. (a) Image
frame showing blur ffect for the hands’ positions. (b) Image frame shows that
how blurring eff andled by back projection of 3D prior knn.

6. Result%ad Analysis

e HDMO5 [I8] database as MoCap library which is publically accessible. There
are ifferent actors who perform various types of motion. HDMO05 is a heterogeneous
database with sampling rate 120Hz. We have down sampled our database to sampling rate
30 Hz to make it equivalent to the sampling rate of input video stream. With 30 Hz frame
rate, the database consists of more or less 381,157 frames. For video input query, we have
recorded motions using Kinect RGB camera with resolution 587x440 pixels and frame rate
30 frames per second. We have testified our approach on variety of motions like straight
walking, side walking, walking in a circle, jumping jack and cartwheel motions etc.

6.1. Synthetic Data
We extract 2D data from the MoCap data and name it as synthetic data as mentioned

earlier in Subsection [3.1] This synthetically generated 2D data is then given as input to
the system for 3D reconstruction. We have evaluated our approach in different ways as;
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Figure 10. Tracking and reconstruction results of our approach case 2 of walking-left
input video motion with extracted £nn from MoCap library.
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-
I
=

jack input video motions with extracted knn

Figure 11. Tracking and reconstruction resu i '\ﬁa

Firstly, we have constructed the average régohstructio ;bf graphs where azimuth view
directions are given along x-axis and ePe@n angles Zarawn along y-axis. The recon-

struction error has been reported by t or r om red to blue as shown in Figure [4]
We have made comparison of our & esults mentioned in Yasin et al. [14].
We have checked the reconstruc ults at™wartous combinations of azimuth angles and

elevation angles. The azimut gles ran%rom 0 to 180 degree with 5 degree step size
combined with elevation a@s Whicw rom 0 to 90 degree with 10 degree step size.
From the results, it is qqg obvious the reconstruction has been improved when we
employ proposed aw case 14with 3D feature sets for approximately every combina-
tion of azimuth au@ ation@ We further improve our results when we use proposed
approach cas normali feature sets X 4 and estimated 2D feature sets f(é st.2d"
The develope tem lézse 2 outperforms and shows the best reconstruction results
for more or less ever, direction (combination of azimuth and elevation angles), as
obvious in Figure proposed approach case 2 with 2D scenario executes the fact that
knowing the 2D direction and then performing energy minimization in 2-dimensions

enhances thsgcon truction results as compared to the approach case 1 with 3D scenario

when we a ing with monocular camera.

Secon@ e check our methods’ performance by combining the all reconstruction results
at % viewing directions and perform comparison as shown in Figure |5 (a). We take
averagp’of reconstruction results at all combination of azimuth (starting from 0 degree to
180 degree with 5 degree step size) and elevation angles (from 0 degree till 90 degree with 10
degree step size) for the same motion class. From the results, it is clear that the proposed
approach with case 2 gives the best results.

Thirdly, we explore our results other way around by taking average of the reconstruction
results of different types of motions like walking, jumping jack and cartwheel motions and
keep the azimuth angle fixed to 60 degree and elevation angles fixed to 45 degree and then
make comparison again as in Figure |5 (b). From these various experiments, we conclude
that proposed approach case 2 with normalized 2D feature sets comparatively performs
better, when synthetically generated 2D data has been given as input query. The further
details of the reconstruction results based on synthetically generated data can be seen in
supplementary material found in [19].
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6.2. Video Data

We have also assessed our proposed framework on uncalibrated monocular video data.
For real video data, we have first detect and track video based feature sets and prepare
input query. Thus, the ultimate reconstructed sequences depends upon not only the recon-
struction methodology but also the fact that how accurately the feature sets are detected
and tracked in order to prepare the input query. For feature set detection and tracking, we
have improved detection as well as tracking results through 3D prior existing knowledge
available in motion capture library as compared to the work of Yasin et al. Nﬂ@e.xtract
3D prior knowledge and back project them into 2-dimensional image plane. w S way, we
are able to handle occlusion and blurring effects somehow. Some examples.daye been drawn
in Figure [6] and Figure [7} In Figure [6] the left hand of t perfor r is completely
occluded but with back projection of 3D prior knowle we are% to track occluded
left hand accurately. Similarly, in Figures[7] the L :.- Ve los eir ‘structure due to fast
movement and blurring effects and low-level im hsed f tectlon techniques mis-
track the positions of hands but the use of 3D grior k-neares hbours bound the feature
detection process to detect and track ha @Q’cessﬁill n this way, we have dealt with
occlusion and blurring effects successfu]b& some ext but still sometime mistracking
of feature sets may occur due to oc 1llu on and blurring effects which affect
reconstruction results too. We a erved e experiments that the mistracking is
roughly 20-25 percent on an ;q% of the tota umber of frames without use of 3D prior
existing knowledge, which is reduced to han roughly 8-10 percent on an average by
the use of 3D data. The m@acked sets are then corrected manually.

We estimate camet meters wwdeo input as well as knowledge base. To this
end, we sample our x edge b%at different viewing directions (azimuth and elevation
angles). From esp®ritnents, we(Ohsegve that we get more accurate orientation information
when we samf oCap, dasabase with smaller step sizes of azimuth and elevation angles.

After detection and t g of 2D video feature sets, we have reconstructed input like
motion on the basis ese video based feature sets. No doubt, the improvement in
the process of det and tracking enhances the accuracy in reconstruction results, but
our proposed recohgtruction approach also contributes a lot in making the reconstruction
accurate. T&} uite obvious when we use the synthetically generated data as input query.

input video query, the proposed approach case 2 gives the best reconstruction

In case of r@
resui% a@e . Some examples of tracking and reconstruction of different types of motion

are in Figures[8|to[II] More results of feature detection, tracking and reconstruction
based 6n video input query can be seen in supplementary material found in [19].

7. Conclusion and Future Work

We have proposed an efficient data driven reconstruction approach from video data
by constructing kd-tree data structure and online lazy neighbourhood graph, taking into
account just the positions of hands, feet and head. Our proposed framework first design
and normalize feature sets from both video input as well as MoCap data to make them
comparable. From input video stream, we have detected and tracked feature sets by the use
of 3D prior knowledge already available in MoCap library. In this way, we have made low-
level image based feature detection and tracking process more robust. We estimate camera
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parameters successfully for 2D and 3D correspondence from video itself and from knowledge
base which is created by sampling of MoCap data at different viewing directions. The
experimental results indicates that our proposed approach has outperformed comparatively.
Our system performs reconstruction with frame rate approximately 5-6 frames per second.

For future work, we are planning to track and reconstruct human motion in more complex
scenarios like human motion in outdoor environments with non-static background and
moving camera. The low-level image feature extraction techniques might be made more
robust and efficient. The camera model parameters can be made more precise and accurate
by performing the process of optimization for estimation of intrinsic as Wel&}(.trinsic
camera parameters frame by frame. Another important aspect of future might be
to extend the the reconstruction scenario of human motions to quadr otions where
firstly we have to select some different types of featu sn WI}% the process of

reconstruction can be performed.
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