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Abstract

The work at hand presents a novel data-driven framework for 3D full body human motion
reconstruction from uncalibrated monocular video data. To this end, we develop a knowledge
base by taking 2D samples of the motion capture library from different viewing directions.
This allows later steps to handle 2D query videos without any information on the viewing
direction. We detect and track features from input video sequences by utilizing low-level
image based feature detection techniques like MSER and SURF. This process is stabilized by
back projection of high-level 3D prior information obtained from the motion capture library
to the image plane. Extraction of suitable feature sets from both, input control signals and
motion capture data, enables us to retrieve the best relevant prior poses from the motion
capture library by employing fast motion retrieval techniques. Finally, 3D motion sequences
are reconstructed by non-linear energy minimization, that takes into account multiple prior
terms. Furthermore, we propose a method to estimate camera parameters from input video
itself and sampling of motion capture library.

Keywords: Feature detection and tracking, Motion retrieval, Camera parameters, 3D
motion reconstruction.

1. Introduction

Motion reconstruction from uncalibrated video data has been remained a major research
topic in the last decade. A lot of techniques have been proposed but one of the most
widespread and successful approaches for 3D motion reconstruction is the data-driven ap-
proach that makes use of a knowledge base which might be developed from a huge motion
capture library just like in our case. Although a bulk of research has already been con-
ducted in this specific direction, yet there are still open challenges that have to be tackled by
further research in order to meet the massive demands of growing industries like animated
characters in movies, computer games, medical sciences and sport sciences etc.

In this paper, we present a 3D motion reconstruction approach from static uncalibrated
monocular video data. As we are dealing with 2D input signals, having no information
on the actual viewing direction, we first sample our motion capture database into various
2-dimensional viewing directions as combination of different azimuth and elevation angles
in a preprocessing step. The input video stream is prepared to be a query to our system by
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Figure 1. System overview diagram.

detecting and tracking feature sets. Here, we utilize Maximally Stable Extremal Regions
(MSER) and Speeded Up Robust Features (SURF) feature detection techniques together
with some prior knowledge obtained from the motion capture (MoCap) library. By using
this prior knowledge from the database, we are able to make feature detection and tracking
more robust. After getting suitable feature sets both from input signals as well as from
motion capture database, we are able to perform efficient similarity search and retrieve
nearest neighbours from database. For that purpose, we have developed a kd-tree data
structure and the so called online lazy neighbourhood graph (OLNG) along the lines of
Tautges et al. [1]. In our domain, we have adapted these methods to work with 2D feature
sets extracted either from MoCap data or video data used as control input signal.

Additionally, we have addressed the problem of camera parameter estimation from un-
calibrated monocular video input in this work. Camera parameters are estimated from the
input video and from samples of MoCap database at different viewing directions. More
precisely, we extract translational information from the input control video signal and the
orientation information from samples of the MoCap database, that are similar according to
the derived feature sets. At the end, the 3D human motion sequences are reconstructed by
gradient-based energy minimization process that considers multiple energy prior terms. We
have tested our developed algorithm on real video data as well as synthetically generated
2D input signals.

2. Related Work

Motion retrieval and reconstruction in 3-dimensions from 2-dimensional video input is
the current strand of research. Some general methods to reconstruct human motion found
in prior literature can be categorized into data-driven approaches either generative or dis-
criminative like in [2, 3, 4, 5, 6, 7], geometric constraint based approach as in [8, 9] and
physics based modeling [10, 11]. Sminchisescu et al. [2] estimate full body human motion
using discriminative density propagation approach. A compact conditional Bayesian mix-
ture of experts models is utilized in order to learn multi-modal conditional distributions.
They synthesize human configurations together with rendered 2D silhouettes using MoCap
data and 3D human model. Hornung et al. [12] animate 2D pictures with the help of
user interaction in the form of selection of joints as well as the use of prior information
in 3D motion capture database. They have presented shape deformation method in order
to animate the still image projectively. Wei and Chai in [9] reconstruct 3D human pose
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by using a set of geometric constraints from 2D images. They estimate human skeleton as
well as camera parameters with weak perspective model in order to reconstruct 3D pose.
They optimize their reconstruction framework with two steps gradient based optimization
process without use of some data-driven prior knowledge. Rosenhahn et al. [13] employ
data-driven geometric ground plane prior constraints for human movement patterns in the
process of pose tracking. Vondrak et al. [10] perform Bayesian filtering based human motion
tracking by full body physics based dynamic simulation priors together with interpolation
of joint data. Wei and Chai in [11] reconstruct human motion form video input data by em-
ploying physics-based modeling and minimal user interaction to annotate key intermediate
frames for tracking error correction. Yasin et al. [14] first detect and track video features
by constructing a dictionary of features (DoF) using MSER and SURF feature detection
techniques and make data-driven 3D reconstruction from these 2D detected feature sets.
Dantone et al. [15] estimate 2D human pose from still images by non-linear body part
dependent joint regressor using two layered random forests. First layer classifies different
independent body parts while second layer contributes to predict joint locations. Jain et
al. [16] reconstruct 3D animation from 2D hand drawn animated characters and make inter-
action between 3D reconstructed character and a virtual world. First, they use user defined
orthographies camera model and then they estimate camera by minimizing the geometric
projection error. They formulate their data-driven reconstruction approach by using three
energy terms like input-match term, motion prior term and regularization term.

Krüger et al. [17] develop lazy neighbourhood graph (LNG) for similarity search into
the motion capture database. They employ 15-dimensional feature sets based on positions
of hands, feet and head for fast similarity search. Later on, Tautges et al. [1] enhance
the LNG into incremental online version named online lazy neighbourhood graph (OLNG)
and reconstruct human motions using sparse accelerometer data. They reconstruct human
motions with the help of data-driven prior model which measures a-priori likelihood of the
input motion into MoCap database.

3. Feature Design and Tracking

In this section, we demonstrate how we search into motion capture library for similar
motion segments of video input or synthetically generated input, with the help of some
suitable feature sets. We discuss both scenarios one by one in detail as follows.

3.1. Motion Capture Data

We make no any assumption regarding the 2D view direction, so we have sampled our
database at various 2D viewing directions. For database sampling and construction of our
knowledge base, we first extract 3D feature sets F15

3D based on positions of hands, feet and
head like Krüger et al. have done in [17]. We project these 3D feature sets F15

3D onto 2D
plane at different viewing directions similar to Yasin et al. [14] and as a consequence, we
get 2D feature sets F10

2D. To achieve previously mentioned goal, we have specified azimuth
angles from 0 to 350 degrees with 10 degree step size and elevation angles from 0 to 90
degrees with step size 15 degree, as shown in Figure 2. The extracted 2D feature sets are
further normalized by translating the mean (center of mass) of the feature sets to its origin
of the coordinate system. In this way, we get such type of feature sets in our knowledge
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Figure 2. Sampling of MoCap database onto 2D image plane at different viewing
directions on which basis kd-tree has been developed.

base which are comparable to the feature sets extracted from input video, where we have
no any root node and articulated skeleton of the performing actor. As a result, we can
perform comparison between both types of feature sets, extracted either from MoCap data
or input video stream. Sampling of database or more precisely developing of knowledge
base by projection of 3D feature sets at different viewing directions supports us in order to
estimate orientation information of the performing actor in video input stream.

Our developed system takes into account only the positions of hands, feet and head to
access the relevant information from MoCap database, so we have prepared our query in the
format of 2D feature sets F10

2D based on positions of hands, feet and head. The 2D feature
sets, synthetically generated from the motion clip of the MoCap database and given as
input, are named here as synthetic data.

3.2. Video Data

Similarly, in case of video data, we prepare our query input signal first based on extracted
feature sets from video input streaming. For that purpose, we detect and track the positions
of hands, feet and head only in order to develop video based feature sets F10

vid.

3.2.1. Feature Detection and Tracking

For feature detection and tracking, we employ together low-level image based feature
detection techniques like MSER and SURF, and high-level 3D prior information available
in MoCap database. First, we extract features by utilizing these MSER and SURF feature
detection techniques and develop a dictionary of features (DoF) along the lines of Yasin
et al. [14]. We stabilize feature detection process by 3D prior information retrieved from
MoCap database by developing a kd-tree and the online lazy neighbourhood graph. This
retrieved prior information (k-nearest neighbors) is back projected onto current image frame
by a weak perspective camera model to make the feature detection and tracking more
robust. The continuous process of detection and tracking is performed by matching feature
sets of the current image frame with already extracted feature sets of the previous frames
collected in DoF, and with addition of back projection of extracted 3D prior information.

For high-level feature detection and tracking, we formulate Bayes decision function D =
{d1, . . . , dI} to obtain similar features’ patterns x from current image frame of input video,

di(x) = p(x|wi)P (wi). (1)
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(a) The current image frame with knn
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(c) Probability density of Left Hand
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(f) Probability density of Left Foot
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(d) Probability density of Head
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Figure 3. This figure shows probability density measurement of each end effec-
tor, used in process of feature detection and tracking. The current image frame
extracted from video input query, with knn back projected into image plane is rep-
resented in (a). The Probability density measurement of each end effectors is rep-
resented in: (b) Right Hand. (c) Left Hand. (d) Head. (e) Right Foot. (f) Left Foot.

where P (wi) is the prior probability of the class wi with I number of classesW = {w1, . . . , wI}
and p(x|wi) is the h-dimensional Gaussian probability density function of the pattern vector
and is calculated with Mahalanobis distance as,

p(x|wi) =
1

(2π)
h
2

√
|Ωi|
· e−

1
2

(x−µi)T Ω−1
i (x−µi). (2)

where |Ω| is the determinant of covariance matrix Ω, µ is the mean vector, (x−µi)T is the
transpose of the difference between the features’ pattern vector x and the mean vector µ,
and h is the dimensions of feature vector x. Some examples of the Gaussian probability
density measurement for each end effector (right hand, left hand, right foot, left foot and
head) has been explored in the Figure 3, where the Gaussian probability density in log has
been color coded. The darker region shows higher probability density of the end effector in
the current image frame. On the basis of Bayes decision function, we select those pixels of
the current image frame for feature sets, that explore the largest Bayes decision function
value. By combining low-level (MSER and SURF) and high-level (back projection of 3D
prior information retrieved from MoCap database) feature detection techniques, the feature
sets retrieval equation has become in the form of,

F10
vid = αΨ + βΦ. (3)

where Ψ represents the feature sets obtained through MSER and SURF feature detec-
tion techniques, Φ represents the feature sets obtained from back-projection of 3D prior
information, α and β are the user defined weights.

3.2.2. Camera Model

In this paper, we assume static monocular uncalibrated camera and deal with a weak
perspective camera model. We estimate our camera model parameters from input video
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signal as well as from our knowledge base developed by sampling of the MoCap database at
different viewing directions. We estimate parameterized camera projection matrix ρ which
consists of intrinsic calibration K, extrinsic orientation R(α,β,γ) and translation T(x,y,z).

ρ = K
[
R(α,β,γ) | T(x,y,z)

]
. (4)

Intrinsic Camera Parameters, K. For intrinsic camera parameters with 4 degree of
freedom in our case, we have computed the focal length by employing the 3D and 2D
information of first frame. The skew coefficient is fixed to be zero. The scaling factor is
updated across the M number of frames. We consider mean of J number of feature sets
F10

vid to coincide principal points O = {o1x, . . . , oMx , o1y, . . . , oMy }, which are updated regularly
across M number of image frames. In other words, the principle point Om at frame m is,

Om =
[
1
J

∑J
j=1(F10

2D)j

]
m. (5)

Extrinsic Camera Parameters, R(α,β,γ), T(x,y,z). In case of extrinsic camera parameters
which has 6 degree of freedom, we extract orientation information R(α,β,γ) from our knowl-

edge base and translation information T(x,y,z) = {t1x, . . . , tMx , t1y, . . . , tMy , t1z , . . . , tMz } from in-
put video. On the basis of regularly updated principle point, scaling factor and focal length,
we get an estimation of the translation. For example, translation along x and y-directions
Tm

(x,y) at current image frame m is calculated as,

Tm
(x,y) = Om − O1. (6)

where O1 = {o1x, o1y} is the principal point of the first frame and Om = {omx , omy } is the prin-
cipal point at frame number m. This translation is added to the normalized reconstructed
pose to get relevant reconstructed translated motion.

We estimate orientation information from our knowledge base which is developed on the
basis of sampling of MoCap database at different viewing directions (azimuth and elevation
angles) as mentioned earlier. We obtain N number of best poses from the MoCap database
through our developed knowledge base at various viewing directions and build a histogram
on the basis of these retrieved indices of best poses. The top three peaks of the histogram
are selected to be candidates of the current azimuth angle of the performing actor. That
azimuth angle has been selected among the candidates, which is very close to already
selected azimuth angles for previously two reconstructed poses. We have smoothen these
selected azimuth angles with low-pass filter as well.

4. Motion Retrieval

As we are dealing with 2-dimensional scenario, so we sample our database into different
views as mentioned in Subsection 3.1. To retrieve similar poses from the MoCap database,
2-dimensional feature sets, extracted either from real video data or synthetically generated
sequences, are given as input to the system. For this similarity search into database, we
develop a kd-tree, build upon 2-dimensional feature sets F10

2D, and a graph structure, online
lazy neighbourhood graph, in a similar fashion as described in [1, 17]. In our case, we
are dealing with sparse continuous stream of 2D input data (video data or synthetic data)

6
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Figure 4. Average reconstruction error graph for walking motion, with different
viewing directions — azimuth angles (0-5-180) and elevation angles (0-10-90). (a)
Yasin et al. method [14]. (b) Our reconstruction method with control energy term
case 1. (c) Our reconstruction method with control energy term case 2.
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Figure 5. (a) Reconstruction methods’ comparison by taking average of all recon-
structions at different views for same motion class. (b) Reconstruction methods’
comparison by taking average of all reconstructions of different motions at fixed
azimuth and elevation angles (60 and 45 degrees).

rather than using accelerometer input data as in [1]. As a result of similarity search, we
obtain k-nearest neighbours (knn) from MoCap database. We select the best N poses from
these retrieved nearest poses through OLNG by considering step sizes and minimum cost
of the paths of k-nearest neighbours. The cost attached to the pose’s path is the result of
the input feature sets’ similarities. In the construction of OLNG, we consider only those
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paths which have minimum costs. On the cost basis, we have build the penalty normalized
weights as,

W t
n = 1− Gtn −min(Gt)

max(Gtn −min(Gt))
n = 1, 2, . . . , N. (7)

where W t
n and Gtn are the associated weights and costs for the selected paths at current

frame t respectively. The online version of lazy neighbourhood graph imposes the fact that
there is no any need to construct whole graph structure for every frame cycle, rather it
is more efficient to build graph incrementally considering previously constructed paths of
minimum cost. In our experiments, the value of k for nearest neighbours is fixed to be 212

and the value of N for best poses is set to be 256. These values might vary depending on
the size of the MoCap database.

5. Online Motion Reconstruction

We have developed our reconstruction approach on the basis of low dimensional 2D
feature sets obtained from video data and MoCap data. We retrieve similar poses in the
form of joints angle configurations Qt = {qt1, . . . ,qtN} as well as in relevant positional
information Xt = {xt1, . . . ,xtN} from MoCap database for current frame t. Like Tautges
et al. [1], we have taken into account square root kernel in order to estimate probability
density for local modeling in contrast to multivariate normal distribution. Our data-driven
approach takes 2D feature sets and reconstructs into input like motion frame by frame.
We have formulated our reconstruction methodology as energy minimization problem and
solved with gradient descent based optimization.

Prec = argmin(wpEp + wjEj + wsEs + wcEc). (8)

where Prec is the reconstructed pose and wp, wj , ws and wc are user defined weights asso-
ciated with energy terms and are computed accordingly.

5.1. Pose Energy Term

It measures a-priori likelihood of the synthesized joints angle configuration, called as syn-
thesized pose, from the MoCap library. The pose has been synthesized in low dimensional
principal component analysis (PCA) space from N best retrieved poses and then synthe-
sized pose gets minimized from these retrieved N the best poses as well. This energy term
demonstrates that how likely the synthesized pose is according to the prior joints angle
configurations already exists in the MoCap database. As mentioned earlier, we formulate
symmetric square root kernel function K to estimate probability density as,

Pp ∝
N∑
n=1

wtn · K(|q̃tn − qt|). (9)

where wtn are the normalized weights mentioned in Section 4, q̃tn is the joints angle config-
urations of the best retrieved poses including previously reconstructed pose and qt is the
joints angel configuration obtained in a PCA space at current frame t. For energy term,
the Equation 9 is reformulated as,

Ep =
N∑
n=1

wtn ·
√
|q̃tn − qt|. (10)
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5.2. Joint Energy Term

This energy term play a vital role in 2D and 3D positions correspondence and minimize
the unwanted artifacts arises due to 2D-3D transformation. It basically compels the joints
positions, resulted from the forward kinematic of the synthesized pose, according to the
prior true joints positional information of the best extracted poses from the MoCap library,

Ej =
N∑
n=1

wtn ·
√
|x̃tn − xt|. (11)

where x̃tn is the joints positions of the N best poses and xt is the position vectors of the
current synthesized pose at frame t.

5.3. Smooth Energy Term

In order to avoid the jittering and jerkiness effects, smoothness energy term is introduced.
It imposes smoothness in a way that newly reconstructed pose has been bound to be
according to the previously two reconstructed poses as well as the prior knowledge about
smoothness between neighbouring candidates exists in MoCap database. Mathematically,

Es =
N∑
n=1

wtn ·
√
|S̃tn − St|. (12)

where S̃ = x̃t−2x̃t−1 + x̃t−2 with position vectors x̃t, x̃t−1 and x̃t−2 of the N best retrieved
poses; and S = xt−2xt−1+xt−2 with position vectors xt, xt−1 and xt−2 of the reconstructed
poses at frames t, t− 1 and t− 2 respectively.

5.4. Control Energy Term

This energy term compels the synthesized motion to be according to the performed input
motion. More precisely, with control energy term, we minimize the distance between feature
sets of the input motion and the synthesized motion. We have performed control energy
minimization in two ways as;

Case 1. In first case, we are dealing with 3-dimensional scenario. We extract 3D feature
sets of hands, feet and head of current synthesized pose, represented as x̂3d, and get min-
imized with the extracted 3D feature sets of the already reconstructed previous pose as,

E1
c =

√
|x̂t3d − x̂t−1

3d |. (13)

Case 2. In case 2, we project 3D feature sets of hands, feet and head of the current
synthesized pose into 2D plane at specific view direction which is obtained from the process
of camera parameters estimation, and normalize these 2D feature sets too. The estimated
2D feature sets x̂test,2d from input motion t are then get subtracted from these normalized

2D feature sets x̂t2d of current frame t as,

E2
c =

√
|x̂t2d − x̂test,2d|. (14)

9
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(a) Image with occlusion of left hand. (b) Occlusion handling with knn.

Figure 6. The process of occlusion handling by 3D prior information. (a) Image
frame shows occlusion of left hand which is totally disappeared. (b) Image frame
shows that how occlusion has been handled by back projection of 3D prior knn.

(a) Image with blurring effects. (b) Handling blurring with knn.

Figure 7. The process of handling blurring effect by 3D prior information. (a) Image
frame showing blurring effect for the hands’ positions. (b) Image frame shows that
how blurring effect is handled by back projection of 3D prior knn.

6. Results and Analysis

We utilize HDM05 [18] database as MoCap library which is publically accessible. There
are five different actors who perform various types of motion. HDM05 is a heterogeneous
database with sampling rate 120Hz. We have down sampled our database to sampling rate
30 Hz to make it equivalent to the sampling rate of input video stream. With 30 Hz frame
rate, the database consists of more or less 381,157 frames. For video input query, we have
recorded motions using Kinect RGB camera with resolution 587×440 pixels and frame rate
30 frames per second. We have testified our approach on variety of motions like straight
walking, side walking, walking in a circle, jumping jack and cartwheel motions etc.

6.1. Synthetic Data

We extract 2D data from the MoCap data and name it as synthetic data as mentioned
earlier in Subsection 3.1. This synthetically generated 2D data is then given as input to
the system for 3D reconstruction. We have evaluated our approach in different ways as;
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102 118 176 196

102 118 176 196

Figure 8. Tracking and reconstruction results of our approach case 2 of side-walking-
left input video motion with extracted knn from MoCap library.

158 196 245 287

158 196 245 287

Figure 9. Tracking and reconstruction results of our approach case 2 of side-walking-
right input video motion with extracted knn from MoCap library.

116 134 187 217

116 134 187 217

Figure 10. Tracking and reconstruction results of our approach case 2 of walking-left
input video motion with extracted knn from MoCap library.
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102 118 176 196

Figure 11. Tracking and reconstruction results of our approach case 2 of jumping
jack input video motions with extracted knn from MoCap library.

Firstly, we have constructed the average reconstruction error graphs where azimuth view
directions are given along x-axis and elevation angles are drawn along y-axis. The recon-
struction error has been reported by the color range from red to blue as shown in Figure 4.
We have made comparison of our approach with the results mentioned in Yasin et al. [14].
We have checked the reconstruction results at various combinations of azimuth angles and
elevation angles. The azimuth angles range from 0 to 180 degree with 5 degree step size
combined with elevation angles which range from 0 to 90 degree with 10 degree step size.
From the results, it is quite obvious that the reconstruction has been improved when we
employ proposed approach case 1 with 3D feature sets for approximately every combina-
tion of azimuth and elevation angles. We further improve our results when we use proposed
approach case 2 with normalized 2D feature sets x̂t2d and estimated 2D feature sets x̂test,2d.
The developed system with case 2 outperforms and shows the best reconstruction results
for more or less every view direction (combination of azimuth and elevation angles), as
obvious in Figure 4. The proposed approach case 2 with 2D scenario executes the fact that
knowing the 2D view direction and then performing energy minimization in 2-dimensions
enhances the reconstruction results as compared to the approach case 1 with 3D scenario
when we are dealing with monocular camera.

Secondly, we check our methods’ performance by combining the all reconstruction results
at different viewing directions and perform comparison as shown in Figure 5 (a). We take
average of reconstruction results at all combination of azimuth (starting from 0 degree to
180 degree with 5 degree step size) and elevation angles (from 0 degree till 90 degree with 10
degree step size) for the same motion class. From the results, it is clear that the proposed
approach with case 2 gives the best results.

Thirdly, we explore our results other way around by taking average of the reconstruction
results of different types of motions like walking, jumping jack and cartwheel motions and
keep the azimuth angle fixed to 60 degree and elevation angles fixed to 45 degree and then
make comparison again as in Figure 5 (b). From these various experiments, we conclude
that proposed approach case 2 with normalized 2D feature sets comparatively performs
better, when synthetically generated 2D data has been given as input query. The further
details of the reconstruction results based on synthetically generated data can be seen in
supplementary material found in [19].
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6.2. Video Data

We have also assessed our proposed framework on uncalibrated monocular video data.
For real video data, we have first detect and track video based feature sets and prepare
input query. Thus, the ultimate reconstructed sequences depends upon not only the recon-
struction methodology but also the fact that how accurately the feature sets are detected
and tracked in order to prepare the input query. For feature set detection and tracking, we
have improved detection as well as tracking results through 3D prior existing knowledge
available in motion capture library as compared to the work of Yasin et al. [14]. We extract
3D prior knowledge and back project them into 2-dimensional image plane. In this way, we
are able to handle occlusion and blurring effects somehow. Some examples have been drawn
in Figure 6 and Figure 7. In Figure 6, the left hand of the performing actor is completely
occluded but with back projection of 3D prior knowledge, we are able to track occluded
left hand accurately. Similarly, in Figures 7 the hands have lost their structure due to fast
movement and blurring effects and low-level image based feature detection techniques mis-
track the positions of hands but the use of 3D prior k-nearest neighbours bound the feature
detection process to detect and track hands successfully. In this way, we have dealt with
occlusion and blurring effects successfully to some extant but still sometime mistracking
of feature sets may occur due to occlusion, illumination and blurring effects which affect
reconstruction results too. We have observed from the experiments that the mistracking is
roughly 20-25 percent on an average of the total number of frames without use of 3D prior
existing knowledge, which is reduced to less than roughly 8-10 percent on an average by
the use of 3D data. The mistracked feature sets are then corrected manually.

We estimate camera parameters form video input as well as knowledge base. To this
end, we sample our knowledge base at different viewing directions (azimuth and elevation
angles). From experiments, we observe that we get more accurate orientation information
when we sample MoCap database with smaller step sizes of azimuth and elevation angles.

After detection and tracking of 2D video feature sets, we have reconstructed input like
motion on the basis of these video based feature sets. No doubt, the improvement in
the process of detection and tracking enhances the accuracy in reconstruction results, but
our proposed reconstruction approach also contributes a lot in making the reconstruction
accurate. This is quite obvious when we use the synthetically generated data as input query.
In case of real input video query, the proposed approach case 2 gives the best reconstruction
results as well. Some examples of tracking and reconstruction of different types of motion
are shown in Figures 8 to 11. More results of feature detection, tracking and reconstruction
based on video input query can be seen in supplementary material found in [19].

7. Conclusion and Future Work

We have proposed an efficient data driven reconstruction approach from video data
by constructing kd-tree data structure and online lazy neighbourhood graph, taking into
account just the positions of hands, feet and head. Our proposed framework first design
and normalize feature sets from both video input as well as MoCap data to make them
comparable. From input video stream, we have detected and tracked feature sets by the use
of 3D prior knowledge already available in MoCap library. In this way, we have made low-
level image based feature detection and tracking process more robust. We estimate camera
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parameters successfully for 2D and 3D correspondence from video itself and from knowledge
base which is created by sampling of MoCap data at different viewing directions. The
experimental results indicates that our proposed approach has outperformed comparatively.
Our system performs reconstruction with frame rate approximately 5-6 frames per second.

For future work, we are planning to track and reconstruct human motion in more complex
scenarios like human motion in outdoor environments with non-static background and
moving camera. The low-level image feature extraction techniques might be made more
robust and efficient. The camera model parameters can be made more precise and accurate
by performing the process of optimization for estimation of intrinsic as well as extrinsic
camera parameters frame by frame. Another important aspect of future work might be
to extend the the reconstruction scenario of human motions to quadruped motions where
firstly we have to select some different types of feature sets on which basis the process of
reconstruction can be performed.
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