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Abstract 

Processing very large graphs efficiently is a challenging task. Distributed graph 

processing systems process the billion-scale graphs efficiently but incur overheads of 

partitioning and distribution of the large graph over a cluster of nodes. In order to overcome 

these problems a disk-based engine, GraphChi was proposed recently that processes the 

graph in chunks on a single PC. GraphChi significantly outperformed all the representative 

distributed processing frameworks. Still, we observe that GraphChi incurs some serious 

degradation in performance due to 1) high number of non-sequential I/Os for processing 

every chunk of the graph; and 2) limited parallelism to process the graph. In this paper, we 

propose a novel engine named BiShard Parallel Processor (BSPP) to efficiently process 

billions-scale graphs on a single PC. We introduce a new storage structure BiShard. BiShard 

divides the large graph into subgraphs and maintains the in and out edges separately. This 

storage mechanism significantly reduces the number of non-sequential I/Os. We implement a 

new processing model named BiShard Parallel (BSP) on top of Bishard. BSP exploits the 

properties of Bishard to enable full CPU parallelism for processing the graph. Our 

experiments on real large graphs show that our solution significantly outperforms GraphChi. 

 

Keywords: Graph processing; Disk-based processing; Parallel processing; BiShard 

Parallel 

 

1. Introduction 

Graph processing has been a popular research area in the last decade and a lot of research 

[1, 2, 3, 4] has been targeted at the most common graph processing algorithms such as 

shortest path and some variations of clustering and page rank. Algorithms like connected 

components and minimum cut also have their own vital values. In recent past, graphs gain 

more importance in the research community with the introduction of social networks and 

other very large graphs such as biological and chemical compounds. Such graphs are difficult 

to process because of their massive sizes. With the growing size of graph datasets, processing 

graphs has become more challenging. 

Distributed data processing frameworks such as MapReduce [10] has been applied to 

graphs by many studies [11, 12], but many authors [13, 15, 16] observed that it can lead to 

suboptimal performance and usability issues. To solve the inherent performance problems of 

distributed frameworks, a range of graph specific distributed processing frameworks have 

been proposed [13, 14]. Pregel [13] and PowerGraph [14] are distributed graph processing 

frameworks based on the vertex-centric approach. This approach allows users to write an 

update-function without knowing any details about the distributed programming. This 
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function is executed for every vertex of the graph in parallel. Distributed frameworks for 

graph processing depict good performance with great scalability. However, they require the 

graph to be partitioned and distributed over the cluster of nodes. Partitioning the graph for all 

kinds of graph processing algorithms is a hard problem [17]. Distributed systems also require 

good care on part of cluster management and fault tolerance.  

To solve these problems, GraphChi [18] have been proposed recently. GraphChi processes 

very large graphs on a single PC by using an asynchronous model, based on vertex-centric 

approach. GraphChi has introduced a novel processing model, Parallel Sliding Window 

(PSW) that processes the graph in execution intervals. Every execution interval consists of 

three steps 1) load a subgraph of the given large graph into memory; 2) process the subgraph 

and update the graph by modifying the vertices and edges; and 3) write the updated parts of 

the graph back to the disk. GraphChi significantly outperforms the distributed processing 

systems [14, 15] on per node basis. 

We observe PSW inherits two serious bottlenecks. First, PSW divides the graph into 

several chunks, in a way that every chunk can fit into the memory. In every execution 

interval, PSW needs to read from all the chunks of the graph, incurring a non-sequential I/O 

for each of them. For a very large graph, divided into a big number of chunks, the number of 

non-sequential I/Os is significantly high. Second, following the vertex-centric approach, 

GraphChi needs to process all the vertices of a subgraph in parallel. Since GraphChi 

maintains only one copy of the edges, every edge can be accessed by both of its endpoint 

vertices. If both the endpoints of an edge are in the same interval, they cannot be processed in 

parallel, as they might access the common edge at the same time, leading to a race condition. 

In order to avoid the race conditions, GraphChi marks the common edges as critical and 

processes their source and destination vertices sequentially. If the graph is dense and all the 

edges have both endpoints in the same subgraph, all the vertices will have to be processed 

sequentially without any parallelism. 

We propose a disk-based graph processing engine named BiShard Parallel Processor 

(BSPP) with an asynchronous model of computation to process billion-scale graphs on a 

single PC. We introduce a new processing model BiShard Parallel (BSP) based on vertex-

centric approach. BSP is implemented on top of a new storage structure called BiShard (BS). 

BS divides the graph into several subgraphs. For every subgraph, it manages the in and out 

edges separately, which allows to load a subgraph with only two non-sequential reads. This 

storage structure manages two copies of every edge (one is each direction). This setting 

allows every vertex to have its own copy of the edges, and ensures full parallel processing of 

the vertices. BSP processes the graph one interval at a time; on its turn, an interval is loaded, 

processed and written back to disk. Our contributions are as follows: 

1. A new I/O efficient storage mechanism that reduces the cost of non-sequential I/Os 

significantly. 

2. A new processing model that exploits full CPU parallelism 

3. Extensive experiments on real large graphs to show that our solution significantly 

outperforms state-of-the-art. 

BSPP requires more disk space as compared to GraphChi, as it manages two copies of 

every edge. However, we believe that secondary storage is not expensive and billion-scale 

graphs can be stored in few gigabytes of disk space. 

Rest of this paper is organized as follows. Section 2 reviews related works. Section 3 

describes preliminaries. Section 4 lists the core idea of the paper in details. Section 5 
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discusses experimental settings, results and comparison with state-of-the-art. Finally Section 

6 summarizes and concludes the paper. 

 

2. Related Work 

BiShard Parallel focuses on three most related areas: I/O efficient storage techniques, 

asynchronous vertex-centric model and big data processing on a single machine. 

Graph databases [22, 23, 24, 25] provide mechanism for efficient storage of the graph with 

some added facilities. InfiniteGraph [23] is designed to support distribution of data over a 

cluster of nodes. DEX [22] implements some basic graph processing algorithms such as 

shortest path and connected components. Graph databases focus on storage and querying of 

graphs on disk. However, they do not provide powerful processing mechanism. 

Distributed graph processing frameworks like Pregel [13] and PowerGraph [14] processes 

the graphs by dividing and distributing them over a cluster of computer nodes. Both of them 

use a vertex-centric approach for efficient graph computations. Other authors [20, 15] have 

also observed the expressiveness of vertex-centric approach in a wide range of graph 

processing problems. Although we are not interested in distributed processing, as we intend to 

process the graph on a single machine, our point of interest in these works is vertex-centric 

approach that can be adopted in disk-based processing models. 

Pearce et al. [21] proposed an efficient disk-based technique for the graph traversal based 

on asynchronous model of computation. Graph is stored on disk in a Compressed Sparse Row 

format. Vertex values are stored in memory, leading to higher memory requirement. Tasks are 

scheduled using concurrent work queues. However, their focus is limited to the graph 

traversal and changes to the graph are not allowed. 

GraphChi [18] extended the work of Bender [26], Haveliwala [28] and Chen et al. [27] and 

proposed a mechanism that stores and process billion-scale graphs on a single consumer PC. 

GraphChi implements a novel technique for disk-based graph processing called Parallel 

Sliding Window (PSW). PSW exploits sequential I/Os and parallel computation using vertex-

centric approach to efficiently process the graph. Their results show that GraphChi out-

performs all the representative disk-based distributed systems [7, 9, 11, 14] on per node basis. 

However, experimental results also show some bottlenecks in part of parallel graph 

processing and number of disk reads for very large graphs. 

Recently, another disk-based graph processing framework TurboGraph [19] was proposed. 

TurboGraph is also designed to process very large graphs on modern consumer level PC with 

a flash drive. It implements a novel technique called Pin and Slide. TurboGraph outperforms 

GraphChi by overlapping the steps of loading, processing and writing the graph to the disk. 

TurboGraph fully exploits the parallelism of flash disk and multi-core CPU. Their results 

show that their system outperforms GraphChi by order-of-magnitude. However, their solution 

exploits specific properties of the flash disks, which are not available on rotational disks. 
 

3. Preliminaries 

In this section we list the required preliminaries that help in understanding the problem and 

our proposed solution. 

 

3.1. Disk-based processing 

Here we list the constraints and challenges involved in disk based processing. In disk-

based processing the size of data that need to be processed is more than the size of available 

memory. In practice, size of the data is order of magnitude to the size of memory. In our 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 
Vol.9, No.2 (2014) 

 

 

202   Copyright ⓒ 2014 SERSC 
 

problem we assume that; 1) a graph cannot be fully loaded into memory; and 2) any single 

vertex of the graph can be loaded into memory with all its edges and their associated values. 

Consequently, graph need to be divided and processed in chunks. However, partitioning the 

graph is a hard problem, as graphs along their massive size also inherently contain structural 

information. Graph algorithms process the graphs with respect to their structure. Without 

careful partitioning, disk-based graph processing algorithms incur large number of random 

disk I/Os. 

 

3.2. Vertex-centric approach 

Pregel [13] first introduced the vertex-centric approach and established the “think-like-a-

vertex” philosophy. In vertex-centric approach user specifies an update-function that is 

executed for all the vertices of the graph in parallel. Vertices are allowed to change their own 

associated values and the associated values of their incident edges.  

Many authors [20, 15, 13, 14] observed that vertex-centric approach is an efficient way to 

solve a wide range of graph processing problems. This approach is mostly implemented by 

two type of frameworks namely, synchronous and asynchronous frameworks.  

Synchronous implementations are mostly based on Bulk Synchronous Parallel [29] and 

Message Passing Interface [30].These implementations perform computations in a number of 

iterations. Synchronous model incurs an expensive synchronization step after each iteration. 

On the other hand, asynchronous frameworks do not require any synchronization step. 

Changes are made to the graph directly and the subsequent iterations can access the latest 

updated graph. Our work is based on asynchronous implementation of vertex-centric 

approach. 

 

3.3. Parallel Sliding Window 

GraphChi proposed Parallel Sliding Window (PSW) for efficient processing of very large 

graphs with mutable edges on a single PC. PSW is based on asynchronous implementation of 

vertex-centric approach. PSW divides the input graph into chunks. Computation is performed 

in execution intervals. In every execution interval a subgraph of a very large input graph is 

loaded into memory. In order to load a subgraph into the memory, the engine needs to read 

from all the chunks of the graph. Loaded subgraph is then processed by executing update-

function for all the vertices in parallel. Finally, after computation, the updated parts of the 

graph are written back to the disk. 

 4. BiShard Parallel Processor 

This section describes our proposed solution BiShard Parallel Processor (BSPP). BSPP is 

an asynchronous disk-based framework for processing very large graphs on a single PC. First 

we define the notions used in our proposed system in Section 4.1. In Section 4.2 we introduce 

an efficient storage mechanism named BiShard. We propose a novel graph processing model 

called BiShard Parallel (BSP) in Section 4.3. Then in Section 4.4 we analyze the I/Os cost of 

the proposed engine. 

 

4.1. Notions 

Here we formally define the notions used in our proposed system. 

Definition 1. Interval Given a graph   with a set of vertices  , an interval   is a subset 

of the set of all vertices   i.e.     
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Definition 2. In-Shard Given an interval   an in-shard( ) is a subset of set of all 

edges  . Such that every edge     (     )   in-shard( ) has its destination endpoint in 

interval   i.e.       

Definition 3. Out-Shard Given an interval   an out-shard( ) is a subset of set of all 

edges  . Such that every edge     (     )   out-shard( ) has its source endpoint in 

interval   i.e.       

Definition 4. Vertex Value Given a graph   with a set of vertices  , a vertex value 

   is a user defined value associated with every vertex    . Vertex values can be 

provided along the input graph and can also be computed by a graph processing 

algorithm. 

Definition 5. Edge Value Given a graph   with a set of directed edges  , an edge 

value    is a user defined value associated with every edge    . Edge values can be 

provided along the input graph and can also be computed by a graph processing 

algorithm. 

 

Figure 1. Graph G divided into 3 intervals. Each associated with a couple of 
shards. One each for in and out-edges of the interval vertices. 

 

4.2. BiShard storage structure 

We now introduce a new graph storage structure BiShard (BS). Given a weighted 

directed graph   with a set of vertices   and a set of edges  . A vertex value    is 

associated with every vertex     and an edge value    is associated with every edge 

    (   )                i.e.     (       ). For a directed edge     (   ), we 

refer   as in-edge of the vertex   and out-edge of the vertex     
Given graph  , BiShard divides the graph into   intervals. Intervals are created such that 

number of edges across all the intervals is roughly equal. Number of intervals   is defined 

such that all the edges of any one interval      can be loaded into the memory. Every 

interval   is associated with a couple of shards, in-shard(p) and out-shard(p) containing all 

the incident edges of the interval vertices sorted by the source vertex id. Figure 1 shows an 

example of how a graph is divided into intervals and how their edges are stored in the 

corresponding in and out shards. 
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BiShard has two advantages over the single shard storage structure introduced by the 

GraphChi. One, by maintaining in and out edges separately, we make it easier to access them 

separately and the engine does not need to read from all the shards for every interval. Two, as 

we maintain two copies of every edge one in each direction, this setting allows every vertex 

to access its edges without any race condition.   

 

 

Figure 2. Visualization of full graph processing in three execution intervals. In 
every execution interval, the in and out-shards(in dark color) of that particular 
interval are loaded into memory. The blocks which are written back to all the 

in-shards are shown as windows on top of every in-shard 
 

4.3. BiShard Parallel (BSP) processing model 

In this section we describe a new processing model BiShard Parallel (BSP) in detail. BSP 

processes the graph one interval at a time. Execution of an interval consists of three steps: 1) 

load a subgraph of the given input graph from disk; 2) perform computation on the subgraph 

and modify the vertex and edge values; and 3) write the updated vertices and edges values 

back to the disk. Algorithm 1 lists the pseudo-code for the main execution of BSP. 

4.3.1. Subgraph loading: In order to process the vertices of an interval  , first we need to 

read all its edges along their values from the disk. We load the in-edges from the in-shard(p) 

and the out-edges from the out-shard(p) and construct the interval subgraph by assigning the 

edges to their respective vertices. As edges are sorted by source id in both in and out-shards, 

the edges for each vertex are stored in consecutive chunks in both in and out shards. BSP 

required only 2 non-sequential disk reads to fully process an interval subgraph, irrespective of 

the total number of the intervals  . Algorithm 2 provides the pseudo-code for loading and 

constructing interval subgraph. 

 

Algorithm 1. BiShard Parallel main execution 

 

Algorithm 1 BiShard Parallel (BSP) 

1: for                  do   

2:       /* Load subgraph for interval, using Alg. 2. */ 

3:                                                   (        ) 

4:           parallel for each                           do 

5:            /* Execute user-defined update function, for each vertex in parallel */ 

8:                               (      ) 

6:           end 

 7:  /* Persist updated out-edges to disk, using Alg. 3. */ 

8:                     (                ) 

9: end 
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Algorithm 2. Loading interval subgraph 

Algorithm 2                     ( ) 

Input : Interval index number   

Global:               

Output: Subgraph of vertices in the interval   

1:  /* Initialization */ 

2:                             

3:                           

4:                                  (   ) 

5:  /* Load the in-edges */ 

6:                                 () 

7:  foreach            do 

8:  /* Note: edge values are stored as pointers. */ 

9:                               (               ) 

10: end 

11: /* Load the in-edges */ 

12:                                  () 

13: /* Initialize in-shard blocks */ 

14:                                       ( )  

15: foreach              do 

16:                                 (      )                ( ) 

17:                            (             ) 

18: end 

19: return G 

 

4.3.2. In-memory processing: We follow vertex-centric approach for processing the 

interval vertices. After the subgraph is completely loaded into memory, we run user defined 

update-function for all the vertices in parallel. As BSP manages two copies of every edge 

(one in each direction), every vertex has its own copy of the edges. This storage technique 

naturally eliminates race conditions, as there are no two vertices sharing a single copy of the 

edge. We utilize full CPU parallelism by eliminating the race conditions for accessing the 

edges. During processing, depending upon the computation of the update function vertices 

may modify their own values and the values of their incident out-edges.  

For data manipulation, we follow the practice of GraphChi and keep the loaded edge 

values in form of blocks inside the memory, edges are referenced as pointers to the blocks. 

When values of the edges are modified, changes are made directly to the blocks using 

pointers. Algorithm 4 defines an example update-function that computes PageRank of an 

input graph.  

Algorithm 3. Persisting updates to disk 

Algorithm 3                     () 

Global:                  ,                  

1: for                     do   

2:       /* Keep track of the offset for subsequent intervals */ 

3:                                                      

                                       () 
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4:  /* Write to in-shard at given offset */ 

5:              (                             

                                        ) 

6:  /* Update offset */ 

7:                                        

8: end 

 

Algorithm 4. Example update-function 

Algorithm 3                (      ) 

1:  var sum 0 

2:  for                    () do 

3:  sum +=                                       

4:                 (                 ) 

5:  for                     () do 

6:                                    () 

7:  end 

 

4.3.3. Persisting updates: BSP follows asynchronous model of computation. In this 

computation model updates to the original data are made available immediately for any 

subsequent processing. We follow asynchronous model of computation as it has proved to be 

more efficient than the synchronous model as observed by GraphChi and others [15, 35].  

As every edge can be accessed by both of its endpoints, out-edge values updated while 

processing one interval may need to be accessed as in-edge values while processing another 

interval. Following asynchronous model, the updated edge values must be written back to the 

disk immediately in order to be available to any subsequent execution intervals.  

Earlier, while loading the subgraph, we create blocks for all the in-shards inside the 

memory. We divide and distribute the loaded out-edges to these blocks, in the same order as 

they are stored in the in-shards. During on full iteration over the graph, we manage the offsets 

of the in-shards where the updated values need to be written. In each execution interval we 

commit non-sequential disk writes proportional to the number of intervals. Figure 2 shows a 

high level visualization of the reading and writing process in a full iteration over the graph. 

Algorithm 3 lists the pseudo-code that defines the process of persisting the updates to disk. 

 

4.4. I/Os cost analysis  

For the sake of meaningful comparisons we use the same I/O analysis model of Aggarwal 

and Vitter [31] as used by GraphChi. In this model, cost of an algorithm is the amount of data 

block transfers from disk to memory. If   is the size of the data block (stated in the unit of 

edge object), then the amount of data block transfers can be calculated by dividing total 

amount of data transfer by  . For the ease of computation, we assume     is a multiple of   

and number of edges in each interval     ⁄  are equal.  

During one full pass over the graph, an edge is read exactly twice from the disk once in 

each direction. The numbers of disk writes are exactly half of the number of read, as we only 

write out-edges back to the disk. The number of reads and writes remains same irrespective of 

the number of inter-interval edges. At common (worst) case we add the number of seeks to 

the total number of block transfers. In every execution interval our solution requires exactly 2 

non-sequential seeks to load edges from in and out-shards. Thus, disk seeks for one full pass 
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over the graph as a rough cost of  (  ). Assuming that every interval can be loaded into 

memory with all its vertices and edges, the I/O cost of our solution   ( ) can be stated as  

    

 
     ( )      

    

 
   (  ) 

Note our best case I/Os cost is significantly higher than that of GraphChi. However, at best 

case, GraphChi assumes all the edges have both the endpoints inside the same interval. This 

implies that all the vertices will be processed sequentially with no parallelism. 

5. Experimental Evaluation 

We evaluate our engine by executing graph processing algorithms over large real graphs. 

We then compare our results with the state-of-the-art to show the significance of our proposed 

solution. 

 

5.1. Experiments setup 

Experiments were performed on a compatible server with 12 3.3GHz  Intel Core i7-3960X 

processors, 36GB of installed main memory and a 1TB 7200rpm hard drive. We ran 

Microsoft Windows 7 64-bit with default settings. File system caching was disabled to get 

meaningful comparisons between small and large input files. 

We used three real graph datasets for our experiments, LiveJournal [33], Pokec [32] and 

twitter-2010 [34]. Some statistics of these datasets are listed in Table 1. 

 

Table 1. Description of datasets 

Dataset No. of vertices No. of Edges Description 

LiveJournal 4,847,571 68,993,773 LiveJournal online social network 

Pokec 1,632,803 30,622,564 Pokec online social network 

twitter-2010 41,652,230 1,468,365,182 Twitter online social network 

 

5.2. Page rank algorithm 

The purpose of this experiment is to evaluate the performance of BSPP and to perform 

comparison with the GraphChi. Page rank algorithm is a good choice for this purpose as it 

scans through the entire graph and access all the in and out edges of the graph. In order to 

measure the effectiveness of our proposed framework we performed following experiments  

1) Comparison of execution time with varying number of intervals 

2) Comparison of execution time with varying number of CPU threads   

 

5.2.1. Varying the number of intervals: We repeat the experiment with increasing number 

of intervals. This setting allows us to measure the relationship between the number of graph 

chunk and the performance of the engines. We keep the number of threads fixed to 6 for 

LiveJournal and Pokec datasets and 8 for Twitter 2010 dataset to eliminate the impact of 

increasing number of threads. 

 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 
Vol.9, No.2 (2014) 

 

 

208   Copyright ⓒ 2014 SERSC 
 

  

Figure 4.Graphical depiction of the performance of BSPP and GraphChi with 
varying number of intervals. 

 

We notice that BSPP outperforms GraphChi at all variations of the number of intervals. 

Initially, when the number of intervals is small, the number of edges having both endpoints in 

same interval is high; this hinders GraphChi from full parallel processing of the subgraphs. 

BSPP handles this situation better by fully utilizing the available CPU threads. For increasing 

number of intervals, the performance of GraphChi shows small improvements as the number 

of inter-interval edges decreases but at the same time the number of random I/Os increases. 

On the other hand, the performance of BSPP becomes roughly consistent, proving its 

independence from the number of intervals. The results also show that BSPP struggles with 

the large size intervals and the performance margin is relatively smaller for larger intervals. 

 

5.2.2. Varying the number of threads: We repeat the experiment with increasing number of 

CPU threads. This setting enables us to note how BSPP and GraphChi utilize the parallelism 

of available threads. We keep the number of intervals fixed to 10 for LiveJournal and Pokec 

datasets and to 100 for Twitter 2010 dataset to keep the number of inter-intervals edges 

constant. 

 

 

Figure 4. Graphical depiction of BSPP and GraphChi performance with varying 
number of CPU threads 

 

We observer that BSPP utilize the parallelism of available threads efficiently and 

outperforms GraphChi by larger margins with increasing number of CPU threads. The 

performance of GraphChi remains roughly constant, which shows its lack of utilization of the 

available CPU threads.  
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6. Conclusion 

Graph specific distributed processing frameworks such as Pregel are scalable and efficient, 

but require graph partitioning and cluster management overhead. GraphChi a disk-based 

single PC graph processing engine, solves the problems observed in distributed processing 

system, but suffers from serious performance issues. In this work, we proposed a new 

processing model named BiShard Parallel (BSP). We showed by theoretical analysis that our 

solution significantly reduced the number of non-sequential I/Os incurred in GraphChi. We 

also eliminated the race conditions between the vertices to access a common edge, which 

hindered GraphChi from full parallel processing of the vertices. We further showed by 

experimental evaluation and I/Os cost analysis that our solution outperforms the current state-

of-the art. Our solution is not specific to any domain and can be applied to any graph 

processing problem that can be solved by using vertex-centric processing approach. Finally, 

we observe that a better performance can be achieved by overlapping the steps of an 

execution interval. 
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