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Abstract 

Ontology is used to annotate sensor network data and enhances its semantic, which is the 

motivation of Semantic Sensor Network (SSN). With the development of SSN, massive RDF 

datasets have been produced, so SSN is up against a big challenge now, i.e., the integration and 

application of data. In this paper, we present a Hadoop-based Semantic Sensor Network 

System (named HDSW) to achieve efficient data management for sensor data in RDF. The 

architecture of HDSW is composed of sensor network layer, persistent layer, Hadoop layer, 

function layer and UI layer. As one of the core component of HDSW, the RDF storage module 

is described in detail. The RDF storage module uploads RDF dataset to Hadoop by 

MapReduce, and stores BigRDF file by key/value mode. Then BigRDF is mapped to HBase 

table schema by using MapReduce. Finally, we evaluate HDSW system, and the experimental 

results show that it has good scalability and efficiency. 
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1. Introduction 

Sensor network has been widely used in all walks of life, which brings great convenience to 

human life. The sensor network data has the characteristic of heterogeneity, magnanimity and 

streaming, but it faces the problems of data storage and management. Now W3C has proposed 

SSN (semantic sensor network) [1] which makes use of ontology to solve data interconnection. 

With the development of sensor network, massive sensor data have been generated and cloud 

computing brings the hope for solving the problem of massive sensor data management at the 

same time. Hadoop [2] is the middleware and uses the virtualization technology of server 

deploying cloud computing platform. Therefore, we propose a system of distributed semantic 

sensor network based on Hadoop named HDSW which is to store and manage the data of 

semantic sensor network. We summarize the main contributions of this work as follows: 

 

 The architecture of HDSW is composed of sensor network layer, persistent layer, Hadoop 

layer, function layer and UI layer, and each layer plays different role in HDSW system.  

 MapReduce [3] and HBase [4] are used for massive semantic sensor data storage. 

 We implement the RDF storage module, which uploads RDF files to HDFS by 

MapReduce, and stores BigRDF file by key/value mode. Then BigRDF is mapped to 

HBase table schema by using MapReduce. 

 We do experiments for HDSW system. The results show our system has the characteristics 

of feasibility, scalability and efficiency. 
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The rest paper is organized as follows. Section 2 describes HDSW system and its 

architecture. Section 3 describes the storage module of RDF. Section 4 describes the 

experiments and results. Section 5 describes the related work. Finally, the summary of this 

paper and some possible future works are discussed in Section 6. 

 

2. HDSW System 
 

2.1. Overview of HDSW 

In order to solve the semantic sensor network distributed management, we propose HDSW 

system which mainly includes data integration and sensor data applications. We use the SSN 

ontology [5] that come from W3C Semantic Sensor Network Incubator Group, and make use 

of RDF to store sensor data. Kno.e.sis [6] has provided LOD (linked open data) [7] for 

Standardized ontology (e.g., SSN ontology) which comes from weather data at Mesowest. In 

order to implement data integration, we create a novel schema to store LOD by HBase. In brief, 

HDSW is a kind of cloud computing platform based on Hadoop that has characteristics of 

distributed system, so it works for sensor data applications. 

 

2.2. HDSW Architecture 

Figure 1 shows the architecture of HDSW，which contains sensor network layer, persistent 

layer, Hadoop layer, function layer and UI (User Interface) layer. 
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Figure 1. HDSW Architecture 
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The sensor network layer has a large number of sensor devices in the sensor network whose 

task is to collect sensor information and observation data. This layer maps heterogeneous data 

of sensor network to the form of RDF datasets by the use of SSN ontology. Because the 

Semantic Sensor Network has realized the technology of data acquisitions, this layer isn’t acted 

as our research emphasis. 

The Hadoop layer is the middleware of HDSW, including HDFS (Hadoop File System), 

MapReduce, HBase, Zookeeper, Pig, Hive, Mahout and so on. HDFS implements the 

management of distributed files on Hadoop, which mainly include the log files and data files. 

MapReduce is a kind of parallel computing model to achieve efficient data processing. HBase 

is a kind of NoSQL Database for the storage and management of massive data. Zookeeper [8] 

serves as the role of system coordinator that efficiently implements the load balance of 

distributed system. Then, this layer is built on these software tools and provides support and 

security for function layer. 

The persistent layer consists of a large number of server storage devices for storing huge 

amounts of data permanently. The data of this layer is managed and scheduled by Hadoop layer 

uniformly.  

The function layer is the core component of HDSW system, which has implemented the 

requirements of SSN. This layer consists of the RDF storage module, SPARQL query module, 

Reasoner and HDSW API (Application Programming Interface). The aim of the RDF storage 

module is to store the massive RDF dataset of SSN based on MapReduce computation model 

and HBase NoSQL Database. Since MapReduce is quite well suited for writing stencil-style 

data of parallel programs, we implement the manipulation of RDF datasets by MapReduce 

efficiently in HDSW. HBase Schema is designed to store RDF dataset logically, which is 

indeed stored in the persistent layer in the form of block eventually. SPARQL is a semantic 

query language for RDF, but it can't query HBase files directly. Therefore we create SPARQL 

query module that implements the query function of this system and use the Hadoop 

ecosystem programming tools (e.g., Pig, Hive) to implement semantic query function on 

HBase files. While the data of sensor network is real-time, we need to implement continuous 

query function for HBase in HDSW. Reasoner, which implements inference based on axioms 

or rules, can make the information from HDSW API more accurately. HDSW API provides the 

data service for UI layer, which is implemented by invoking the query module and Reasoner. 

HDSW API provides a series of standardized operations which are convenient to the 

development of specific function in application. 

The UI layer provides programs for specific areas or problems and satisfies the requirements 

by users. Users can develop application programs of distributed semantic sensor network 

system by HDSW API. 

 

2.3. HDSW Process 

The process of HDSW mainly includes data integration and data applications for SSN. The 

process of data integration for SSN is depicted in Figure 2. 

1) We collect data from the Sensor Network and store it into Sensor Data. 

2) Sensor data is transferred into RDF Data according to SSN Ontology. Then, these 

heterogeneous sensor data are unified into RDF dataset. 

3) The RDF data are mapped to HBase by RDF Storage Module. 

4) In this step, the data of HBase is stored into HDFS by the form of Hfile. 
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Figure 2. Data Integration Process 

The process of data applications for SSN is depicted in Figure 3. 

1) Users send request to the application including keywords and contents of the request. 

2) The application sends task to SPRQAL Query Module and Reasoner Module respectively. 

3) SPRQAL Query Module sends task of query to HBase Database, including continuous 

query conditions and fields. Then, Reasoner Module sends task to HBase Database. 

4) HBase makes use of HMaser/HRegion to read Hfile, including primary key, and column 

family data. 

5) HDFS gets corresponding data back to HBase Database by use of MapReduce. 

6) HBase gets query results back to the SPARQL Query Module and Reasoner Module by 

HBase API. 

7) HDSW API checks the task results from SPARQL Query Module and Reasoner Module. If 

the results are correct, just returning to the application and displaying to the user. Otherwise, 

HDSW will continue to search. 

8) Finally, the query result returns from application to end user. 
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Figure 3. Process of Data Applications 

3. RDF Storage Module 
 

3.1. Overview of the Module 

RDF storage module, which is based on MapReduce and HBase, is mainly designed for the 

storage of massive RDF data from SSN. For example, a temperature sensor device produces 

RDF data which describes spatial (e.g., Beijing city), temporal (e.g., 8:10AM GMT, 

10-05-2014) and unit (e.g., Celsius) attributes. Due to the temporal attribute of RDF data from 

SSN, it is a kind of stream data. In order to store and manage this kind of stream data, 

timestamp should be properly utilized. In addition, the design of HBase table schema and 

how to map the RDF sensor data to the HBase table are the main issues should be considered 

in RDF Storage Module.  

In this paper, we present a kind of HBase table schema to store massive RDF of SSN, and 

this schema is named as HRDF. In order to achieve the effective management and operation of 
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the RDF data, we create an index mechanism that can improve the efficiency of query [9]. 

HRDF schema contains {Row-key(S), Column Family (IP, IO, ISO, ISP, IPO), TS}, where 

Row-key represents S (subject attribute of RDF), Column Family represents P (Predicate 

attribute of RDF), O (Object attribute of RDF), SO, SP, PO and TS represents temporal 

attribute of RDF.  

MapReduce computation model is used to map stream RDF to HRDF. RDF dataset of SSN 

contains a lot of small files, while Hadoop is more suitable for processing large files than a 

large number of small files. Therefore, RDF data files are merged into BigRDF that is one 

large file storing in HDFS. MapReduce technology deals with BigRDF in the form of 

key/value, so BigRDF is stored with key/value in our work. Finally, BigRDF is mapped into 

HRDF based on MapReduce and HBase API. 

 

3.2. RDF Storage Module Process 

RDF storage module is the process of RDF mapping to HRDF. We take advantage of linked 

open data by Kno.e.sis [6] to introduce the process of storage (In this version of RDF storage 

module we use LOD dataset, and rdf dataset based on SSN ontology will be used in the next 

version). Figure 4 describes temperature observation data of System_A01 on August 9, 2004 

12:15:00. 

 

 sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00

       a       weather:TemperatureObservation ;

       om-owl:observedProperty       weather:_AirTemperature ;

       om-owl:procedure sens-obs:System_A01 ;

       om-owl:result "99.0"^^xsd:float , weather:fahrenheit .

       om-owl:samplingTime sens-obs:Instant_2004_8_9_12_15_00 .

 

Figure 4. Sample of RDF Triple 

The process of RDF storage module is depicted in Figure 5. 

1) In the phase of split, RDF data is distributed into the map function randomly. 

2) We make use of the string matching algorithm to identify stream RDF triples' properties. 

Then S of RDF is acted as the key, and P, O of RDF as the value. Map function outputs data 

in form of key/value, e.g., sens-obs: 

Observation_AirTemperature_A01_2004_8_9_12_15_00/P*1*a (where P is the 

abbreviation of the predict for a RDF statement, * is a linking identifier, 1 is an identifier 

for the relation of P and O for the same RDF triples, and the letter a is the name of the 

corresponding predict). 

3) In the phase of shuffle, MapReduce orders data by key/value pairs, and assigns the data for 

the same key to the Reduce function. 
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Figure 5. Process of RDF Storage Module 
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4) In the phase of Reduce, we receive the key/value data from shuffle and store key/value 

pairs into BigRDF by use of write function which comes from HDFS API. For example, the 

content of the BigRDF is shown in Figure 6. 

 

     Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 P*1*a

     Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 O*1*weather:TemperatureObservation

     Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 P*2*om-owl:observedProperty       

     Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 O*2*weather:_AirTemperature 

     Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 P*3*om-owl:procedure

     Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 O*3*sens-obs:System_A01

     Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 P*4*om-owl:result

     Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 O*4*"99.0"^^xsd:float

     Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 O*4*weather:fahrenheit .

     Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 P*5*om-owl:samplingTime

     Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 O*5*sens-obs:Instant_2004_8_9_12_15_00
 

Figure 6. Content of the BigRDF 

5) MapReduce splits BigRDF data into the map function. 

6) In the phase of map, we divide BigRDF into key-value pairs by tokenizer function and 

output key/value pairs to shuffle. 

7) In the phase of shuffle, MapReduce orders data by key/value pairs, and assigns the data for 

the same key to the HBaseReduce function. 

8) HBaseReduce creates HRDF connection using HBase API. Firstly we identify S, P and O 

from key/value. The variable key is the attribute of S, the variable value is the attribute of P 

and O. Secondly we identify P and O by the identifier from the key/value. If the value 

contains identifier P, we split value to array P[i] by tokenizer. P [0] is the identifier of 

attribute P, P[1] is the number for corresponding to the triple and P [2] is the value of 

attribute. We identify the timestamp attribute by temporal attribute of SSN ontology which 

stores timestamp into variable TS. Finally we store RDF attribute to HRDF by use of the 

function put (Key, P, P [0]: P [1], P [2], TS). The content of HRDF is shown in Table 1. 

9) HBase divides HRDF data into blocks automatically with the form of Hfile storing in 

HDFS. 

Table 1. Content of HRDF 

Row-key Timestam

p 

IP IO ISP ISO IPO 

sens-obs:

Observati

on_AirTe

mperature

_A01 

10920249

00 

P:1=>A O:1=>1*wea

ther:Tempera

tureObservati

on 

SP:a=>weather:

TemperatureOb

servation 

SO:weather:Tem

peratureObservati

on=>a 

PO:a*weather:Temperature

Observation=>sens-obs:Obs

ervation_AirTemperature_A

01 

10920249

00 

P:2=>O

m-owl:o

bservedP

roperty     

O:2=>weathe

r:_AirTempe

rature 

SP:Om-owl:obs

ervedProperty=

>weather:_AirT

emperature 

SO:weather:_Air

Temperature=>O

m-owl:observedP

roperty 

PO:Om-owl:observedProper

ty*weather:_AirTemperatur

e=>sens-obs:Observation_A

irTemperature_A01 
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00 

P:3=>om

-owl:resu
lt 

O:3=>"99.0"

^^xsd:float 

SP:om-owl:resu

lt=>"99.0"^^xsd
:float 
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ation_AirTemperature_A01 

...... ...... …… …… …… ….. 
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4. Performance Evaluation 
 

4.1. Experimental Approach 

Experimental Dataset: Kno.e.sis has already provided massive RDF datasets of SSN [6, 7]. 

Datasets for sensors and sensor observations come from weather data at Mesowest. It contains 

descriptions of 20,000 weather stations and 160 million observations. The size of dataset is 1.7 

billion triples. 

Cluster Configuration: Our experimental equipment is cluster of 5 VM containers on a 

Dell PowerEdge R710 (Intel Xeon 5620*2, 16G ECC DDR3, 4*146G disks). Each container 

has 2-core CPU, 2G of RAM, 80G of storage space based on VM workstation 7.0. The cluster 

for our evaluation consists of a variable number of VM (2 to 5) in the role of the HDFS, 

MapReduce and HBase. Each VM runs 3 mappers and 3 reducers consuming 256MB of RAM. 

We use Hadoop 0.20.02 and HBase 0.92.03 respectively. 

Experimental Task：SQL1 is the statement of query the entire table. S is the query condition 

of SQL2. P is the query condition of SQL3. O is the query condition of SQL4. S and P are query 

conditions of SQL5. S and O are query conditions of SQL6. S, P and O are query conditions of 

SQL7. Each task performs 6 times and eventually we take the average time of task as the final 

result for this experiment. 

 

4.2. Experiment I 

This experiment contains 10 million triples. We run 7 tasks on the different numbers of VM 

cluster and record the time of each task. Experiment result is shown in Figure 7. Firstly the time 

of SQL2, SQL5, SQL6 and SQL7 is under 1 second in Figure 7(a). The time of SQL1, SQL3, 

SQL4 are 383-400 seconds, 50 to 60 seconds, between 40 and 50 seconds respectively in 

Figure 7(b). The reason is that when the quantity of task results is small, the processing 

efficiency of HDSW is much higher. Otherwise it spends more time to scan entire table and 

display the query results. Secondly as the number of cluster nodes increasing, query time of 

each task decreases. The reason is that when the number of cluster nodes increasing, the 

parallel processing ability of Hadoop is much stronger. Therefore the system processing 

efficiency of the query task improves gradually. This experiment shows that HDSW has higher 

ability for parallel processing and scalability. 

 

 
(a) Result of SQL2, SQL5, SQL6, SQL7 
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(b) Result of SQL1, SQL3, SQL4 

Figure 7. Result for Experiment I 

4.3. Experiment II 

Experiment runs on cluster of 5 VMs. Each number of dataset is 100 thousand triples, 1 

million triples, 10 million triples and 100 million triples respectively. We run 7 tasks on the 

different numbers of dataset and record the time of each task. The experimental results are 

shown in Figure 8. Firstly with the numbers of dataset increasing, the query time of SQL2, 

SQL5, SQL6 and SQL7 is under 1 second and rises slightly in Figure 8(a). Secondly with the 

numbers of dataset increasing, the query time of SQL3, SQL4 is between 20 to 60 seconds and 

increases only a little in Figure 8(b). Thirdly with the numbers of dataset increasing, the query 

time of SQL1 raises remarkably in Figure 8(c). The reason is that the program makes use of I/O 

for the displaying of query results, and with the number of dataset increasing, the query time 

rises remarkably. This experiment shows that storage and access ability of HDSW is extensible 

and the system of HDSW is feasible. 

 

 
(a) Result of SQL2, SQL5, SQL6, SQL7 
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(b) Result of SQL3, SQL4 

 
(c) Result of SQL1 

Figure 8. Result for Experiment II 

5. Related Work 

The focus of HDSW is storage and integration for semantic sensor data. W3C Semantic 

Sensor Network Incubator Group has developed the SSN ontology which describes the sensor, 

observation and related concepts. In the meanwhile, some methods of RDF distributed storage 

and query has emerged. For example, Amazon provides a method of storage called Simple DB 

by the form of key/value on the foundation of AWS (Amazon Web Services). Simple DB has 

presented multiple index methods that improve the query efficiency of RDF datasets [10]. 

RDF Storage methods can be divided into two categories which are unstructured file storage 

and structured database storage. The first method uses distributed log files and establishes 

index files to store massive RDF data in the distributed system. The second method uses 

distributed database to create index files which can store and organize massive RDF data. 

The method of unstructured file storage is mainly based on file in HDFS indexes that stores 

the RDF index files and datasets. It uses the HDFS API to query the index file, for example 

HadoopRDF [11] and H2RDF [12]. HadoopRDF [11] stores datasets to Hadoop in the form of 

n-triples, which creates index files based on predicate of triples. This method adopts the 

mechanism of greedy algorithm, which takes advantage of MapReduce implementing semantic 

query. This type of methods stores RDF in system by the form of triple, thus it only suits for the 

query of indexed attribute. H2RDF [12] uses MapReduce technology to design the storage and 

query algorithm for RDF based on cloud computing. This method stores RDF file in Hadoop 

system and uses HBase to establish 6 indexes model (S_PO P_SO, P_OS, O_PS, O_S and 
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S_OP). For example, P_OS is defined as <P, Count, Average> where P is the attribute of 

predicate, Count is the number of related subjects, and Average is the number of related objects. 

H2RDF combines hybrid indexing mechanism with hash algorithm implementing the mixed 

SPARQL query. This type of methods stores every RDF triple into a block file. If the size of 

block is set too huge, storage space isn't able to be fully taken advantage of. 

The storage method based on database can be divided into two types. One is based on 

relational database storage, e.g., the method of storing RDF by MySQL [13, 14]. The other one 

is based on the NoSQL database storage, e.g., Jena-HBase [15]. The MySQL-based method 

[13, 14] combines Hadoop with the database MySQL to implement the storage of RDF dataset. 

R2RML is used to maps subject, predicate and object to primary key, the column of predicate 

and the column of object respectively. Although this type of methods have implemented the 

storage of RDF, it is hard to realize the query of semantics. Jena-HBase [15] uses Jena SDB to 

store and query RDF triples in HBase database. Jena-HBase combines hybrid indexing 

mechanism (e.g., vertical index, horizontal index and hash index) to implement the storage of 

RDF. It uses the Jena framework and index mechanism to accomplish SPARQL query rapidly. 

This type of methods [16] can achieve extensible storage and efficient query. 

The above methods provide some ways to store RDF data on Hadoop platform，but they 

don't specially designed for RDF data of SSN. In order to implement the semantic sensor 

network distributed management, we present HDSW system which mainly includes data 

integration and sensor data applications. The RDF data of SSN is stream data, so we utilize 

timestamp in HBase database to store the time of RDF data. Through the establishment of 

reasonable HBase data schema saves a lot of space for RDF storage and makes data query more 

convenient. We have realized the RDF data mapping to HBase by parallel processing of 

MapReduce technology. 

 

6. Conclusions and Future Work 

HDSW is designed for the storage and query for massive data of semantic sensor network 

based on Hadoop. The architecture of HDSW consists of sensor network layer, persistent layer, 

Hadoop layer, function layer and UI layer. The RDF storage module of function layer is 

detailed in this paper, and it store RDF file to HBase by using MapReduce. Experimental 

results have shown that our system has good scalability and efficiency. 

In the future, we will explore the following areas of research. Firstly we will design semantic 

query module and API for HDSW efficiently so that we can employ our system in practical. 

Secondly we will extend our experimental evaluation with other query benchmarks, and 

HDSW will be compared with Jena-HBase, H2RDF etc. Additionally, we will also develop 

search engine for SSN applications. 
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