
International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014), pp. 61-72

http://dx.doi.org/10.14257/ijmue.2014.9.12.06

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2014 SERSC

HDSW: Semantic Sensor Network System Based on Hadoop

Dongfeng Wang, Xiaoming Zhang
*
 and Hongbin Gao

School of Information Science and Engineering, Hebei University of Science and

Technology, Shijiazhuang, 050018

wangdongfenghb@gmail.com, zxm1975@gmail.com, gao_hb@hebust.edu.cn
1

Abstract

Ontology is used to annotate sensor network data and enhances its semantic, which is the

motivation of Semantic Sensor Network (SSN). With the development of SSN, massive RDF

datasets have been produced, so SSN is up against a big challenge now, i.e., the integration and

application of data. In this paper, we present a Hadoop-based Semantic Sensor Network

System (named HDSW) to achieve efficient data management for sensor data in RDF. The

architecture of HDSW is composed of sensor network layer, persistent layer, Hadoop layer,

function layer and UI layer. As one of the core component of HDSW, the RDF storage module

is described in detail. The RDF storage module uploads RDF dataset to Hadoop by

MapReduce, and stores BigRDF file by key/value mode. Then BigRDF is mapped to HBase

table schema by using MapReduce. Finally, we evaluate HDSW system, and the experimental

results show that it has good scalability and efficiency.

Keywords: Semantic Sensor Network, Hadoop, HBase, RDF, Cloud Computing

1. Introduction

Sensor network has been widely used in all walks of life, which brings great convenience to

human life. The sensor network data has the characteristic of heterogeneity, magnanimity and

streaming, but it faces the problems of data storage and management. Now W3C has proposed

SSN (semantic sensor network) [1] which makes use of ontology to solve data interconnection.

With the development of sensor network, massive sensor data have been generated and cloud

computing brings the hope for solving the problem of massive sensor data management at the

same time. Hadoop [2] is the middleware and uses the virtualization technology of server

deploying cloud computing platform. Therefore, we propose a system of distributed semantic

sensor network based on Hadoop named HDSW which is to store and manage the data of

semantic sensor network. We summarize the main contributions of this work as follows:

 The architecture of HDSW is composed of sensor network layer, persistent layer, Hadoop

layer, function layer and UI layer, and each layer plays different role in HDSW system.

 MapReduce [3] and HBase [4] are used for massive semantic sensor data storage.

 We implement the RDF storage module, which uploads RDF files to HDFS by

MapReduce, and stores BigRDF file by key/value mode. Then BigRDF is mapped to

HBase table schema by using MapReduce.

 We do experiments for HDSW system. The results show our system has the characteristics

of feasibility, scalability and efficiency.

1
 *Corresponding Author

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

mailto:wangdongfenghb@gmail.com

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

62 Copyright ⓒ 2014 SERSC

The rest paper is organized as follows. Section 2 describes HDSW system and its

architecture. Section 3 describes the storage module of RDF. Section 4 describes the

experiments and results. Section 5 describes the related work. Finally, the summary of this

paper and some possible future works are discussed in Section 6.

2. HDSW System

2.1. Overview of HDSW

In order to solve the semantic sensor network distributed management, we propose HDSW

system which mainly includes data integration and sensor data applications. We use the SSN

ontology [5] that come from W3C Semantic Sensor Network Incubator Group, and make use

of RDF to store sensor data. Kno.e.sis [6] has provided LOD (linked open data) [7] for

Standardized ontology (e.g., SSN ontology) which comes from weather data at Mesowest. In

order to implement data integration, we create a novel schema to store LOD by HBase. In brief,

HDSW is a kind of cloud computing platform based on Hadoop that has characteristics of

distributed system, so it works for sensor data applications.

2.2. HDSW Architecture

Figure 1 shows the architecture of HDSW，which contains sensor network layer, persistent

layer, Hadoop layer, function layer and UI (User Interface) layer.

Sensor Network Layer

Wireless Sensor
Network

Mobile Sensor

Network

Sensor Network

Database

Persistent Layer

Hadoop Layer

HDFS MapReduce HBase Zookeeper ……

Function Layer

UI Layer

RDF Storage

Module

SPARQL Query

Module

Reasoner

Module

API

Application Application Application Application

Sensor Data

Upload

API Apply

Module Integrate

Data Store Data Query

Data

Read/Writer

Figure 1. HDSW Architecture

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

Copyright ⓒ 2014 SERSC 63

The sensor network layer has a large number of sensor devices in the sensor network whose

task is to collect sensor information and observation data. This layer maps heterogeneous data

of sensor network to the form of RDF datasets by the use of SSN ontology. Because the

Semantic Sensor Network has realized the technology of data acquisitions, this layer isn’t acted

as our research emphasis.

The Hadoop layer is the middleware of HDSW, including HDFS (Hadoop File System),

MapReduce, HBase, Zookeeper, Pig, Hive, Mahout and so on. HDFS implements the

management of distributed files on Hadoop, which mainly include the log files and data files.

MapReduce is a kind of parallel computing model to achieve efficient data processing. HBase

is a kind of NoSQL Database for the storage and management of massive data. Zookeeper [8]

serves as the role of system coordinator that efficiently implements the load balance of

distributed system. Then, this layer is built on these software tools and provides support and

security for function layer.

The persistent layer consists of a large number of server storage devices for storing huge

amounts of data permanently. The data of this layer is managed and scheduled by Hadoop layer

uniformly.

The function layer is the core component of HDSW system, which has implemented the

requirements of SSN. This layer consists of the RDF storage module, SPARQL query module,

Reasoner and HDSW API (Application Programming Interface). The aim of the RDF storage

module is to store the massive RDF dataset of SSN based on MapReduce computation model

and HBase NoSQL Database. Since MapReduce is quite well suited for writing stencil-style

data of parallel programs, we implement the manipulation of RDF datasets by MapReduce

efficiently in HDSW. HBase Schema is designed to store RDF dataset logically, which is

indeed stored in the persistent layer in the form of block eventually. SPARQL is a semantic

query language for RDF, but it can't query HBase files directly. Therefore we create SPARQL

query module that implements the query function of this system and use the Hadoop

ecosystem programming tools (e.g., Pig, Hive) to implement semantic query function on

HBase files. While the data of sensor network is real-time, we need to implement continuous

query function for HBase in HDSW. Reasoner, which implements inference based on axioms

or rules, can make the information from HDSW API more accurately. HDSW API provides the

data service for UI layer, which is implemented by invoking the query module and Reasoner.

HDSW API provides a series of standardized operations which are convenient to the

development of specific function in application.

The UI layer provides programs for specific areas or problems and satisfies the requirements

by users. Users can develop application programs of distributed semantic sensor network

system by HDSW API.

2.3. HDSW Process

The process of HDSW mainly includes data integration and data applications for SSN. The

process of data integration for SSN is depicted in Figure 2.

1) We collect data from the Sensor Network and store it into Sensor Data.

2) Sensor data is transferred into RDF Data according to SSN Ontology. Then, these

heterogeneous sensor data are unified into RDF dataset.

3) The RDF data are mapped to HBase by RDF Storage Module.

4) In this step, the data of HBase is stored into HDFS by the form of Hfile.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

64 Copyright ⓒ 2014 SERSC

Sensor Data RDF Data

HBaseHDFS Hfile

②Sensor data

Map to RDF by

SSN Ontology

③RDF Map to

HBase

④Data Store

Sensor Network

①Data Collect
RDF Storage

Module

Figure 2. Data Integration Process

The process of data applications for SSN is depicted in Figure 3.

1) Users send request to the application including keywords and contents of the request.

2) The application sends task to SPRQAL Query Module and Reasoner Module respectively.

3) SPRQAL Query Module sends task of query to HBase Database, including continuous

query conditions and fields. Then, Reasoner Module sends task to HBase Database.

4) HBase makes use of HMaser/HRegion to read Hfile, including primary key, and column

family data.

5) HDFS gets corresponding data back to HBase Database by use of MapReduce.

6) HBase gets query results back to the SPARQL Query Module and Reasoner Module by

HBase API.

7) HDSW API checks the task results from SPARQL Query Module and Reasoner Module. If

the results are correct, just returning to the application and displaying to the user. Otherwise,

HDSW will continue to search.

8) Finally, the query result returns from application to end user.

User

Application

SPRQAL

Query Module

Reasoner

Module

HBase HDFS Hfile

①Send Request

②Send Task

②Send Task

③Send Query

③Send Task

④Read Data

⑤Return Data⑥Return Query Result⑦Return Task Result

⑥Return Query Result⑦Return Task Result

⑧Show Result

Figure 3. Process of Data Applications

3. RDF Storage Module

3.1. Overview of the Module

RDF storage module, which is based on MapReduce and HBase, is mainly designed for the

storage of massive RDF data from SSN. For example, a temperature sensor device produces

RDF data which describes spatial (e.g., Beijing city), temporal (e.g., 8:10AM GMT,

10-05-2014) and unit (e.g., Celsius) attributes. Due to the temporal attribute of RDF data from

SSN, it is a kind of stream data. In order to store and manage this kind of stream data,

timestamp should be properly utilized. In addition, the design of HBase table schema and

how to map the RDF sensor data to the HBase table are the main issues should be considered

in RDF Storage Module.

In this paper, we present a kind of HBase table schema to store massive RDF of SSN, and

this schema is named as HRDF. In order to achieve the effective management and operation of

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

Copyright ⓒ 2014 SERSC 65

the RDF data, we create an index mechanism that can improve the efficiency of query [9].

HRDF schema contains {Row-key(S), Column Family (IP, IO, ISO, ISP, IPO), TS}, where

Row-key represents S (subject attribute of RDF), Column Family represents P (Predicate

attribute of RDF), O (Object attribute of RDF), SO, SP, PO and TS represents temporal

attribute of RDF.

MapReduce computation model is used to map stream RDF to HRDF. RDF dataset of SSN

contains a lot of small files, while Hadoop is more suitable for processing large files than a

large number of small files. Therefore, RDF data files are merged into BigRDF that is one

large file storing in HDFS. MapReduce technology deals with BigRDF in the form of

key/value, so BigRDF is stored with key/value in our work. Finally, BigRDF is mapped into

HRDF based on MapReduce and HBase API.

3.2. RDF Storage Module Process

RDF storage module is the process of RDF mapping to HRDF. We take advantage of linked

open data by Kno.e.sis [6] to introduce the process of storage (In this version of RDF storage

module we use LOD dataset, and rdf dataset based on SSN ontology will be used in the next

version). Figure 4 describes temperature observation data of System_A01 on August 9, 2004

12:15:00.

 sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00

 a weather:TemperatureObservation ;

 om-owl:observedProperty weather:_AirTemperature ;

 om-owl:procedure sens-obs:System_A01 ;

 om-owl:result "99.0"^^xsd:float , weather:fahrenheit .

 om-owl:samplingTime sens-obs:Instant_2004_8_9_12_15_00 .

Figure 4. Sample of RDF Triple

The process of RDF storage module is depicted in Figure 5.

1) In the phase of split, RDF data is distributed into the map function randomly.

2) We make use of the string matching algorithm to identify stream RDF triples' properties.

Then S of RDF is acted as the key, and P, O of RDF as the value. Map function outputs data

in form of key/value, e.g., sens-obs:

Observation_AirTemperature_A01_2004_8_9_12_15_00/P*1*a (where P is the

abbreviation of the predict for a RDF statement, * is a linking identifier, 1 is an identifier

for the relation of P and O for the same RDF triples, and the letter a is the name of the

corresponding predict).

3) In the phase of shuffle, MapReduce orders data by key/value pairs, and assigns the data for

the same key to the Reduce function.

RDF

Map

Map

Map

Reduce

Reduce

BigRDF

Map

Map

Map

Reduce

Reduce

HBase

Split Shuffle Write Split Shuffle Write

Figure 5. Process of RDF Storage Module

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

66 Copyright ⓒ 2014 SERSC

4) In the phase of Reduce, we receive the key/value data from shuffle and store key/value

pairs into BigRDF by use of write function which comes from HDFS API. For example, the

content of the BigRDF is shown in Figure 6.

 Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 P*1*a

 Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 O*1*weather:TemperatureObservation

 Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 P*2*om-owl:observedProperty

 Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 O*2*weather:_AirTemperature

 Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 P*3*om-owl:procedure

 Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 O*3*sens-obs:System_A01

 Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 P*4*om-owl:result

 Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 O*4*"99.0"^^xsd:float

 Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 O*4*weather:fahrenheit .

 Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 P*5*om-owl:samplingTime

 Sens-obs:Observation_AirTemperature_A01_2004_8_9_12_15_00 O*5*sens-obs:Instant_2004_8_9_12_15_00

Figure 6. Content of the BigRDF

5) MapReduce splits BigRDF data into the map function.

6) In the phase of map, we divide BigRDF into key-value pairs by tokenizer function and

output key/value pairs to shuffle.

7) In the phase of shuffle, MapReduce orders data by key/value pairs, and assigns the data for

the same key to the HBaseReduce function.

8) HBaseReduce creates HRDF connection using HBase API. Firstly we identify S, P and O

from key/value. The variable key is the attribute of S, the variable value is the attribute of P

and O. Secondly we identify P and O by the identifier from the key/value. If the value

contains identifier P, we split value to array P[i] by tokenizer. P [0] is the identifier of

attribute P, P[1] is the number for corresponding to the triple and P [2] is the value of

attribute. We identify the timestamp attribute by temporal attribute of SSN ontology which

stores timestamp into variable TS. Finally we store RDF attribute to HRDF by use of the

function put (Key, P, P [0]: P [1], P [2], TS). The content of HRDF is shown in Table 1.

9) HBase divides HRDF data into blocks automatically with the form of Hfile storing in

HDFS.

Table 1. Content of HRDF

Row-key Timestam

p

IP IO ISP ISO IPO

sens-obs:

Observati

on_AirTe

mperature

_A01

10920249

00

P:1=>A O:1=>1*wea

ther:Tempera

tureObservati

on

SP:a=>weather:

TemperatureOb

servation

SO:weather:Tem

peratureObservati

on=>a

PO:a*weather:Temperature

Observation=>sens-obs:Obs

ervation_AirTemperature_A

01

10920249

00

P:2=>O

m-owl:o

bservedP

roperty

O:2=>weathe

r:_AirTempe

rature

SP:Om-owl:obs

ervedProperty=

>weather:_AirT

emperature

SO:weather:_Air

Temperature=>O

m-owl:observedP

roperty

PO:Om-owl:observedProper

ty*weather:_AirTemperatur

e=>sens-obs:Observation_A

irTemperature_A01

10920249

00

P:3=>om

-owl:resu
lt

O:3=>"99.0"

^^xsd:float

SP:om-owl:resu

lt=>"99.0"^^xsd
:float

SO:"99.0"^^xsd:f

loat=>
om-owl:result

PO:om-owl:result*"99.0"^^

xsd:float=>sens-obs:Observ
ation_AirTemperature_A01

...... …… …… …… …..

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

Copyright ⓒ 2014 SERSC 67

4. Performance Evaluation

4.1. Experimental Approach

Experimental Dataset: Kno.e.sis has already provided massive RDF datasets of SSN [6, 7].

Datasets for sensors and sensor observations come from weather data at Mesowest. It contains

descriptions of 20,000 weather stations and 160 million observations. The size of dataset is 1.7

billion triples.

Cluster Configuration: Our experimental equipment is cluster of 5 VM containers on a

Dell PowerEdge R710 (Intel Xeon 5620*2, 16G ECC DDR3, 4*146G disks). Each container

has 2-core CPU, 2G of RAM, 80G of storage space based on VM workstation 7.0. The cluster

for our evaluation consists of a variable number of VM (2 to 5) in the role of the HDFS,

MapReduce and HBase. Each VM runs 3 mappers and 3 reducers consuming 256MB of RAM.

We use Hadoop 0.20.02 and HBase 0.92.03 respectively.

Experimental Task：SQL1 is the statement of query the entire table. S is the query condition

of SQL2. P is the query condition of SQL3. O is the query condition of SQL4. S and P are query

conditions of SQL5. S and O are query conditions of SQL6. S, P and O are query conditions of

SQL7. Each task performs 6 times and eventually we take the average time of task as the final

result for this experiment.

4.2. Experiment I

This experiment contains 10 million triples. We run 7 tasks on the different numbers of VM

cluster and record the time of each task. Experiment result is shown in Figure 7. Firstly the time

of SQL2, SQL5, SQL6 and SQL7 is under 1 second in Figure 7(a). The time of SQL1, SQL3,

SQL4 are 383-400 seconds, 50 to 60 seconds, between 40 and 50 seconds respectively in

Figure 7(b). The reason is that when the quantity of task results is small, the processing

efficiency of HDSW is much higher. Otherwise it spends more time to scan entire table and

display the query results. Secondly as the number of cluster nodes increasing, query time of

each task decreases. The reason is that when the number of cluster nodes increasing, the

parallel processing ability of Hadoop is much stronger. Therefore the system processing

efficiency of the query task improves gradually. This experiment shows that HDSW has higher

ability for parallel processing and scalability.

(a) Result of SQL2, SQL5, SQL6, SQL7

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

68 Copyright ⓒ 2014 SERSC

(b) Result of SQL1, SQL3, SQL4

Figure 7. Result for Experiment I

4.3. Experiment II

Experiment runs on cluster of 5 VMs. Each number of dataset is 100 thousand triples, 1

million triples, 10 million triples and 100 million triples respectively. We run 7 tasks on the

different numbers of dataset and record the time of each task. The experimental results are

shown in Figure 8. Firstly with the numbers of dataset increasing, the query time of SQL2,

SQL5, SQL6 and SQL7 is under 1 second and rises slightly in Figure 8(a). Secondly with the

numbers of dataset increasing, the query time of SQL3, SQL4 is between 20 to 60 seconds and

increases only a little in Figure 8(b). Thirdly with the numbers of dataset increasing, the query

time of SQL1 raises remarkably in Figure 8(c). The reason is that the program makes use of I/O

for the displaying of query results, and with the number of dataset increasing, the query time

rises remarkably. This experiment shows that storage and access ability of HDSW is extensible

and the system of HDSW is feasible.

(a) Result of SQL2, SQL5, SQL6, SQL7

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

Copyright ⓒ 2014 SERSC 69

(b) Result of SQL3, SQL4

(c) Result of SQL1

Figure 8. Result for Experiment II

5. Related Work

The focus of HDSW is storage and integration for semantic sensor data. W3C Semantic

Sensor Network Incubator Group has developed the SSN ontology which describes the sensor,

observation and related concepts. In the meanwhile, some methods of RDF distributed storage

and query has emerged. For example, Amazon provides a method of storage called Simple DB

by the form of key/value on the foundation of AWS (Amazon Web Services). Simple DB has

presented multiple index methods that improve the query efficiency of RDF datasets [10].

RDF Storage methods can be divided into two categories which are unstructured file storage

and structured database storage. The first method uses distributed log files and establishes

index files to store massive RDF data in the distributed system. The second method uses

distributed database to create index files which can store and organize massive RDF data.

The method of unstructured file storage is mainly based on file in HDFS indexes that stores

the RDF index files and datasets. It uses the HDFS API to query the index file, for example

HadoopRDF [11] and H2RDF [12]. HadoopRDF [11] stores datasets to Hadoop in the form of

n-triples, which creates index files based on predicate of triples. This method adopts the

mechanism of greedy algorithm, which takes advantage of MapReduce implementing semantic

query. This type of methods stores RDF in system by the form of triple, thus it only suits for the

query of indexed attribute. H2RDF [12] uses MapReduce technology to design the storage and

query algorithm for RDF based on cloud computing. This method stores RDF file in Hadoop

system and uses HBase to establish 6 indexes model (S_PO P_SO, P_OS, O_PS, O_S and

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

70 Copyright ⓒ 2014 SERSC

S_OP). For example, P_OS is defined as <P, Count, Average> where P is the attribute of

predicate, Count is the number of related subjects, and Average is the number of related objects.

H2RDF combines hybrid indexing mechanism with hash algorithm implementing the mixed

SPARQL query. This type of methods stores every RDF triple into a block file. If the size of

block is set too huge, storage space isn't able to be fully taken advantage of.

The storage method based on database can be divided into two types. One is based on

relational database storage, e.g., the method of storing RDF by MySQL [13, 14]. The other one

is based on the NoSQL database storage, e.g., Jena-HBase [15]. The MySQL-based method

[13, 14] combines Hadoop with the database MySQL to implement the storage of RDF dataset.

R2RML is used to maps subject, predicate and object to primary key, the column of predicate

and the column of object respectively. Although this type of methods have implemented the

storage of RDF, it is hard to realize the query of semantics. Jena-HBase [15] uses Jena SDB to

store and query RDF triples in HBase database. Jena-HBase combines hybrid indexing

mechanism (e.g., vertical index, horizontal index and hash index) to implement the storage of

RDF. It uses the Jena framework and index mechanism to accomplish SPARQL query rapidly.

This type of methods [16] can achieve extensible storage and efficient query.

The above methods provide some ways to store RDF data on Hadoop platform，but they

don't specially designed for RDF data of SSN. In order to implement the semantic sensor

network distributed management, we present HDSW system which mainly includes data

integration and sensor data applications. The RDF data of SSN is stream data, so we utilize

timestamp in HBase database to store the time of RDF data. Through the establishment of

reasonable HBase data schema saves a lot of space for RDF storage and makes data query more

convenient. We have realized the RDF data mapping to HBase by parallel processing of

MapReduce technology.

6. Conclusions and Future Work

HDSW is designed for the storage and query for massive data of semantic sensor network

based on Hadoop. The architecture of HDSW consists of sensor network layer, persistent layer,

Hadoop layer, function layer and UI layer. The RDF storage module of function layer is

detailed in this paper, and it store RDF file to HBase by using MapReduce. Experimental

results have shown that our system has good scalability and efficiency.

In the future, we will explore the following areas of research. Firstly we will design semantic

query module and API for HDSW efficiently so that we can employ our system in practical.

Secondly we will extend our experimental evaluation with other query benchmarks, and

HDSW will be compared with Jena-HBase, H2RDF etc. Additionally, we will also develop

search engine for SSN applications.

Acknowledgments

This work is supported in Hebei Natural Science Foundation under Grant No.F2013208107,

National Natural Science Foundation of China under Grant No.51271033 and 71271076,

science fund project of Hebei Education Department under Grant No.QN20131138.

References

[1]. A. Sheth, C. Henson and S. S. Sahoo, “Semantic Sensor Web”, Internet Computing, IEEE, vol. 12, Issue 4,

(2008), pp. 78-83.

[2]. K. Shvachko, H. R. Kuang, S. Radia and R. Chansler, “The hadoop distributed file system”, Mass Storage

Systems and Technologies (MSST), 2010 IEEE 26th Symposium on, IEEE, (2010), pp. 1-10.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

Copyright ⓒ 2014 SERSC 71

[3]. J. Dean and S. Ghemawat, “MapReduce: a flexible data processing tool”, Communications of the ACM, vol.

53, Issue 1, (2010), pp. 72-77.

[4]. L. George, “HBase: the definitive guide”, O'Reilly Media, Inc., Los Angeles, (2011).

[5]. M. Compton, P. Barnaghi, L. Bermudez, R. García-Castro, O. Corcho, S. Cox, J. Graybeal, M. Hauswirth, C.

Henson, A. Herzog, V. Huang, K. Janowicz, W. David Kelsey, D. L. Phuoc, L. Lefort, M. Leggieri, H.

Neuhaus, A. Nikolov, K. Page, A. Passant, A. Sheth and K. Taylor, “The SSN ontology of the W3C semantic

sensor network incubator group”, Web Semantics: Science, Services and Agents on the World Wide Web, vol.

17, (2012), pp. 25-32.

[6]. H. Patni, C. Henson and A. Sheth, “Linked sensor data”, Collaborative Technologies and Systems (CTS),

2010 International Symposium on, IEEE, (2010), pp. 362-370.

[7]. C. Bizer, T. Heath and T. Berners-Lee, “Linked data-the story so far”, International journal on semantic web

and information systems, vol. 5, no. 3, (2014).

[8]. P. Hunt, M. Konar, F. P. Junqueira and B. Reed, “ZooKeeper: wait-free coordination for internet-scale

systems”, USENIX Annual Technical Conference, vol. 8, (2010), pp. 9.

[9]. P. Cudré-Mauroux, I. Enchev, S. Fundatureanu, P. Groth, A. Haque, A. Harth, F. L. Keppmann, D. Miranker, J.

F. Sequeda and M. Wylot, “NoSQL databases for rdf: An empirical evaluation”, The Semantic Web–ISWC

2013, Springer Berlin Heidelberg, Los Angeles, vol. 8219, (2013), pp. 310-325.

[10]. J. Murty, “Programming amazon web services: S3, EC2, SQS, FPS, and SimpleDB”, O'Reilly Media, Inc., Los

Angeles, (2008).

[11]. J. H. Du, H. F. Wang, Y. Ni and Y. Yu, “HadoopRDF: A scalable semantic data analytical engine”, Intelligent

Computing Theories and Applications, Springer Berlin Heidelberg, Los Angeles, vol. 7390, (2012), pp.

633-641.

[12]. N. Papailiou, I. Konstantinou, D. Tsoumakos, P. Karras and N. Koziris, “H2RDF+: High-performance

distributed joins over large-scale RDF graphs”, Big Data, 2013 IEEE International Conference on, IEEE,

(2013), pp. 255-263.

[13]. M. Hert, G. Reif, and H. C. Gall, “A comparison of RDB-to-RDF mapping languages”, Proceedings of the 7th

International Conference on Semantic Systems, ACM, (2011), pp. 25-32.

[14]. C. Franke, S. Morin, A. Chebotko, J. Abraham and P. Brazier, “Distributed semantic web data management in

HBase and MySQL cluster”, Cloud Computing (CLOUD), 2011 IEEE International Conference on, IEEE,

(2011), pp. 105-112.

[15]. V. Khadilkar, M. Kantarcioglu and B. Thuraisingham, “Jena-HBase: A Distributed, Scalable and Effcient RDF

Triple Store”, Proceedings of the 11th International Semantic Web Conference Posters & Demonstrations

Track, ISWC-PD, vol. 12, (2012), pp. 85-88.

[16]. M. N. Vora, “Hadoop-HBase for large-scale data”, Computer Science and Network Technology (ICCSNT),

2011 International Conference on, IEEE, vol. 1, (2011), pp. 601-605.

Authors

Dongfeng Wang, he is born in 1991. He is master in School of

Information Science and Engineering at Hebei University of Science

and Technology. His main research interests include Semantic

Sensor Network and Distributed System.

Xiaoming Zhang, he was born in 1975, received the PhD degree in

computer application from University of Science and Technology

Beijing of China in 2009, and the Master degree in computer application

from Hebei University of China in 2002. Now, he is an associate

professor in the School of Information Science and Engineering at Hebei

University of Science and Technology, China. His main research

interests include Semantic Web and domain-specific information

integration.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

72 Copyright ⓒ 2014 SERSC

Hongbin Gao, he is born in 1964. He is a professor and master

supervisor in School of Information Science and Engineering at Hebei

University of Science and Technology. His main research interests

include IoT (Internet of things) and system integration.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

