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Abstract 

An efficient single-image super-resolution based on the discrete wavelet transform is 

proposed. The low-resolution image to be enhanced is assumed to be the low-frequency 

subband of the high-resolution image to be reconstructed. A support vector machine that 

synthesizes the high-frequency subband based on the inter-subband correlation of the 

directional edges is designed. Subband coefficients are classified into one of homogeneous 

region, edge region, and textured region. The support vector machine is adaptively trained 

for each region. Experimental results of sample images show that the proposed system offers 

improvements in terms of both measured distortion and subjective appearance. 

 

Keywords: super-resolution, image resolution enhancement, discrete wavelet transform, 

support vector machine 

 

1. Introduction 

Super-resolution (SR) technology, enhancing the image resolution of a low-

resolution (LR) observation to obtain a high-resolution (HR) image, has traditionally 

been used for surveillance, remote sensing, and medical purposes but is becoming more 

common in consumer products such as cellular phone, digital camera, high-definition 

television (HDTV), and closed-circuit television (CCTV). Whenever images taken from 

LR sensors are enlarged or moved to HR displays, SR technology is essential  [1-17]. 

Based on the number of available LR images, SR algorithms can be classified into 

two types: single reference SR (SRSR) and multiple references SR (MRSR). Technical 

overviews, problem formulations, and recent advances in MRSR can be found in the 

literatures [1-7]. MRSR algorithms perform SR by assuming that a set of LR images 

obtained from different viewpoints is available, and most algorithms formulate the 

problem as two signal processing aspects: how the multiple LR images from the set are 

aligned (or affined) in a common coordinate system and how the HR image is 

reconstructed from the aligned LR images. 

However, in SRSR, as only one image is available, the problem is reduced to image 

resolution enhancement of the given image. Traditionally, image interpolation 

techniques such as nearest-neighbor interpolation, bilinear interpolation, and bicubic 

interpolation have been used. These techniques are known to work well in smooth 

regions but tend to blur edges and sharp details in the images [8-17]. 

Recently, many researchers have investigated SRSR techniques based on the discrete 

wavelet transform (DWT) which have proven to be superior to interpolation-based 

techniques [9-14]. DWT-based SRSR algorithms normally assume that the LR image to 
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be enhanced is the low-frequency subband of the HR image to be reconstructed. These 

algorithms perform SR by estimating or synthesizing the DWT coefficients in the high-

frequency subbands of the HR image from the LR image. Carey, et al., [9] observed the 

regularity of edges by measuring the decay of the DWT coefficients across scales and 

proposed an algorithm for synthesizing an image twice the size of the original by 

extrapolating the fine-scale subbands preserving the underlying regularity. Kinebuchi , 

et al., [10] modeled the statistical relationship between the DWT coefficients using a 

hidden Markov tree and used this model to interpolate the fine-scale coefficients. 

Temizel and Vlachos [11] exploited the DWT coefficient correlation in a local-

neighborhood sense and employed a linear least-squares regression to estimate the 

unknown fine-scale coefficients. Piao, et al., [12] utilized the correlation of the 

subbands with different sampling phases in the DWT and estimated the high-frequency 

subbands by using filters designed in the lower level under the assumption that filters 

connecting two bands are similar in different levels. Demirel and Anbarjafari  [13] 

proposed an algorithm to correct the initially interpolated fine-scale coefficients by 

using the high-frequency subbands achieved by the stationary wavelet transform of the 

LR image. Gajjar and Joshi [14] proposed a learning-based approach; given an LR 

image to be enhanced and a database consisting of LR and HR images, the authors first 

obtained an initial HR estimate by learning the high-frequency details from the 

available database. They modeled the LR image as the aliased and noisy version of the 

corresponding HR image and obtained the final HR image by estimating the aliasing 

matrix entries using an inhomogeneous Gaussian Markov random field as the prior 

model 

This paper proposes a support vector machine (SVM) synthesizing the high-

frequency subband based on the inter-subband correlation of the directional edges. The 

LR image to be enhanced is assumed to be the low-frequency subband of the HR image 

to be reconstructed. Edge detection is performed on the LR image. Based on the edges, 

the LR image is classified into three regions: homogeneous region, edge region, and 

textured region. The introduction of the importance of edge directionality for exploiting 

the inter-subband correlation in each region is the contribution of our system. Most 

DWT-based SR algorithms [9-14] have exploited their own inter-subband correlation 

for the algorithm design. However, the edge direction for each region has not been 

related to the inter-subband correlation. A relative distribution of large coefficients in 

the high-frequency subbands is shown to be closely related to the edge strength and 

direction at a given position in each region. Motivated by the success of the learning-

based approach [14-16] and the support vector regression method [17] for SRSR, our 

SVM is designed to perform SR for each region based on the inter-subband correlation 

of the directional edges. 

The energy properties of the DWT coefficients and the proposed SRSR system are 

described in Section 2. The experimental results are presented in Section 3. Finally, 

Section 4 concludes the paper. 

 

2. Proposed System 

The DWT decomposes an input image into multiple subbands: LL, LH, HL, and HH. 

The input image is simultaneously passed through a low-pass filter (LPF) and a high-

pass filter (HPF) and then down-sampled by 2:1 in the horizontal and vertical directions, 

respectively, to generate the DWT coefficients. If the LPF and HPF are suitably 

designed, the inverse DWT (IDWT), which is the process to reconstruct the input image 

perfectly from the DWT coefficients, is possible. Multi-level decomposition is achieved 
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by obtaining a higher-level decomposition from recursively applying the transform on 

the LL band of the lower level. 

An example of one and two-level DWT is shown in Figure 1(a) and Figure 1(b), 

respectively. The DWT provides a scalable representation of images with the higher and 

lower decomposition levels representing the coarser and finer characteristics, 

respectively. In this paper, the k‟th row and the l‟th column of the DWT coefficient of 

the LL, LH, HL, and HH bands of decomposition level s are denoted by ),()( lkx s
LL

, 

),()( lkx s
LH

, ),()( lkx s
HL

, and ),()( lkx s
HH

, respectively. The notation for Figure 1(a) and 1(b) are 

shown in Figure 1(c) and 1(d), respectively. Using this notation, the design problem for 

the SRSR system is to reconstruct the high-frequency subbands of HR image 

corresponding to ),()1( lkxLH
, ),()1( lkxHL

, and ),()1( lkxHH
 by assuming that the given LR image is 

),()1( lkxLL
, which is equivalently a set of ),()2( nmxLL

, ),()2( nmxLH
, ),()2( nmxHL

, and ),()2( nmxHH
. 

      
 

),()1( lkxHH),()1( lkxLH

),()1( lkxHL),()1( lkxLL

     

),()2( nmxLL

),()1( lkxLH ),()1( lkxHH

),()1( lkxHL

),()2( nmxHL

),()2( nmxLH
),()2( nmxHH

 
 

Figure 1. Examples of the DWT: (a) One-level DWT and (b) Two-level DWT. (c) 
and (d) Show our Notation for (a) and (b), Respectively 

In this paper, the energy distribution of the DWT coefficients for the SRSR system 

design is the particular focus. The number of high-energy DWT coefficients is observed 

to increase in the edge regions. Our experiments for this observation have been 

performed by using the Sobel edge detector [18]. The edge region in ),()1( lkxLL
 is extracted 

by applying a Sobel mask and thresholding the large values. Figure 2(a) shows the 

extracted edge regions. It is observed that the large coefficients of ),()1( lkxLH
, ),()1( lkxHL

, and 

),()1( lkxHH
 shown in Figure 1(a) are concentrated in the edge region shown in Figure 2(a). 

Then, based on the ratio of the horizontal to vertical Sobel masking [18], the edge 

region can be further separated into horizontal and vertical components as shown in 

Figure 2(b) and 2(c), respectively. The large-coefficients distribution is seen to be 

highly dependent on the directionality of edges. For example, ),()1( lkxLH
 and ),()1( lkxHL

 are 
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more closely related with the horizontal and vertical edge regions , respectively. Thus, 

the conclusions useful for the SRSR system design can be summarized as follows 

1) The energy of the DWT coefficients in the high-frequency subband is concentrated 

in the edge region, and the DWT coefficients are large in magnitude in this region.  

2) The relative distribution of the large coefficients in the LH, HL, and HH subbands 

is closely related to the edge strength and direction at a given position. Therefore, 

reconstructing the high-frequency DWT coefficients based on the edge strength and 

direction information at a given position is highly recommended. 

3) The inter-subband correlation between the DWT coefficients in the mother and 

child bands is almost negligible when the distance is greater than 2 pixels in the mother 

band [10, 11, 14]. Therefore, it is sufficient for the SRSR to reconstruct the DWT 

coefficient in the child band by only using its corresponding coefficient and the 8 

neighboring coefficients in the mother band. 

           
 

Figure 2. Examples of the Edge Regions: (a) Edge Region, (b) Horizontal Edge 
Region, and (c) Vertical Edge Region 

This then allows an SRSR system for reconstructing an image that is twice the size of 

the original to be proposed. The basic structure of the system is shown in Figure 3 and 

described as follows. 

1) Assume that the given LR image to be enhanced is the low-frequency subband of 

the HR image to be reconstructed and denote the LR image as ),()1( lkxLL
. 

2) Perform one-level DWT on ),()1( lkxLL
 and obtain the DWT coefficients. Denote the 

resulting coefficients in the LH, HL, and HH bands by ),()2( nmxLH
, ),()2( nmxHL

, and ),()2( nmxHH
, 

respectively. 

3) Perform edge detection on ),()1( lkxLL
 and denote the edge strength and direction by 

),( lke  and ),( lke , respectively. 

4) Based on the edge strength and direction, classify ),()1( lkxLL
 into one of 

homogeneous region, edge region, and textured region. 

5) Generate the high-frequency subbands of the HR image: ),()1( lkxLH
, ),()1( lkxHL

, and 

),()1( lkxHH
, adaptively for each region by using the SVM whose input vector is { ),( jie , 

),( jie , ),()2( nmxLH
, ),()2( nmxHL

, ),()2( nmxHH
; 11  kik , 11  ljl ,     12/12/  kmk , 

    12/12/  lnl }, where  z  is the maximum integer value not greater than z. 

6) Perform IDWT on { ),()1( lkxLL
, ),()1( lkxLH

, ),()1( lkxHL
, ),()1( lkxHH

} to obtain the HR image. 

 

(a) (b) (c) 
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Figure 3. Basic Structure of the Proposed SRSR System 

We have designed our system based on the inter-subband correlation between one-

level mother and child DWT coefficients. It may be claimed that the usage of higher 

level inter-subband correlation is more helpful. However, it is noted that our 

experimental results for the usage of higher level inter-subband correlation on various 

images have shown that the performance improvement is almost negligible and it only 

increases the system complexity. 

 

3. Experimental Results 

In the experiments, the well-known Daubechies 9/7 analysis-synthesis filters are used 

for the implementation of the DWT and the Sobel edge detector is used for the 

implementation of the edge detection. A sophisticated edge detection method, such as 

the Canny edge detector [19], may be considered as a better edge detection choice. But 

it is at the expense of increased complexity and our experiments for various test images 

have shown that the improvement by using the better edge detector is almost negligible 

for our SRSR system performance. 

We convolve the LR image ),()1( lkxLL
 with 3 × 3 horizontal and vertical Sobel masks 

[18]; denote the resulting values of the convolution at position (k, l) by ),( lkeh
 and 
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),( lkev
, respectively; and obtain the edge strength and direction by calculating 

),(),(),( 22 lkelkelke vh   and )],(/),([tan),( 1 lkelkelke hv
 , respectively. 

To extract textured regions, the recursive thresholding method using several texture 

features [20] is employed. Edge strength randomness, edge direction randomness, edge 

contrast, edge density, and the number of horizontal and vertical peaks and valleys in a 

region are selected as texture features. Textured regions are extracted by obtaining the 

histograms of these features, selecting one of the histograms showing the best clusters, 

and thresholding it recursively until none of the histograms shows clustering. The more 

detailed algorithm for extracting textured regions is preferably referred to Reference 

[20]. After textured regions are extracted, edge regions are extracted by selecting the 

pixels whose edge strength is greater than a threshold value and clustering the selected 

pixels showing similar edge direction. All the pixels not included in any of textured 

regions and edge regions are declared as homogeneous regions. 

In order to train the least dependent SVM on selected image samples, a random 

collect of 400 images with sizes larger than 512×512 pixels was assembled; the sample 

images include a variety of indoor and outdoor shots of buildings, streets, people, faces, 

animals, landscapes, etc., taken from cellular phones, digital cameras or camcorders, 

HDTV, and CCTV. For simple implementation and fast processing, the input and output 

vectors of the SVM: ),( jie , ),()2( nmxLH
, ),()2( nmxHL

, ),()2( nmxHH
, ),()1( lkxLH

, ),()1( lkxHL
, and ),()1( lkxHH

, 

are set to integer values. The edge direction ),( jie  is also quantized to 36 levels. No 

detectable degradation of the performance was observed as a result of this quantization.  

For the performance tests, four well-known test images were used: Lena, Elaine, 

Baboon, and Peppers, which were not included in the sample set for the SVM training. 

All the sample images are 512 × 512 pixels. For objective tests, one-level DWT on the 

test images was performed and the LL band images were assumed to give LR images 

for a 2× resolution enhancement. The original images were taken as the ground truth 

and the performance was compared in terms of the peak signal -to-noise ratio (PSNR) 

metric. The PSNR results are listed in Table 1. The results are compared with two 

popular interpolation techniques: bilinear interpolation and bicubic interpolation. For 

comparison purposes only, the PSNR results obtained by Temizel and Vlachos
11

 that are, 

to the authors‟ knowledge, regarded as one of the best set of results among the DWT -

based SRSR systems are also listed. In Table 1, „Wavelet-0‟ refers to the basic 

reconstruction method where unknown high-frequency subbands: ),()1( lkxLH
, ),()1( lkxHL

, and 

),()1( lkxHH
, are estimated as zeroes. The results in Table 1 show that the proposed SRSR 

system gives an improved metric compared with the other techniques for all test images . 

For subjective tests, the experimental results of the Lena and Baboon images are 

presented as examples. Results for the other images were similar. Figure 4 and 5 show 

the reconstructed HR images for Lena and Baboon, with details shown in Figure 6 and 

7, respectively.  The proposed system can be seen to improve the blurring and ringing 

distortions seen in the images reconstructed by the conventional bicubic interpolation 

method and the „Wavelet-0‟ method. 
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Table 1. PSNR Comparison with other Techniques (dB) 

Techniques Lena Elaine Baboon Peppers 

Bilinear 30.84 31.10 22.44 29.35 

Bicubic 31.15 31.30 22.64 29.41 

Wavelet-0 35.92 33.45 24.08 32.27 

Temizel & Vlachos 35.39 33.40 24.52 34.46 

Proposed 37.89 34.12 26.61 34.98 

 

       
 

Figure 4. Experimental Results for the Lena Image: (a) the Original Image and 
the Image Reconstructed by (b) Bicubic Interpolation, (c) ‘Wavelet-0’, and (d) 

the Proposed Technique 

       
 

Figure 5. Experimental Results for the Baboon Image: (a) the Original Image 
and the Image Reconstructed by (b) Bicubic Interpolation, (c) ‘Wavelet-0’, and 

(d) the Proposed Technique 

 

 

 

 

 

 

 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Figure 6. Enlarged Part of Figure 4: (a) the Original Image and the Image 
Reconstructed by (b) Bicubic Interpolation, (c) ‘Wavelet-0’, and (d) the 

Proposed Technique 

       
 

Figure 7. Enlarged Part of Figure 5: (a) the Original Image and the Image 
Reconstructed by (b) Bicubic Interpolation, (c) ‘Wavelet-0’, and (d) the 

Proposed Technique 

Table 2. Computing Time for Processing Sample Images (Seconds) 

Techniques Lena Elaine Baboon Peppers 

Bilinear 0.1098 

Bicubic 0.2319 

Wavelet-0 0.5506 

Temizel & Vlachos 1.2589 

Proposed 1.0241 1.0184 1.0281 1.0149 

 

Besides the quality of reconstructed HR images, computing efficiency is also 

important in real applications. All the experiments were conducted on a computer 

equipped with Duo 2.4 GHz CPU and 8.0 GB RAM memory. Table 2 shows the 

execution time of the proposed system compared to the other methods of Table 1. The 

execution time of all the other compared methods is sample image independent. The 

execution time of our system may vary based on the result of edge detection and region 

classification for each test image. But it has been known that the variations are almost 

negligible. It is seen that the proposed method is fast enough to be used for applications 

in which images are required to be scaled-up very quickly and shows better computing 

efficiency compared to the method proposed by Temizel and Vlachos [11]. 

 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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4. Conclusion 

A wavelet-based SRSR system using inter-subband correlation of the directional 

edge has been proposed. The system assumes that the LR image to be enhanced is the 

LL band of the HR image to be reconstructed. The LR image is divided by 

homogeneous region, edge region, and textured region. The high-frequency subbands of 

the HR image are adaptively generated for each region by the SVM whose input  vectors 

are the mother band DWT coefficients and the edge strength and direction parameters. 

Experimental results showed that the system outperforms conventional image 

enhancement methods by improving the blurring and ringing distortions normally 

appearing in those methods. 

The system only enhances the image to twice the size of the original, and future research 

will be focused on developing an optimal SRSR system that can control the size of the 

enhanced image based on the proposed system. 
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