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Abstract 

We describe a fast multi-level layout for visualizing social networks, which can visualize 

social networks high quality and rapidly. There are two innovations in our fast multi-level 

layout. Firstly, we proposed a new graph multi-layered compression method based on 

random walk. The multi-layered compression process groups vertices to form “planet” 

systems and then abstract these “planet” systems as new vertices to define a new graph and 

is repeated until the graph size falls below some threshold. And we also proposed a new 

single level force-directed layout based on sampling. The multi-level layout process can be 

accelerated based on these two innovations. Finally, we have evaluated our layout on several 

well-known data sets. The experimental results show that our layout outperforms the state-of-

the-art method. 
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1. Introduction 

Social networks appear everywhere in our modern lives, such as twitter, micro-blog, 

MSN, Facebook, co-citation relation, credit network, etc., The modern science of 

networks has brought significant advances in our understanding of complex systems [1]. 

In research, visualization techniques are always employed to illustrate social networks 

to users and assist social networks analysis. Social networks are usually represented by 

different types of graphs. Vertices represent entities, and edges represent interactions 

between pairs of entities. Graph visualization helps users to gain insight into social 

networks by turning the network elements and their internal relationships into graphs. 

There have been many graph layout algorithms designed for graph visualization. Each 

layout algorithm has its own characteristic and pertinence to different types of graph 

and different applications. 

A graph ( , )G GG V E  is an abstract structure that is used to model a relation GE  over a set 

GV  of entities. Graph drawing is a conventional tool for the visualization of relational 

information, and its usefulness depends on its readability, that is, the capability of conveying 

the meaning of the diagram quickly and clearly. In recent years, many algorithms for drawing 

graphs automatically were proposed (the state of the art is surveyed comprehensively in [2], 

[3]). 

In this paper, we concentrate on the problem of drawing an undirected graph with 

straight-line edges. Major advantages of force-directed methods are their relatively 

simple implementation and their flexibility (heuristic improvements are easily added), 

but there are some problems with them too. One severe problem is the difficulty of 
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minimizing the energy function when dealing with large graphs. The other problem is 

that it is very slow to layout the whole graphs high quality for larger graphs.  

We propose a new fast multi-level layout method for drawing graphs that could in 

principle improve the speed of every force-directed method. We first proposed a new graph 

multi-layered compression method based on random walk. The multi-layered compression 

process groups vertices to form “planet” systems and then abstract these “planet” systems as 

new vertices to define a new graph and is repeated until the graph size falls below some 

threshold. And we next proposed a new single level force-directed layout based on sampling, 

which can drastically reduce the computing time of repulsion. Thus the multi-level layout 

process can be accelerated based on these two innovations. 

The rest of paper is organized as follows: Section 2 reviews several areas of related work; 

Section 3 introduces the detailed description of our fast multi-level graph layout algorithm; 

Section 4 will evaluate the proposed layout through some comparable study; finally, the paper 

concludes in Section 5 with a review and discussion of future work. 

 

2. Related Works 
 

2.1. Graph Layouts 

Graph visualization helps users to gain insight into data by turning the data elements 

and their internal relationships into graphs [5]. Graph layout problems are a particular 

class of combinatorial optimization problems whose goal is to find a linear layout of an 

input graph in such a way that a certain objective function is optimized [6]. Given a 

general graph consisting of vertices and edges, graph layout is a problem of drawing the 

graph. Vertices are assigned coordinates, and if two vertices share an edge it is drawn 

between them as curves. The popular graph layouts include Node-link layout [7-10], 

Space filling layout [11, 12], Matrix Layout [13-15] and so on. Node-link layout is one 

of the most used graph layouts, which uses links between vertices to indicate the 

relationships of vertices. As one of the well-known Node-link layouts for drawing 

general graphs, spring layout is proposed by Eades [16] in 1984. Since then, his method 

is revisited and improved [17-21] in different ways. There are mainly two kinds of 

space filling layout: space division layout and space nested layout. In space division 

layouts, the parent-child relationship is indicated by attaching child vertices to the 

parent vertices. Since the parent-child and sibling relationships are both expressed by 

adjacency. Space nested layouts, such as Treemaps [22], draw the hierarchical structure 

in the nested way. They place child vertices within their parent vertices. Matrix Layout 

is an alternative approach to graph visualization which is using matrix-based 

representations. Graphs can be presented by their connectivity matrixes. Each row and 

each column corresponds to a vertex. The glyph at the interaction encodes the edge 

from corresponding vertex. 

 

2.2. Multi-level Layouts 

Multilevel layouts are largely used in graph visualization as multilevel graph drawing 

methods can accelerate run time and also improve the visual quality of graph drawing 

algorithms. Chris Walshaw [23] presents a multilevel optimization of the Fruchterman’s 

and Reingold’s spring embedder algorithm. The GRIP algorithm [24] coarsens a graph 

by applying a filtration to the vertices. This filtration is based on shortest  path distance. 

Fast Multiple Multilevel Method ( 3FM ) [25] is also a force-directed layout algorithm.  
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3FM [25] is proved subquadratic (more precisely in (NlogN E)O   in time, contrary to 

previous algorithms. Work in [26] is based on the detection of topological structures in 

graphs. This algorithm encodes each topological structure by a meta-node to construct a 

hierarchical graph. 

 

2.3. Our Proposed Method 

The proposed fast multi-level layout combines force-directed layout method, graph 

partition method and graph compression method. More specifically, the fast multi -level 

layout proposed a graph multi-layered compression method based on random walk and 

the layout process groups vertices to form “planet” systems and then abstract these 

“planet” systems as new vertices to define a new graph and is repeated until the graph 

size falls below some threshold. In each level graph, a new force-directed method based 

on sampling is employed to assign vertex coordinates. The characteristic of our 

proposed multi-level layout is visualizing social networks high quality and quickly.  

 

3. Fast Multi-level Layout 

In this section, we will introduce the model of Fast Multi -level Layout (FML) 

detailed. The FML model consists of two steps. The first is fast multi -level graph 

compress model and the second is the layout initialization and interpolation. In this 

research, we propose a new graph compress method based on random walk and a new 

quick method to calculating repulsion based on sampling. Next we will introduce these 

two steps respectively. 

First we give some terminologies that are frequently used in this paper. Throughout this 

paper we assume that we are working with a graph ( , )G GG V E , with | |GV  vertices and | |GE  

edges. GV  represents the vertex set of G  and GE  represents the edge set of G . 

 

3.1. Multi-level Compression 

The multi-layered compression in 3FM [25] is a very complex process. There, solar 

systems are created, which consist of vertices at a distance of two edges or less from the 

center of the solar system. It needs more spaces to store the paths between compression units 

and more complexity to calculate the initial positions of vertices. Walshaw [23] algorithm 

gives a more global quality to the force-directed placement through compressing vertex with 

one of its neighbors, but it may lead too many levels, which would complicate the algorithm. 

Thus, in this paper our compress strategy mixes the advantages of these two classical 

algorithms. We next detailed introduce the compression process of FML algorithm.  

In FML algorithm, we create a “Planet System” on graphs. Some vertices are chosen as 

“planet” vertices, and then the neighbors of planet vertices are the matching “moon” vertices 

of the “planet”. A planet and its matching moons construct a planet system. Figure 1 shows an 

original graph with 17 vertices and 16 edges. Our compress strategy is that we compute the 

weights of all vertices by Random Walk algorithm, and then compress the vertices with less 

weight and their uncompressed moons in the graph. 

A random walk of length k  on a graph G  is a stochastic process with random 

variables 0 1 2, , , , kW W W W  such that 0 ( , , , )1 n 1 n 1 nT
W   and 1iW   is a vertex chosen 

uniformly at random from the neighbors of iW . Let B  be the column-normalized adjacency 

matrix of the graph G . 

1k kW BW                                                                       (1) 
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By random walk on graph, we get the weights of all vertices. Figure 1 shows an example 

graph EG  with 17 vertices and 16 edges and Table 1 shows the vertex weights after running 

random walk on example graph EG . 

 

 

Figure 1. Example Graph 

According to the weights in Table 1, we first compress the vertex with minimum weight 

and its “moons”. Then, if there still are vertices uncompressed, we continue choose the rest 

minimum weighted vertex to compress until all vertices are compressed. Figure 2 

demonstrates the compress process. Figure 2 (a) is the compress process and Figure 2 (b) 

presents the compressed graph. 

Table 1. Weights of Vertices After Running Random Walk 

Vertex Weight Vertex Weight 

14 0.315522 17 0.493981 

15 0.315522 13 0.563252 

11 0.315522 3 0.563252 

12 0.315522 10 0.563252 

1 0.315522 5 0.563252 

2 0.315522 8 0.737913 

6 0.315522 4 1 

7 0.315522 9 1 

16 0.493981 -- -- 

 

 

Figure 2. Compress Process 
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After getting the compressed graph 1G , we continue to compress 1G  to high level graphs. 

The compressing process is the same as the process described below. We compute the 

weights of vertices in 1G  and compress the vertices according to their weights. By this 

analogy, we can get 2G , 3G  until LG . The termination condition of compression is that the 

number of vertices in LG  less than our preset maximal vertex count. Then we can obtain the 

multi-level compression graph just like Figure 3. 

 

 

Figure 3. Multi-level Compression 

Figure 4 shows the flowchart of multi-level compression of graph. 
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Begin 

End
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Select vertex with 
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Construct new 

level graph

YES

NO

NO

YES

 

Figure 4. Flowchart of Multi-level Compression 

3.2. Layout Initialization and Interpolation 

 

3.2.1. Single Level Force-directed Layout based on Sampling 

We apply the force-directed layout algorithm to every level graph. To accelerate the layout 

process, we propose a new method to compute the repulsion rf  based on sampling. 

For a vertex v  in G , the repulsion of ( )kf v  comes from two parts. v  could be partly 

repelled by its neighbors and partly repelled by the other vertices in the graph. For 

accelerating repulsion computing, we only consider the repulsion from the neighbors whose 

length to v  is no more than 2, and the repulsion from a random sample of vertices from other 

part of graph. We compute the repulsion by the following equation. 

2 2
1 1

1( )
( ) ( * * )

S
k u v u V

uv uv

c L c
f v C

d l d 
                                       (2) 

Where ( )v  represents the neighbor set with length to v  no more than 2, SV  represents the 

sampling vertices set, uvd  represents the Euclidean distance between u  and v , L  denotes the 

number of levels of the compressed graph and l  denotes the current level. 

We calculate the attraction by the following equation: 

2
2 2( )

( ) * *a uvu v
f v C c d


                                                       (3) 
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After much experimenting, we get the best parameter values, where 1 4C  ,  1 0.25*c c  

and *
| V |

W Hc   (W and H  are the width and height of layout area respectively), 2 2C   

and 2 0.75c  . 

 

3.2.2. Multi-level Initialization and Interpolation 

Let 0 1 1 1{ , , , , , , , ,},i 0,1,2, ,i i i LListG G G G G G G L   be the compressed graph. 0G , iG  

and LG  are original graph, i  level graph and top level graph respectively. 1iG   is compressed 

from iG . In the multi-level initialization and interpolation stages, we first position the vertices 

in top level graph LG  by single level force-directed layout based on sampling. The refinement 

process from iG  to 1iG   consists of two steps. Frist we initialize the position of vertices in 

1iG   by the vertices in iG , and then adjust the positions of vertices in 1iG   by single level 

force-directed layout based on sampling. Iteratively repeat the above process until all vertices 

in original graph are positioned. 

Initializing the position of vertices in 1iG   consists of two steps: planet vertices 

initialization and moon vertices initialization. First, we put the planet vertices in 1iG   at the 

position of its ancestor vertex in iG  and then we position the moon vertices in 1iG  . Suppose 

0s  and 0t  are two planet vertices, v  is a moon vertex between 0s  and 0t . Then the position of 

v can be calculated by Equation. (4)  

0
0 0 0

0 0

_ ( , )
( ) ( ) ( ( ) ( ))

( , )

desire edgelength s v
Pos v Pos s Pos t Pos s

length s t
                            (4) 

If v  is contained by more than one path, then the position of v is the centroid of these paths. 

0 0( , )

1
( ) ( ( ))

i
iv p s t

Pos v Pos v
r 

                                                     (5) 

Where 0 0( , )length s t denotes the length of shortest path between 0s  and 0t , 

0_ ( , )desire edgelength s v denotes the length of shortest path between planet vertex 0s  and moon 

vertex v . 

Figure 5 demonstrates the vertex initialization process of 1iG   from iG . Figure 5 (a) shows 

i -level graph iG . Figure 5 (b) shows ( 1)i  -level graph 1iG  , vertices with larger radius are 

planet vertices and vertices with smaller radius are moon vertices. We first position the planet 

vertices in 1iG   on the locations of their ancestor vertices, then calculating the positions of 

moon vertices by Eq. (4). In Figure 5 (c), suppose u  and v  are two moon vertices in 1iG  , we 

temporarily put u  and v  at the circumference with radius 1 of their planet vertex, 

0 0( , )length s t  is the length of shortest path between 0s  and 0t ,  0_ ( , )desire edgelength s v  is the 

length of shortest path between planet vertex 0s  and moon vertex v. There is only one planet 

path 
0 0( , )s tP  through u , so the position of u  is 0 0 0

1
( ) ( ( ) ( ))

2
Pos s Pos t Pos s  . There are two 

planet path 
0 0( , )s tP , 

0 1( , )s tP  through v, so the position of v is 

0 0 0 0 1 0

1 1 1
[( ( ) ( ( ) ( ))) ( ( ) ( ( ) ( )))]

2 3 3
Pos s Pos t Pos s Pos s Pos t Pos s     , which is shown in Figure 5 

(c). 
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Figure 5. Initializing Process 

Figure 6 shows the flowchart of multi-level initialization and interpolation. 

 

Begin 

End

Top level graph?

Initialize vertex 

positions randomly

Graph sampling

Calculate repulsion 

Is the vertex adjustment 

less than thresthod?

Move the layout to the 

center of screen

NO

YES

YES

NO

Get i-level graph

Calculate attraction

Is the current level graph 

original graph?

YES

NO

Initialize vertex positions 

by their ancestor vertices

 

Figure 6. Flowchart of Multi-level Initialization and Interpolation 

3.3. Time Complexity Analysis 

The time complexity of single level force-directed layout is: 

2 2 2
0 0 0 1 1 1(T) O(k *(| V | | E |) k *(| V | | E |) k *(| V | | E |))L L LO                     (6) 
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Our proposed FML method takes 2k*( | V | | E |)
l

L
 time to run single level force-directed 

layout based on sampling in every level graph. With the increase of vertices, k  will be much 

less than | V | . With the sampling probability p , the number of sampled vertices is 0

1
| V |

L
 for 

0-level graph, 1

2
| V |

L
for 1-level graph, and 1| V |L

L

L
 for ( 1L )-level graph. So the time 

complexity of FML can be represent by the following equation. 

2 2 2
0 0 0 1 1 1 1 1

1 2
(T) O(k *( | V | | E |) k *( | V | | E |) k *(| V | | E |))L L L

L
O

L L L
                      (7) 

By contrasting Equation (6) and Equation (7) we can find our proposed fast multi-level 

layout can reduce the calculation of repulsion between vertices and accelerate the process of 

layout. 

 

4. Experiments 
 

4.1. Experiments 1: Visualization Comparison 

In this section, we evaluate our proposed fast multi-level layout on several graph datasets. 

For the first experiment, we evaluate the visualization effects of our proposed fast multi-level 

layout. Figure 7 shows the visualization effects of DIMACS10 test sets and Hamm data sets. 

Right column are the visualization effects of our fast multi-level layout and left column are 

the visualization effects published on the internet. By comparing our layout to the published 

layout effects, we can find our FML can display the real structures of social networks 

correctly and quickly whatever the density of social networks is uniformity. 

 

      
(a)                                                                     (b) 

      
(c)                                                                      (d) 

      
(e)                                                                           (f) 
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(g)                                                                            (h) 

Figure 7. The Comparison between Layouts 

4.2. Experiments 2: Layout Time 

The main characteristic of our proposed FML method is layout speed. Thus we evaluate 

the layout time with other methods on several different scale data sets in this section. There 

are four test data sets. They are “data” with 2851 vertices and 15093 edges, “add32” with 

4690 vertices and 9462 edges, “power” with 4941 vertices and 6594 edges and “whitaker” 

with 9800 vertices and 28989 edges. Figure 8 shows the layout time for these four data sets 

by different layout methods. Our FML method takes the shortest time to layout the networks 

when the number of vertices is less than 5000. As the increasing of vertices, the advantage of 
3FM  become prominent gradually. However, for social networks visualization, the size of 

network should be not very large. Otherwise such a dense layout is a visual disaster for 

human eyes. So our proposed method has advantages when the number of vertices is less than 

5000. 

 

 

Figure 8. Layout Time Comparison with Different Methods 

Figure 9 shows the run time variation of our FML while the scale of network increasing. 

There are 7 data sets. They are “subScience” (379 vertices and 914 edges), “polblogs” (1490 

vertices and 3430 edges), “add20” (2395 vertices and 7462 edges), “data” (2851 vertices and 

15093 edges), “add32” (4960 vertices and 9462 edges), “whitaker” (9800 vertices and 28989 

edges) and “4elt” (15606 vertices and 45878 edges). Through Figure 9 we can also observe 

our FML method can run a good performance when the vertex scale is less than 5000. The 

layout process can be completed within 20 seconds. Limited by the area and resolution of 

layout screen, it makes little sense to layout the social networks with vertex scale larger than 

10000. Thus our FML method has the important theoretical significance and the practical 

application value. 
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Figure 9. Layout Time Comparison with Different Scale Data Sets 

5. Conclusions 

In this paper, we firstly proposed a new graph multi-layered compression method 

based on random walk, and then we presented a new fast multi-level layout based on 

the compressed graph structure. We detailed described the fast multi-level layout and 

performed experiments on several datasets. We compared our layout with the 3FM  

layout [25] and Walshaw [23] layout from three aspects. The comparable results show 

our fast layout can visualize the social networks high quality and rapidly. 
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