
International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014), pp. 167-180

http://dx.doi.org/10.14257/ijmue.2014.9.12.16

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2014 SERSC

A Fast Multi-level Layout for Social Network Visualization

Xiaolin Du
1
, Yunming Ye

1
, Yueping Li

2
 and Ge Song

1

1
Shenzhen Key Laboratory of Internet Information Collaboration,

Shenzhen Graduate School, Harbin Institute of Technology, China
2
ShenZhen Polytechnic, Shenzhen, China

skliic@126.com

Abstract

We describe a fast multi-level layout for visualizing social networks, which can visualize

social networks high quality and rapidly. There are two innovations in our fast multi-level

layout. Firstly, we proposed a new graph multi-layered compression method based on

random walk. The multi-layered compression process groups vertices to form “planet”

systems and then abstract these “planet” systems as new vertices to define a new graph and

is repeated until the graph size falls below some threshold. And we also proposed a new

single level force-directed layout based on sampling. The multi-level layout process can be

accelerated based on these two innovations. Finally, we have evaluated our layout on several

well-known data sets. The experimental results show that our layout outperforms the state-of-

the-art method.

Keywords: graph compression, random walk, multi-level layout, sampling

1. Introduction

Social networks appear everywhere in our modern lives, such as twitter, micro-blog,

MSN, Facebook, co-citation relation, credit network, etc., The modern science of

networks has brought significant advances in our understanding of complex systems [1].

In research, visualization techniques are always employed to illustrate social networks

to users and assist social networks analysis. Social networks are usually represented by

different types of graphs. Vertices represent entities, and edges represent interactions

between pairs of entities. Graph visualization helps users to gain insight into social

networks by turning the network elements and their internal relationships into graphs.

There have been many graph layout algorithms designed for graph visualization. Each

layout algorithm has its own characteristic and pertinence to different types of graph

and different applications.

A graph (,)G GG V E is an abstract structure that is used to model a relation GE over a set

GV of entities. Graph drawing is a conventional tool for the visualization of relational

information, and its usefulness depends on its readability, that is, the capability of conveying

the meaning of the diagram quickly and clearly. In recent years, many algorithms for drawing

graphs automatically were proposed (the state of the art is surveyed comprehensively in [2],

[3]).

In this paper, we concentrate on the problem of drawing an undirected graph with

straight-line edges. Major advantages of force-directed methods are their relatively

simple implementation and their flexibility (heuristic improvements are easily added),

but there are some problems with them too. One severe problem is the difficulty of

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

168 Copyright ⓒ 2014 SERSC

minimizing the energy function when dealing with large graphs. The other problem is

that it is very slow to layout the whole graphs high quality for larger graphs.

We propose a new fast multi-level layout method for drawing graphs that could in

principle improve the speed of every force-directed method. We first proposed a new graph

multi-layered compression method based on random walk. The multi-layered compression

process groups vertices to form “planet” systems and then abstract these “planet” systems as

new vertices to define a new graph and is repeated until the graph size falls below some

threshold. And we next proposed a new single level force-directed layout based on sampling,

which can drastically reduce the computing time of repulsion. Thus the multi-level layout

process can be accelerated based on these two innovations.

The rest of paper is organized as follows: Section 2 reviews several areas of related work;

Section 3 introduces the detailed description of our fast multi-level graph layout algorithm;

Section 4 will evaluate the proposed layout through some comparable study; finally, the paper

concludes in Section 5 with a review and discussion of future work.

2. Related Works

2.1. Graph Layouts

Graph visualization helps users to gain insight into data by turning the data elements

and their internal relationships into graphs [5]. Graph layout problems are a particular

class of combinatorial optimization problems whose goal is to find a linear layout of an

input graph in such a way that a certain objective function is optimized [6]. Given a

general graph consisting of vertices and edges, graph layout is a problem of drawing the

graph. Vertices are assigned coordinates, and if two vertices share an edge it is drawn

between them as curves. The popular graph layouts include Node-link layout [7-10],

Space filling layout [11, 12], Matrix Layout [13-15] and so on. Node-link layout is one

of the most used graph layouts, which uses links between vertices to indicate the

relationships of vertices. As one of the well-known Node-link layouts for drawing

general graphs, spring layout is proposed by Eades [16] in 1984. Since then, his method

is revisited and improved [17-21] in different ways. There are mainly two kinds of

space filling layout: space division layout and space nested layout. In space division

layouts, the parent-child relationship is indicated by attaching child vertices to the

parent vertices. Since the parent-child and sibling relationships are both expressed by

adjacency. Space nested layouts, such as Treemaps [22], draw the hierarchical structure

in the nested way. They place child vertices within their parent vertices. Matrix Layout

is an alternative approach to graph visualization which is using matrix-based

representations. Graphs can be presented by their connectivity matrixes. Each row and

each column corresponds to a vertex. The glyph at the interaction encodes the edge

from corresponding vertex.

2.2. Multi-level Layouts

Multilevel layouts are largely used in graph visualization as multilevel graph drawing

methods can accelerate run time and also improve the visual quality of graph drawing

algorithms. Chris Walshaw [23] presents a multilevel optimization of the Fruchterman’s

and Reingold’s spring embedder algorithm. The GRIP algorithm [24] coarsens a graph

by applying a filtration to the vertices. This filtration is based on shortest path distance.

Fast Multiple Multilevel Method (3FM) [25] is also a force-directed layout algorithm.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

Copyright ⓒ 2014 SERSC 169

3FM [25] is proved subquadratic (more precisely in (NlogN E)O in time, contrary to

previous algorithms. Work in [26] is based on the detection of topological structures in

graphs. This algorithm encodes each topological structure by a meta-node to construct a

hierarchical graph.

2.3. Our Proposed Method

The proposed fast multi-level layout combines force-directed layout method, graph

partition method and graph compression method. More specifically, the fast multi -level

layout proposed a graph multi-layered compression method based on random walk and

the layout process groups vertices to form “planet” systems and then abstract these

“planet” systems as new vertices to define a new graph and is repeated until the graph

size falls below some threshold. In each level graph, a new force-directed method based

on sampling is employed to assign vertex coordinates. The characteristic of our

proposed multi-level layout is visualizing social networks high quality and quickly.

3. Fast Multi-level Layout

In this section, we will introduce the model of Fast Multi -level Layout (FML)

detailed. The FML model consists of two steps. The first is fast multi -level graph

compress model and the second is the layout initialization and interpolation. In this

research, we propose a new graph compress method based on random walk and a new

quick method to calculating repulsion based on sampling. Next we will introduce these

two steps respectively.

First we give some terminologies that are frequently used in this paper. Throughout this

paper we assume that we are working with a graph (,)G GG V E , with | |GV vertices and | |GE

edges. GV represents the vertex set of G and GE represents the edge set of G .

3.1. Multi-level Compression

The multi-layered compression in 3FM [25] is a very complex process. There, solar

systems are created, which consist of vertices at a distance of two edges or less from the

center of the solar system. It needs more spaces to store the paths between compression units

and more complexity to calculate the initial positions of vertices. Walshaw [23] algorithm

gives a more global quality to the force-directed placement through compressing vertex with

one of its neighbors, but it may lead too many levels, which would complicate the algorithm.

Thus, in this paper our compress strategy mixes the advantages of these two classical

algorithms. We next detailed introduce the compression process of FML algorithm.

In FML algorithm, we create a “Planet System” on graphs. Some vertices are chosen as

“planet” vertices, and then the neighbors of planet vertices are the matching “moon” vertices

of the “planet”. A planet and its matching moons construct a planet system. Figure 1 shows an

original graph with 17 vertices and 16 edges. Our compress strategy is that we compute the

weights of all vertices by Random Walk algorithm, and then compress the vertices with less

weight and their uncompressed moons in the graph.

A random walk of length k on a graph G is a stochastic process with random

variables 0 1 2, , , , kW W W W such that 0 (, , ,)1 n 1 n 1 nT
W and 1iW is a vertex chosen

uniformly at random from the neighbors of iW . Let B be the column-normalized adjacency

matrix of the graph G .

1k kW BW (1)

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

170 Copyright ⓒ 2014 SERSC

By random walk on graph, we get the weights of all vertices. Figure 1 shows an example

graph EG with 17 vertices and 16 edges and Table 1 shows the vertex weights after running

random walk on example graph EG .

Figure 1. Example Graph

According to the weights in Table 1, we first compress the vertex with minimum weight

and its “moons”. Then, if there still are vertices uncompressed, we continue choose the rest

minimum weighted vertex to compress until all vertices are compressed. Figure 2

demonstrates the compress process. Figure 2 (a) is the compress process and Figure 2 (b)

presents the compressed graph.

Table 1. Weights of Vertices After Running Random Walk

Vertex Weight Vertex Weight

14 0.315522 17 0.493981

15 0.315522 13 0.563252

11 0.315522 3 0.563252

12 0.315522 10 0.563252

1 0.315522 5 0.563252

2 0.315522 8 0.737913

6 0.315522 4 1

7 0.315522 9 1

16 0.493981 -- --

Figure 2. Compress Process

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

Copyright ⓒ 2014 SERSC 171

After getting the compressed graph 1G , we continue to compress 1G to high level graphs.

The compressing process is the same as the process described below. We compute the

weights of vertices in 1G and compress the vertices according to their weights. By this

analogy, we can get 2G , 3G until LG . The termination condition of compression is that the

number of vertices in LG less than our preset maximal vertex count. Then we can obtain the

multi-level compression graph just like Figure 3.

Figure 3. Multi-level Compression

Figure 4 shows the flowchart of multi-level compression of graph.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

172 Copyright ⓒ 2014 SERSC

Begin

End

Vertices <n

Random Walk

Select vertex with

minimum weight

Compress vertex

Is there uncompressed

vertex in current level?

Construct new

level graph

YES

NO

NO

YES

Figure 4. Flowchart of Multi-level Compression

3.2. Layout Initialization and Interpolation

3.2.1. Single Level Force-directed Layout based on Sampling

We apply the force-directed layout algorithm to every level graph. To accelerate the layout

process, we propose a new method to compute the repulsion rf based on sampling.

For a vertex v in G , the repulsion of ()kf v comes from two parts. v could be partly

repelled by its neighbors and partly repelled by the other vertices in the graph. For

accelerating repulsion computing, we only consider the repulsion from the neighbors whose

length to v is no more than 2, and the repulsion from a random sample of vertices from other

part of graph. We compute the repulsion by the following equation.

2 2
1 1

1()
() (* *)

S
k u v u V

uv uv

c L c
f v C

d l d
 (2)

Where ()v represents the neighbor set with length to v no more than 2, SV represents the

sampling vertices set, uvd represents the Euclidean distance between u and v , L denotes the

number of levels of the compressed graph and l denotes the current level.

We calculate the attraction by the following equation:

2
2 2()

() * *a uvu v
f v C c d

 (3)

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

Copyright ⓒ 2014 SERSC 173

After much experimenting, we get the best parameter values, where 1 4C , 1 0.25*c c

and *
| V |

W Hc (W and H are the width and height of layout area respectively), 2 2C

and 2 0.75c .

3.2.2. Multi-level Initialization and Interpolation

Let 0 1 1 1{ , , , , , , , ,},i 0,1,2, ,i i i LListG G G G G G G L be the compressed graph. 0G , iG

and LG are original graph, i level graph and top level graph respectively. 1iG is compressed

from iG . In the multi-level initialization and interpolation stages, we first position the vertices

in top level graph LG by single level force-directed layout based on sampling. The refinement

process from iG to 1iG consists of two steps. Frist we initialize the position of vertices in

1iG by the vertices in iG , and then adjust the positions of vertices in 1iG by single level

force-directed layout based on sampling. Iteratively repeat the above process until all vertices

in original graph are positioned.

Initializing the position of vertices in 1iG consists of two steps: planet vertices

initialization and moon vertices initialization. First, we put the planet vertices in 1iG at the

position of its ancestor vertex in iG and then we position the moon vertices in 1iG . Suppose

0s and 0t are two planet vertices, v is a moon vertex between 0s and 0t . Then the position of

v can be calculated by Equation. (4)

0
0 0 0

0 0

_ (,)
() () (() ())

(,)

desire edgelength s v
Pos v Pos s Pos t Pos s

length s t
 (4)

If v is contained by more than one path, then the position of v is the centroid of these paths.

0 0(,)

1
() (())

i
iv p s t

Pos v Pos v
r

 (5)

Where 0 0(,)length s t denotes the length of shortest path between 0s and 0t ,

0_ (,)desire edgelength s v denotes the length of shortest path between planet vertex 0s and moon

vertex v .

Figure 5 demonstrates the vertex initialization process of 1iG from iG . Figure 5 (a) shows

i -level graph iG . Figure 5 (b) shows (1)i -level graph 1iG , vertices with larger radius are

planet vertices and vertices with smaller radius are moon vertices. We first position the planet

vertices in 1iG on the locations of their ancestor vertices, then calculating the positions of

moon vertices by Eq. (4). In Figure 5 (c), suppose u and v are two moon vertices in 1iG , we

temporarily put u and v at the circumference with radius 1 of their planet vertex,

0 0(,)length s t is the length of shortest path between 0s and 0t , 0_ (,)desire edgelength s v is the

length of shortest path between planet vertex 0s and moon vertex v. There is only one planet

path
0 0(,)s tP through u , so the position of u is 0 0 0

1
() (() ())

2
Pos s Pos t Pos s . There are two

planet path
0 0(,)s tP ,

0 1(,)s tP through v, so the position of v is

0 0 0 0 1 0

1 1 1
[(() (() ())) (() (() ()))]

2 3 3
Pos s Pos t Pos s Pos s Pos t Pos s , which is shown in Figure 5

(c).

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

174 Copyright ⓒ 2014 SERSC

Figure 5. Initializing Process

Figure 6 shows the flowchart of multi-level initialization and interpolation.

Begin

End

Top level graph?

Initialize vertex

positions randomly

Graph sampling

Calculate repulsion

Is the vertex adjustment

less than thresthod?

Move the layout to the

center of screen

NO

YES

YES

NO

Get i-level graph

Calculate attraction

Is the current level graph

original graph?

YES

NO

Initialize vertex positions

by their ancestor vertices

Figure 6. Flowchart of Multi-level Initialization and Interpolation

3.3. Time Complexity Analysis

The time complexity of single level force-directed layout is:

2 2 2
0 0 0 1 1 1(T) O(k *(| V | | E |) k *(| V | | E |) k *(| V | | E |))L L LO (6)

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

Copyright ⓒ 2014 SERSC 175

Our proposed FML method takes 2k*(| V | | E |)
l

L
 time to run single level force-directed

layout based on sampling in every level graph. With the increase of vertices, k will be much

less than | V | . With the sampling probability p , the number of sampled vertices is 0

1
| V |

L
 for

0-level graph, 1

2
| V |

L
for 1-level graph, and 1| V |L

L

L
 for (1L)-level graph. So the time

complexity of FML can be represent by the following equation.

2 2 2
0 0 0 1 1 1 1 1

1 2
(T) O(k *(| V | | E |) k *(| V | | E |) k *(| V | | E |))L L L

L
O

L L L
 (7)

By contrasting Equation (6) and Equation (7) we can find our proposed fast multi-level

layout can reduce the calculation of repulsion between vertices and accelerate the process of

layout.

4. Experiments

4.1. Experiments 1: Visualization Comparison

In this section, we evaluate our proposed fast multi-level layout on several graph datasets.

For the first experiment, we evaluate the visualization effects of our proposed fast multi-level

layout. Figure 7 shows the visualization effects of DIMACS10 test sets and Hamm data sets.

Right column are the visualization effects of our fast multi-level layout and left column are

the visualization effects published on the internet. By comparing our layout to the published

layout effects, we can find our FML can display the real structures of social networks

correctly and quickly whatever the density of social networks is uniformity.

(a) (b)

(c) (d)

(e) (f)

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

176 Copyright ⓒ 2014 SERSC

(g) (h)

Figure 7. The Comparison between Layouts

4.2. Experiments 2: Layout Time

The main characteristic of our proposed FML method is layout speed. Thus we evaluate

the layout time with other methods on several different scale data sets in this section. There

are four test data sets. They are “data” with 2851 vertices and 15093 edges, “add32” with

4690 vertices and 9462 edges, “power” with 4941 vertices and 6594 edges and “whitaker”

with 9800 vertices and 28989 edges. Figure 8 shows the layout time for these four data sets

by different layout methods. Our FML method takes the shortest time to layout the networks

when the number of vertices is less than 5000. As the increasing of vertices, the advantage of
3FM become prominent gradually. However, for social networks visualization, the size of

network should be not very large. Otherwise such a dense layout is a visual disaster for

human eyes. So our proposed method has advantages when the number of vertices is less than

5000.

Figure 8. Layout Time Comparison with Different Methods

Figure 9 shows the run time variation of our FML while the scale of network increasing.

There are 7 data sets. They are “subScience” (379 vertices and 914 edges), “polblogs” (1490

vertices and 3430 edges), “add20” (2395 vertices and 7462 edges), “data” (2851 vertices and

15093 edges), “add32” (4960 vertices and 9462 edges), “whitaker” (9800 vertices and 28989

edges) and “4elt” (15606 vertices and 45878 edges). Through Figure 9 we can also observe

our FML method can run a good performance when the vertex scale is less than 5000. The

layout process can be completed within 20 seconds. Limited by the area and resolution of

layout screen, it makes little sense to layout the social networks with vertex scale larger than

10000. Thus our FML method has the important theoretical significance and the practical

application value.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

Copyright ⓒ 2014 SERSC 177

Figure 9. Layout Time Comparison with Different Scale Data Sets

5. Conclusions

In this paper, we firstly proposed a new graph multi-layered compression method

based on random walk, and then we presented a new fast multi-level layout based on

the compressed graph structure. We detailed described the fast multi-level layout and

performed experiments on several datasets. We compared our layout with the 3FM

layout [25] and Walshaw [23] layout from three aspects. The comparable results show

our fast layout can visualize the social networks high quality and rapidly.

Acknowledgements

This research was supported in part by Shenzhen Strategic Emerging Industries Program

under Grants No.JCYJ20120613135329670, NSFC under Grant no.61100190 and Shenzhen

Science and Technology Program under Grant No.CXY201107010163A and

No.GJHS20120627112429515.This paper is a revised and expanded version of a paper

entitled Social Network Visualization Oriented Multi-level Layout method presented at ACN

2014, Indonesia, June 19-22, 2014.

References

[1] S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486, (2010), pp. 75-174.

[2] M. Kaufmann and D. Wagner, “Drawing Graphs Methods and Models”, Lecture Notes in Computer Science,

Springer Verlag, vol. 2025, (2001).

[3] G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis, “Algorithms for the Visualization of Graphs”, Prentice-

Hall, (1999).

[4] D. Archambault, T. Munzner and D. Auber, “TopoLayout: Graph layout by topological features”, IEEE

Information Visualization Posters Compendium, vol. 3, no. 4, (2005).

[5] W. Cui and H. Qu, “A survey on graph visualization”, Hong Kong University of Science and Technology,

(2007).

[6] J. Díaz, J. Petit and M. Serna, “A survey of graph layout problems”, ACM Computing Surveys, vol. 34, no. 3,

(2002), pp. 313-356.

[7] Y. F. Hu, “Visualizing Graphs with Node and Edge Labels”, CoRR, (2009).

[8] T. M. J. Fruchterman, “Graph Drawing by Force-directed Placement”, Software- Practice and Experience,

vol. 21, no. 11, (2006), pp. 1129-1164.

[9] S. Takahashi and S. Miyashita, “A Constraint-based Approach for Visualization and Animation”, Kluwer

Academic Publishers, Constraints, vol. 3, no. 1, (1998), pp. 61-86.

[10] D. Auber, Y. Chiricota and F. Jourdan, “Multiscale Visualization of Small World Networks”, IEEE

Conference on Information Visiualization, (2003), pp.75-81.

[11] J. Heer and D. Danahboy, “Vizster: Visualizing Online Social Network”, IEEE Symposium on Information

Visualization, (2005), pp. 32-39.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

178 Copyright ⓒ 2014 SERSC

[12] D. Archambault and T. Munzner, “Smashing Peacocks Further: Drawing Quasi-Treeform Biconnected

Components”, Visualization and Computer Graphics, vol. 12, no. 5, (2006), pp. 813-820.

[13] N. Elmqvist and T. N. Do, “Interactive Large-Scale Graph Visualization”, In Proceedings of IEEE Pacific

Visualization Symposium, (2008), pp. 215–222.

[14] N. Henry and J. D. Fekete, “Matrix Explorer: A Dual-representation System to Explore Social Networks”,

IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 5, (2006), pp. 677-684.

[15] N. Henry and J. D. Fekete, “MatLink: Enhanced Matrix Visualization for Analyzing Social Networks”,

Springer Berlin Heidelberg. Human-computer interaction. Berlin: Springer Berlin Heidelberg, (2007), pp.

288-302.

[16] P. A. Eades, “A heuristic for graph drawing”, In Congressus Numerantium, vol. 42, (1984), pp. 149–160.

[17] T. M. J. Fruchterman and E. M. Reingold, “Graph Drawing by Force-directed Placement”, Software- Practice

and Experience, vol. 21, no. 11, (1991), pp. 1129–1164.

[18] E. R. Gansner and S. C. North, “Improved force-directed layouts”, Proceedings of the Graph Drawing

Symposium 1998, (1998), pp. 364–373.

[19] P. Eades and M. L. Huang, “Navigating Clustered Graphs using Force-Directed Methods”, Journal of Graph

Algorithms and Applications, vol. 4, no. 3, (2000), pp. 157–181.

[20] P. Gajer, M. T. Goodrich and S. G. Kobourov, “A multi-dimensional approach to force-directed layouts of

large graphs”, Computational Geometry: Theory and Applications, vol. 29, no. 1, (2004), pp. 3–18.

[21] T. Dwyer, K. Marriott and M. Wybrow, “Integrating Edge Routing into Force- Directed Layout, (2007).

[22] B. Johnson and B. Shneiderman, “Tree-Maps: a space-filling approach to the visualization of hierarchical

information structures”, Readings in information visualization: using vision to think table of contents, (1991),

pp. 152–159.

[23] C. Walshaw, “A multilevel algorithm for force-directed graph drawing”, Graph Drawing, Springer Berlin

Heidelberg, (2001), pp. 171-182.

[24] P. Gajer and S. G. Kobourov, “Grip: Graph drawing with intelligent placement”, JGAA, vol. 6, (2000), pp.

2002.

[25] I. Benacer and Z. Dibi, “Modeling and Simulation of Organic Field Effect Transistor (OFET) Using Artificial

Neural Networks”, International Journal of Advanced Science and Technology, vol. 66, (2014).

[26] D. Archambault and D. Auber, “Topolayout: Multilevel graph layout by topological features”, IEEE

Transactions on Visualization and Computer Graphics, vol. 13, no. 2, (2007), pp. 305–317.

[27] M. E. J. Newman, “Detecting community structure in networks”, The European Physical Journal B-

Condensed Matter and Complex Systems, vol. 38, no. 2, (2004), pp. 321-330.

[28] M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. USA 99, (2002), pp. 7821-7826.

Authors

Xiaolin Du, she was born in Heilongjiang Province, China in 1983,

and received her Master Degree in Computer Science from Harbin

Institute of Technology in 2009.

Currently, she is a PhD candidate in Shenzhen Graduate School,

Harbin Institute of Technology. Her research interests involve data

mining, data visualization and social network discovering.

Yunming Ye, he was born in China in Sep. 1976, and received his

PhD degree in Computer Science from Shanghai Jiao Tong University in

2004.

Currently, he is a professor in Shenzhen Graduate School, Harbin

Institute of Technology. His research interests include Web mining, Web

Search, and social computing.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

Copyright ⓒ 2014 SERSC 179

Yueping Li, he was born in Guangdong Province, China in Sep. 1980,

and received his PhD in Computer Science from Sun Yat-sen University

in 2008.

Currently, he is a lecturer in Shenzhen Polytechnic. His research

interests involve web mining, graph algorithm and optimization.

Ge Song, she was born in Henan Province, China, in 1985.

Currently, she is a PhD candidate in Shenzhen Graduate School,

Harbin Institute of Technology. Her research interests involve data

mining and text an analysis.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 12 (2014)

180 Copyright ⓒ 2014 SERSC

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

