
International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 11 (2014), pp. 197-208

http://dx.doi.org/10.14257/ijmue.2014.9.11.20

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2014 SERSC

Design of an Efficient Method for Identifying Virtual Machines

Compatible with Service Chain in a Virtual Network Environment

Hyeonseok Oh
1
, Daeun Yu

1
, Yoon-Ho Choi

2*
 and Namgi Kim

1

1
Department of Computer Science, Kyonggi University, Iui-dong,

Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea

2
Department of Convergence Security, Kyonggi University, Iui-dong,

Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea
1
{lims, deyoo, ngkim}@kyonggi.ac.kr,

2
ychoi@kyonggi.ac.kr

Abstract

With advancements in network technologies, network virtualization has been proposed to

efficiently provide a large number of services and flexible management by utilizing limited

resources over existing networks as much as possible. Network virtualization has been

proposed as a new paradigm for networks, as it simplifies complicated network

configurations for convenient maintenance through the maximum utilization of limited

network resources. However, problems have arisen due to network virtualization, such as

how to assign real network components that are compatible with virtual network components

over a large number of virtual machines existing in a network. In particular, the service-

chaining concept—where a network flow only passes through needed services—has been

newly introduced by combining the recently highlighted Software-Defined Network with a

virtualization concept called Network Function Virtualization. As a result, studies on which

virtual machines are selected and how to connect them have increased ever more.

Accordingly, this paper aims to identify virtual machines that are compatible with service

chaining in a virtual network environment where virtual machines are dispersed, and it

proposes a method of how to create a path by connecting virtual machines.

Keywords: Virtual Network, Software-Defined Network, Network Function Virtualization,

Service Chaining, Finding Compatible Virtual Machines

1. Introduction

As the number of network users has increased in recent years, services using networks

have also increased, creating many problems, such as limited resources and the construction

of new networks for new services. To resolve such problems, a number of studies have been

conducted.

As a result of such studies, a host virtualization concept has been proposed to maximize the

utilization of limited resources by converting many logical hosts into a single physical host,

thereby reducing the idle state as much as possible, or converting a number of physical hosts

into a single logical host to enable efficient management. The virtualization technique has

been extended to a network layer so that physical devices in a network, such as switches or

links, can also be segmented into logical devices, similar to hosts.

Through this process, idle resources in a network can be utilized as much as possible, and

an ease-of-management environment can be constructed. In addition, a network environment,

*
 Corresponding Author

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 11 (2014)

198 Copyright ⓒ 2014 SERSC

which is independent of services and users, can be provided easily without physical

installation and modifications by using segmented logical devices. However, since services

and paths in a network have become more complicated than existing systems under the virtual

network environment, the optimal path search for flows and traffic management will be more

difficult. A Software-Defined Network (SDN) has been introduced to perform flow-path and

traffic management so that network traffic can move more efficiently. Since a specific flow

can be passed through a desired path in the SDN, service chaining—where specific hosts can

be passed through to meet the characteristics of a flow— has been proposed. In addition to

the conventional concept of an optimal path, which simply indicates a path from source and

destination points, service chaining can add nodes that must be passed through. In this paper,

an algorithm that can determine an optimal service chain path is proposed to solve the above

problems by considering the network performance factors and services of each virtual

machine.

This paper is organized in the following way. In Section 2, technologies related to the

proposed algorithm are explained, while the algorithm that aims to solve the above problems

is explained in Section 3. After we describe the evaluation results under various

circumstances in Section 4, we conclude this paper in Section 5.

2. Related Studies

2.1. Virtual Network Embedding (VNE)

Network virtualization is used to virtualize all network devices in a network to alter them

into logical devices, thereby creating a virtual network using logical devices [1]. The most

basic step is to map the virtual nodes and links in a virtual network to the physical devices in

a real network. During such mapping operations, it is important to meet constraints, such as

host process capability or bandwidth size, over the virtual network while creating no

excessive load on the network. This is called an NP-Hard problem. To solve the virtual

network mapping problem, there are two approaches: heuristic programming and integer

programming. Both of these two methods aim to reduce the number of network links and

loads while producing optimal performance.

2.2. Software-Defined Network (SDN)

A switch that serves packet transmissions over existing networks has two planes: a data

plane that is responsible for data transmissions and a control plane that indicates the

transmission direction. These two planes are combined into one structure in a switch.

However, this combined structure cannot identify the overall network status so it cannot

produce a compatible traffic path for a large number of services over a network. To solve this

problem, an SDN was proposed. This is to separate the combined structure into two planes; a

switch manages the data plane, while a controller collects the control plane of every switch in

a centralized manner, thereby ascertaining the overall network topology information. Based

on this information, when a flow enters the controller-managed network, a flow with the

shortest path is produced. This considers the capacity of each link using the shortest path-

finding algorithm, thereby preventing network performance degradation, which is due to the

duplication of paths, as previously experienced.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

 Vol. 9, No. 11 (2014)

Copyright ⓒ 2014 SERSC 199

2.3. Network Function Virtualization (NFV)

Due to advancements in network technologies, the frequency of new services has increased

gradually. Thus, recurrent deletions of existing network functions or additions of new

functions occur. However, since most traditional networks consist of proprietary hardware-

based devices, it is difficult to remove existing functions, add new functions, or manage

maintenance. To solve these problems, Network Function Virtualization (NFV) was

proposed. With NFV, a network structure consists of several simple but high-performance

components, such as high-capacity storages, high-performance servers, and high-performance

switches, while the required functions are implemented using software and added to each

component [2]. Through NFV, a network structure that is flexible to change and does not

depend on specific proprietary venders can be created.

2.4. Service Chaining in SDN

As network flows can be directed to a compatible path in a network using an SDN, a

service-chaining concept has been proposed where, according to the flow characteristics, a

flow can pass through only the devices that provide required services among the existing

network services [3]. Such service chaining is especially effective in the security sector. For

example, the service chaining concept has been used to classify a flow by attack type, after

which a measure was proposed to improve security performance via service chains that

correspond to a certain attack type of a specific flow [4].

2.5. Web Service Composition

There has been a consistent study on how to combine various services over the web, ever

since prior to the proposal of a service-chaining concept in the SDN, as mentioned above. As

user service requirements have become more and more complicated, a number of studies have

been conducted on combining existing web services dispersed over networks to provide new

web services. Such a web service composition basically determines whether two web services

are required to be linked by using the definition of a user’s requirements as well as the input,

the output, the previous state, and the modified state of the final results received after each

service is provided. To determine this, a representation of the correlation between web

services has to be generated; therefore, a form of graphs [5, 6] or trees [7] was employed to

represent the correlation. This represented correlation is used to search for the services—to be

linked through search algorithms—that are compatible with each data structure used in the

representation of the correlation, thereby being linked with prior services. Also, G. Zayaraz et.

al used CPN model for functional testing of Web service composition [8].

3. Proposed Algorithm

In this paper, a method is proposed of how to create an optimal service-chain path, which

is compatible with user requirements or flow characteristics in a virtual network. To this end,

a network structure—to which this algorithm is applied—is first explained, and the proposed

algorithm that can be operated in the above network structure is explained thereafter.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 11 (2014)

200 Copyright ⓒ 2014 SERSC

(a) (b)

Figure 1. Topological Overview of Network Architecture for Implementing the
Proposed Algorithm : (a) An Example of the Real Network Structure for

Virtualization; (b) An Example of the Virtual Network Topology that can be
Inserted into a Controller

3.1. Network Structure

The network structure considered in this paper consists of high-performance devices

required in NFV as well as an SDN-applied network in which controllers are added. Over the

network structure, each high-performance server consists of an internal network, which is

composed of a number of virtual machines, while a virtual machine(VM) serves one of the

functions of the network components, such as firewalls or detection systems. Switches that

are connected to servers in the network are interlinked to a controller, while a controller

receives traffic flow information from the switches to properly identify the flow

characteristics. In addition, the characteristics of every virtual machine are also provided to a

controller according to a specific event or a certain interval, and this information is employed

later in the proposed algorithm. Figure 1(a) shows an example of the network that employs

this proposed structure.

Traffic identified in this structure can have a logically reconfigured virtual network

according to the traffic characteristics; therefore, an administrator can configure a virtual

network topology that is optimized for this specific flow, and the administrator can enter this

information into a controller. Figure 1(b) shows a graphic form of a virtual network that can

be configured according to the traffic characteristics. Here, a labeled mark in each node

represents a specific service. When services are added, information on the service addition is

transmitted to a controller to be used during path creation, which is compatible with future

service-chaining.

3.2. Detailed Explanation of the Algorithm

The proposed algorithm in this paper largely consists of two steps. The first step is to find a

virtual machine that is compatible with the required services, and the second step is to

determine a path. To solve the problem in each step, first, a method of how to select optimal

virtual machines using a vector space model—in which various pieces of information about a

virtual machine are used—is provided. Second, using the selected virtual machine, a service-

chaining path is virtually created by using a search via the shortest distance-finding algorithm,

which is then converted into a path in the real network environment.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

 Vol. 9, No. 11 (2014)

Copyright ⓒ 2014 SERSC 201

Figure 2. A Schematic Diagram of the Proposed Algorithm

3.2.1. Virtual Machine Selection

To find virtual machines that are compatible with user requirements or flow characteristics,

this algorithm uses a virtual network topology that exists in a controller. The information

inside a controller includes a set of values received and requested from each host during the

system initialization, which is necessary to calculate the optimal value compatible with the

requirements. Table 1 explains these values.

The upper three items in Table 1 are necessary to find the virtual machines that are

compatible with the requirements, such as performance or power consumption, while the last

item is an element considered for the service chain. To find compatible virtual machines

using such items, all elements are represented by an integer format followed by a 4D vector.

Each element’s value can be updated by the initial request or through periodic communication

with the devices as well as through controller operations. All items in a single 4D vector

produced through the above operation can be arranged in a 3D vector space, other than the

last item, which refers to service number. A compatible virtual machine can be found using

Algorithm 1 and the arranged items. Table 2 explains the parameters used in the algorithm 1.

The algorithm 1 is developed based on the Euclidian distance, and it does not aim to

calculate real distance but to simply compare distances. Therefore, the computation excluded

root values to compare distances for the purpose of a reduction in computational load.

A virtual machine that has the shortest distance between the requirement vector and the

VM vector in the aforementioned 3D vector model is selected as the optimal virtual machine.

This algorithm sorts and stores the distances between the requirement vector and virtual

machines in an ascending order upon initial request, and it returns the lowest value on the far

left side whenever the same request arrives. No modifications are found in the values in the

network topology. The following is an example of the above algorithm.

The distances to the VM are shown in Table 3 where the requirement vector is (0, 0, 0) and

the VM vectors indicating the required items without providing service numbers are arranged

in the 3D space, as shown in Figure 3. Based on the results, the virtual machine most

compatible with the user or the requirement vector is No. 3 VM, so that No. 3 VM is returned

as the result of the request. Administrators can use the algorithm for security as well as for

traffic or resource management.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 11 (2014)

202 Copyright ⓒ 2014 SERSC

Table 1. Information Required for Processing from a Virtual Machine

Item name Description

session_num

The number of sessions that are currently connected: the

available number of sessions is limited in general, and

the greater the number of sessions, the worse the

throughput becomes.

proc_pkt
Throughput by packet size: the maximum packet

throughput by a processer per second.

protocol_proc
Throughput by protocols: throughput by protocol of the

input flow.

service_num
Provided service number: service number provided by a

virtual machine.

Table 2. Parameters for Algorithm 1

Parameter Description Parameter Description

vm_set
A set of inputted virtual

machines (VMs)
proc_pkt

Packet throughput

per second

req_vec
Optimal VM requirement

vector inputted by a user
distance

Distance between

VM vector and user

requirement vector

service_num

One of the attributes of

req_vec, which refers to

service number preferred

by a user

session_num
Number of sessions

connected to a VM

protocol_proc Protocol throughput

Algorithm 1

1: Input: Information vector about VMs (the number of

2: sessions currently connected, throughput by packet size, average packet

size, provided service number), User requirement vector

3: Output: a set of VMs compatible with the requirements

4:

5: PROC FIND_VM:

6: vm_set = get_vm(req_vec.service_num)

7: FOR i 0 TO vm_set.length:

8: distance := pow(req_vec.session_num

9: - vm_set[i].session_num, 2)

10: + pow(req_vec.proc_pkt_num

11: - vm_set[i].proc_pkt, 2)

12: + pow(req_vec.protocol_proc

13: - vm_set[i].proctocol_proc, 2)

14: sorting by distance in vm_set

15: RETURN vm_set

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

 Vol. 9, No. 11 (2014)

Copyright ⓒ 2014 SERSC 203

Figure 3. An Example of Virtual Machine Selection

Table 3. An Example for Finding the Optimal VM

VM No.
Distance

to the origin
Rank

1 10909 3

2 3400 2

3 909 1

3.2.2. Step of Path Determination

Using a VM set obtained through the previous process, an optimal service-chain path is

calculated using Algorithm 2. Table 4 explains the parameters used in the proposed

algorithm. Algorithm 2 selects the optimized virtual machines in terms of distances among

the virtual machines selected using the previous optimal VM selection algorithm. This

thereby creates a path through which a flow should pass. The path of a flow can be generated

by means of one of the shortest distance-finding algorithms in a graph, such as Dijkstra’s

algorithm, Floyd’s algorithm, or the Bellman-Ford algorithm. Through one of these

algorithms, the shortest path is searched for all pairs that have services in a graph and a

logical path. In addition, only a service sequence is substituted with a physical path. First, a

logical service path is generated through the optimal VM selection algorithm, and then, a VM

set that is compatible with the requirement is obtained using Algorithm 1 (Lines 9 to 10).

After this, a VM set that is compatible with the next service chain step is obtained by the

same manner as above (Lines 11 to 12). Then, the shortest value between the pairs in the two

sets is searched using the table with the shortest distances between nodes, which was made in

advance to search the shortest path between two nodes contained in the two sets of VMs. A

pair of nodes that has the least distance is selected and put into the logical path (Lines 13 to

22). After this, the VM with the shortest distance between the elements in an optimal VM set

is selected using Algorithm 1, and the last node in the currently stored logical path is found

and stored again in the logical path. This process continues until all service chains are

processed to find VMs compatible with each step in the service chain. This is followed by a

search for the shortest path between the nodes (Lines 29 to 30), which can be done using the

table identifying the shortest paths of each pair, as produced in the earliest step.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 11 (2014)

204 Copyright ⓒ 2014 SERSC

Table 4. Parameters for Algorithm 2

Parameter Description Parameter Description

vm_set

A VM set compatible

with the first service

chain

select_idx,

select_idx2

VM No. that has the

least and shortest

distance after the SPF

result

vm_set2

A VM set compatible

with the second service

chain

D[][]
Distance between

row and col

total_path
Shortest path finally

returned
path[] VM Node list

Algorithm 2

01: INPUT: User requirement vector, VM Info., Network topology

02: OUTPUT: Service chain path optimized for the user requirements

03:

04: PROC CHAINING_VM:

05: Init matrix D[N][N]

06: Using the shortest distance finding algorithm, search the shortest path for all node pairs

07:

08: FOR i 0 TO chain length of the flow:

09: IF i = 0:

10: vm_set := a VM set compatible with the requirement in the first chain step

11: ELSE IF i = 1:

12: vm_set2 := a VM set compatible with the requirement in the second chain step

13: min_val := 9999

14: min_i := 0, min_j := 0

15: FOR j 0 TO vm_set.length:

16: FOR k 0 TO vm_set2.length:

17: IF min_val > D[vm_set[j]][vm_set2[k]]:

18: min_val = D[vm_set[j]][vm_set2[k]]

19: min_i = j, min_j = k

20: path.add(vm_set[min_i])

21: path.add(vm_set2[min_j])

22 : select_idx = vm_set2[min_j]

23: ELSE:

24: vm_set := a VM set compatible with the requirement

25: FOR j 0 TO vm_set.length:

26: select_idx2 := index where D[select_idx][vm_set[j]] is the least

27: path.add(select_idx2)

28:

29: for i 0 TO path.length - 1:

30: total_path.add(shortest path between path[i] and path[i+1])

31:

32: RETURN total_path

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

 Vol. 9, No. 11 (2014)

Copyright ⓒ 2014 SERSC 205

Table 5. Simulation Environment

Category Description

CPU Intel Core2 Quad 3.7Ghz

RAM 4GB

OS Windows 7 Professional

LANGUAGE Java

Figure 4. Network Topology for the Experiment

4. Experiment

In this section, an experiment is presented to evaluate the performances of the algorithms

proposed in this paper. The experimental environment is shown in Table 5, and a simulator

was used to verify the performance.

In this experiment, the times spent on creating a path in two shortest-path algorithms using

the proposed algorithm were compared. Figure 4 shows the network environment for the

experiment. All the implementations were the same, except for the algorithm used to find the

shortest path in the earlier step. The maximum length of the applied service chain was six,

while the number of service types was limited to six for each node. Under these

circumstances, only the representative types were recorded out of a variety of possible

service-chain types.

The experiment results are as follows: the measure of result time value is nano second.

Also, each value is average value of many experiments. As shown in Figure 5, as the number

of service chains increased, all algorithms showed an increase in overall processing time. The

processing time per algorithm showed that the Floyd algorithm was more efficient than the

Dijkstra and Bellman-Ford algorithms. This was because the Dijkstra and Bellman-Ford

algorithms should find the shortest path for all pairs during single path finding, while the

proposed algorithm, including the service-chaining concept, was applied; although, the

complexity of Floyd’s algorithm was the greatest.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 11 (2014)

206 Copyright ⓒ 2014 SERSC

Figure 5. Processing Time vs. Service Chain Length

5. Conclusion

This paper proposed a service-chaining method based on finding suitable virtual machines

according to user requirements in NFV- and SDN-based network environments in which a

large number of virtual machines are dispersed over a network and a single controller

manages a number of virtual machines. To select suitable virtual machines, the required

elements are proposed. These elements are converted into an N-dimensional space vector

where virtual machines are arranged to determine similarities based on the distances to the

requested vector, thereby acquiring a virtual machine set that meets the requirements. To

generate the optimal service-chaining path, VMs that are compatible with each step in the

service chain according to the flow characteristics were found, and a method using the

shortest distance-finding algorithm between VMs was proposed.

A future study is scheduled to select optimal virtual machines using more elements that can

reflect the network administrator or user requirements more specifically than the current one,

and algorithms that can construct an efficient service chain path will be developed.

Acknowledgements

This paper is supported by the Industrial Core Technology Development Program (Next-

Generation Communication Network) in the Ministry of Science, ICT & Future Planning

[10047541, Development of the auto-defense and auto-scalable SDN smart security

networking system using NFV-based service chaining].

References

[1] Asma BEN LETAIFA, Amel HAJI, Maha JEBALIA, Sami TABBANE, State of the Art and Research

Challenges of new services architecture technologies: Virtualization, SOA and Cloud Computing”, IJGDC

Vol. 3, No. 4, (2010) December, pp 69-88

[2] ETSI, “Network Function Virtualization (NFV); Prof of Concepts, Framework,” (2013)

[3] Cisco, “Enabling Service Chaining on Cisco Nexus 1000V Series,” White Paper, (2013)

[4] Woosik Lee, Hyeonseok O, Namgi Kim, and Yoon-Ho Choi, “Security Service Chaining Mechanism For

Preventing Various High-Volume Attack Traffic”, (2014)

[5] Ruoyan Zhang, I. Budak Arpinar, Boanerges Aleman-Meza, “Automatic Composition of Semantic Web

Service”, ICWS, (2003), pp 38-41

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

 Vol. 9, No. 11 (2014)

Copyright ⓒ 2014 SERSC 207

[6] Xiao Peng and Liu Changsong , “ESCA: Evolution-strategy based Service Composition Algorithm for

Multiple QoS Constrained Cloud Applications”, IJFGCN Vol. 7, No.1, (2014) February, pp 249-260

[7] Jianquiang Hu, Juanzi Li, “Searching and Selecting the Best Web Service Chain” ISECS, Volume 1, (2008),

pp 627-630

[8] G. Zayaraz and Poonkavithai Kalamegam, “A test framework based on CPN model for functional testing of

Web Service Composition”, IJAST, Volume 53, (2013) April, pp 135-150

Authors

Hyeon seok Oh is an master grade student at department of Computer

Science in Kyonggi university, Suwon, Korea. He received the

undergraduate degree from school of computer science, Kyonggi

university. S.Korea, in Feb 14, 2013. His research interests include

Software-Defined Network, Network Function Virtualization, and so on.

Daeun yu is an master grade student at department of Computer

Science in Kyonggi university, Suwon, Korea. She received the

undergraduate degree from school of computer science, Kyonggi

university. S.Korea, in Feb 21, 2014. Her research interests Wireless

Body Area Network and so on.

Yoon-Ho Choi is an assistant professor at department of convergence

security in Kyonggi university, Suwon, Korea. He received the M.S. and

Ph.D. degrees from school of electrical and computer engineering, Seoul

National University, S. Korea, in Aug. 2004 and Aug. 2008, respectively.

He was a postdoctoral scholar in Seoul National University from Sep.

2008 to Dec. 2008 and in Pennsylvania State University, University Park,

PA, USA, from Jan. 2009 to Dec. 2009. He has served as TPC members

in various international conferences and journals. His research interests

include Deep Packet Inspection(DPI) for high-speed intrusion prevention,

mobile computing security, vehicular network security, big data analysis

and so on.

Namgi Kim received the B.S. degree in Computer Science from

Sogang University, Korea, in 1997, and the M.S. degree and the Ph.D.

degree in Computer Science from KAIST in 2000 and 2005, respectively.

From 2005 to 2007, he was a research member of the Samsung

Electronics. Since 2007, he has been a faculty of the Kyonggi University.

His research interests include sensor system, wireless system, and mobile

communication.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 11 (2014)

208 Copyright ⓒ 2014 SERSC

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

