
International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 11 (2014), pp. 11-20

http://dx.doi.org/10.14257/ijmue.2014.9.11.02

Copyright ⓒ 2014 SERSC 11

Feature-preserving, Adaptive and Anisotropic Smoothing Algorithm
for Triangular Mesh Models

Liu Xu-min
1
, Yang Li-xin

2
 and Li Cai-ling

1

1
College of Information Engineering, Capital Normal University, Beijing 100048,

China
2
College of Computer, Beijing University of Post&Telecommunication, Beijing

100876, China

liuxumin@126.com

Abstract

Despite the great success in smoothing of triangular mesh, the classical methods mostly

require human interactions. In order to reduce the parameter settings, an adaptive and

anisotropic smoothing algorithm for removing noise and preserving features of triangular

mesh model was proposed. First calculate the expected normal vector of the model triangles,

the expected normal vector should be an accurate representation of the desired movement

direction and be similar to the original surface normal vector, and then we compute the value

of the offset value. We develop an adaptive coefficient scheme which can avoid the parameter

settings to obtain the coefficient value for each vertex. Finally, we updated every vertex’s

position of the model by formula. Experimental results show that the algorithm can be

adaptive to preserve sharp features and avoid shrinkages by comparing with classical

methods.

Keywords: smoothing; anisotropic; adaptive; triangular mesh; feature-preserving

1. Introduction

With the development of the theory and technology of computer-aided geometric design,

reverse engineering has become an important approach to represent three-dimensional model.

The mock-ups are usually obtained by 3D scanner, the point cloud are collected from the

three-dimensional data measurement tools, while on account of human factors and other

reasons, often lead to data noise , data redundancy and other issues. The noises should be

removed before 3D data processing. Mesh smoothing is to eliminate the noise, to maintain its

topology and geometry, to avoid oversmoothing and volume shrinkage.

Existing triangular mesh smoothing algorithms have two main categories: local iterative

method and global optimization method. Field [1] proposed a classical Laplace algorithm that

mesh vertices move towards its neighboring's center direction. The algorithm is simple and

fast, yet the model is prone to be shrinking and oversmoothing with the increasing number of

iterations. Taubin [2] applied the knowledge of signal processing to remove noise, and

presented a weighted Laplacian algorithm with two alternative scale factors of opposite signs.

Such smoothing can suppress high frequency and enhance low frequency slightly without

volume shrinkage. Mingqiang Wei et al., [3] present a feature-preserving optimization for

noisy mesh algorithm by using joint bilateral filter and constrained Laplacian smoothing, yet

a large computation is needed when the mesh is very large. Desbrun et al., [4] proposed the

mean curvature flow algorithm, each mesh vertex moves towards its normal vector direction

with the speed of mean curvature. While in some special cases, the grid is easy to cause

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 11 (2014)

12 Copyright ⓒ 2014 SERSC

distortion. A mesh regularization and adaptive smoothing was proposed by Ohtake et al., [5],

it used a coupled nonlinear diffusion of the mesh normal and vertices. The algorithm

increased regularity of the mesh, reduced over-smoothing, and enhanced crease lines. Its

drawback was to manually set some interaction parameters. Zhanheng Gao et al., [6],

proposed a quality tetrahedral mesh smoothing via boundary-optimized Delaunay

triangulation, the method can be readily adapted to preserve sharp features.

Mean filter and median filter method of image processing are applied to the field of mesh

smoothing by Yagou [7], while mean filter is not able to maintain the original sharp features,

median filter may increase irregular grid. Tang [8] improves bilateral filtering to a fast

smoothing algorithm based on CUDA, but it has a high computation. The most common

energy function is global optimization method; this method first presented an energy function

which can update the mesh vertex position by solving the function. It’s computationally

intensive, hasn’t been widely used. In 2010, Zhang et al., presents a smoothing algorithm by

solving the discrete linear quadratic energy function [9], low complexity without shrinkage

but a large number of calculations.

In order to reduce the amount of human interaction and computation, effectively remove

noise and keep the sharp features, this paper presents an adaptive anisotropic smoothing

algorithm. First calculate expected normal vector of surface according to its 1-ring surface

normal vector using surface area as weights. Then calculate the offset of each vertex

according to the expected normal vector. Finally, we get umbrella operator [10] to compute

the offset coefficient, then update the vertex’s new position. This algorithm is more adaptive

and efficient.

2. Adaptive and Anisotropic Smoothing Algorithm

2.1. Expect Normal Vector Optimization

Graph Φ is a triangular mesh as Figure 1 shown, the target triangle 𝑅′s adjacent triangles

are distinguished into two categories: the former which shares the same edge with 𝑅, as the

set of 𝑆𝑖(𝑖 = 1,2,3) shown in Fig. 1, which called 1-ring neighborhood; the later which

shares the same point with 𝑅, as the set of 𝑄𝑗(𝑗 = 1,2,3…𝑛) shown in Figure 1, which

called 2-ring neighborhood.

Considering to accurately calculate the expected normal vector, the desired weights

determined by the area of the triangle adjacent triangles. The area is larger, the impact on the

target surface is greater.

The excepted normal vector is obtained by Eq.1:

m(R) =
1

∑𝐴(𝑆)
∑ 𝐴(𝑆)𝑛(𝑆)𝑠∈𝑁(𝑅) (1)

Where 𝐴(𝑆) is the area of triangle 𝑆, 𝑁(𝑅) is the set of neighborhood of triangle 𝑅. In order

to make the desired normal represents the real moving direction, we analysis the impact of 1-ring

and 2-ring adjacent triangles’ normal vector on the expected normal vector calculation. As Figure

2 shown, two intersecting planes Π1 and Π2, assuming Φ − {𝐴𝐵𝐶𝐷} is on the Π1 plane which

contains the target triangle 𝑅, 𝐴𝐵𝐶𝐷 is on the plane Π2. 𝐴𝐵𝐶𝐷 are the points connected with

the target triangle 𝑅. If considering both point and edge connected surface, the expected normal

vector will deviate from the plane Π1 while the surface 𝑅 is in a relatively flat area in real

situation. According to the experiment result, the method using 1-ring can keep sharp features and

avoid uncertain mesh structural aberrations.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 11 (2014)

Copyright ⓒ 2014 SERSC 13

Figure 1. Target Triangle 𝑹’s Neighborhood

Figure 2. Two Intersecting Planes 𝚷𝟏 and 𝚷𝟐

2.2. Vertex Offset Optimization

Literature [5] provides a function to obtain offset value, assuming 𝑉(𝑅) is the offset value

of vertex 𝑃, 𝑉(𝑅) is defined by Eq.2:

 𝑉(𝑅) = ⌊𝑃𝐶⃗⃗⃗⃗ ⃗ ∙ 𝑚(𝑅)⌋𝑚(𝑅) (2)

Where 𝑅 is the triangle containing vertex 𝑃, 𝐶 is the triangle-center of 𝑅, 𝑚(𝑅) is the

expected normal vector of 𝑅. As Figure 3 shows, 𝑚(𝑅) is close to the original normal vector

𝑛(𝑅) if the area is flatter, and so 𝑃𝐶⃗⃗⃗⃗ ⃗ ∙ 𝑚(𝑅) → 0, 𝑉(𝑅) will be smaller, the vertex moves

relatively small which can obtain the sharp features. If 𝑃𝐶⃗⃗⃗⃗ ⃗ ∙ 𝑚(𝑅) is larger, it means the

vertex is in an uneven region and it requires more adjustments to achieve the purpose of

smoothing.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 11 (2014)

14 Copyright ⓒ 2014 SERSC

Figure 3. Vertex Offset Direction

2.3. The Offset Coefficient Optimization

This algorithm proposes a conception called offset coefficient to reduce human interaction,

remove noise quickly and improve the adaptability. The offset coefficient is a value which

changes based on the features of 𝑣𝑖 regions. Supposed the offset coefficient is 𝑑𝑖, 𝑑𝑖 should

have the following properties:

1） When 𝑣𝑖 is in a flat area, 𝑑𝑖 → 0, which preserves the original features.

2） When 𝑣𝑖 is in an uneven area, 𝑑𝑖 increases with the frequency of the noise.

In the experiments, offset coefficient function 𝑔(𝑥)′ s argument is 𝑈(𝑖)2 which is

calculated by Eq.(4), 𝑈(𝑖) is the umbrella operator which is computed by Eq. (3):

𝑈(𝑖) =
1

∑ 𝑤𝑖𝑗𝑗∈𝑁𝑉(𝑖)
∑ 𝑤𝑖𝑗𝑗∈𝑁𝑉(𝑖) 𝑣𝑗 − 𝑣𝑖 (3)

𝑈(𝑖)2 = (𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2) (4)

𝑁𝑉(𝑖) is the set of 𝑣𝑖’s adjacent vertexes, which are directly connected with 𝑣𝑖. 𝑤𝑖 is the

weight of 𝑣𝑖, 1) Let 𝑤𝑖 = 1, all the vertexes have the same weight. 2) Using reciprocal of the

distance 𝑒𝑖𝑗 of vertex 𝑣𝑖 and 𝑣𝑗 , evidently a close vertex has a greater weight. In our

experiment, we choose the former one for simple computation.

As Figure 4 shown, when 𝑈(𝑖) < 0, 𝑣𝑖 move downward, the high frequency information

is suppressed; as Figure 5 shown, when 𝑈(𝑖) > 0, 𝑣𝑖 move upward, the high frequency

information is suppressed. 𝑈(𝑖)2 is a good representation of the size of the noise.

For the function 𝑔(𝑥), this paper attempts the following functions:

𝑔(𝑥) = 𝑥 (5)

𝑔(𝑥) = exp (𝑥) (6)

 𝑔(𝑥) = 1 − 𝑒−(𝑥−𝑢)2/𝜎2
, where 𝜇 = 0, 𝜎 is a small positive variable (7)

The above function are all monotonically increasing function in the definition of

domain-wide (𝑥 ≥ 0) which meet the requirements of the offset coefficient 𝑑𝑖. Experiments

show that: Eq.5 can keep the sharp features but needs multiple iterations. Eq. 7 requires

multiple experimental 𝜎′ value. Eq. 6 can quickly and efficiently remove the noise and

preserve the features.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 11 (2014)

Copyright ⓒ 2014 SERSC 15

Figure 4. Umbrella Operator 𝑼(𝒊) < 𝟎

Figure 5. Umbrella Operator 𝐔(𝐢) > 𝟎

a) Update Vertex Position

We get updated vertex position by the Eq. (8) after calculate the offset and offset

coefficient:

 𝑣𝑖
′ = 𝑣𝑖 + 𝑑𝑖𝑉(𝑅) (8)

Where 𝑣𝑖 represents the coordinate before iterations and 𝑣𝑖
′ represents the coordinate

after updating.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 11 (2014)

16 Copyright ⓒ 2014 SERSC

b) Fairing Error Analysis

In order to compare the results between the classical algorithms and this algorithm, using

literature [5] proposed vertex error method. Assuming 𝑀 is the original mesh, 𝑀′ is the

mesh model after smoothing. We calculate the error by Eq.9:

𝐸𝑣 = √
1

3𝐴(𝑀′)
∑ 𝐴(𝑃′)𝑑𝑖𝑠𝑡(𝑃′,𝑀)2

𝑃∈𝑀′ (9)

𝑃′ is one vertex in mesh 𝑀′, 𝑑𝑖𝑠𝑡(𝑃′, 𝑀) is the distance between vertex 𝑃′ and the

triangle which is nearest vertex 𝑃′ in mesh 𝑀. 𝐴(𝑃′) is the total area of triangles with

vertex 𝑃′ in model 𝑀′. 𝐴(𝑀′) is the area of the model 𝑀′. This error can generally reflect

the volume change of the model.

3. Experimental Results

The experiment run on a PC which frequency is 2.10GHz, RAM 4.00GB (2.96GB

available) and Pentium Dual-Core CPU. Programming platform is Microsoft Visual Studio

2010 with OpenGL graphics library. Comparative results are as follows:

Choosing moai model and add 20% random noise, compare this algorithm with Laplacian

[1], Taubin’s 𝜆/𝜇 algorithm and mean curvature flow algorithm for smoothing results. As

Figure 6 shown, the data comparing results show in Table 1.

(a) original model (b) add 20% noise (c) Laplacian (d) Taubin (e) mean curvature flow (f)this algorithm

Figure 6. Comparing this Algorithm with Classical Algorithms Using Model Moai

Table 1. Moai Data Comparison

algorithm Vertex

num

Triangles

num

step iterations error Running

time

Laplacian 10002 20000 0.5 20 0.022616 78ms

Taubin λ/μ 10002 20000 0.5 20 0.006112 172ms

mean curvature flow 10002 20000 —— 20 0.010658 1060ms

this algorithm 10002 20000 —— 20 0.005699 5601ms

Choosing Octa-flower model and add 20% random noise, compare this algorithm with

Laplacian [1], Taubin’s 𝜆/𝜇 algorithm and mean curvature flow algorithm for smoothing

results. As Figure 7 shown, the data comparing results show in Table 2.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 11 (2014)

Copyright ⓒ 2014 SERSC 17

(a) original model (b) add 20% noise (c) Laplacian (d) Taubin (e) mean curvature flow (f) this algorithm

Figure 7. Comparing this Algorithm with Classical Algorithms using Model
Octa-flower

Table 2. Octa-flower Data Comparison

algorithm Vertex

num

Triangles

num

step iterations error Running

time

Laplacian 7919 15834 0.5 20 0.135568 62ms

Taubin λ/μ 7919 15834 0.5 20 0.035798 125ms

mean curvature flow 7919 15834 —— 20 0.041597 1045ms

this algorithm 7919 15834 —— 20 0.030784 3604ms

Figure 6 and Figure 7 represent the models after adding noise to the original model, (a) is

the original model, (b) is the model which adding 20% noise, (c)-(f) are the smoothing results

after 20 time iterations. (c) is the result of Laplcian which is oversmoothing. (e) shows the

result of mean curvature flow, obviously leads to an irregular grid. (d) and (f) have the similar

result, from the Table 1 and 2, (f) smoothing result has a smaller error compare with (d). For a

higher computation, the running time of this algorithm is longer.

(a) original model (b) add 20% noise (c) Laplacian (d) Taubin (e) mean curvature flow (f)this algorithm

Figure 8. Comparing this Algorithm with Classical Algorithms Using Model
Bunny

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 11 (2014)

18 Copyright ⓒ 2014 SERSC

(a) original model (b) add 20% noise (c) Laplacian (d) Taubin (e) mean curvature flow (f)this algorithm

Figure 9. Comparing this Algorithm with Classical Algorithms using Model
Monk

Figure 8 and Figure 9 respectively represent the bunny and monk models’ smoothing

results after 10 times iterations. Figure 8(a) is the bunny noise model, Figure 9 (a) is the monk

noise model, 8(b) and 9(b) is the results of Laplacian which step is 0.5, 8(c) and 9(c) is the

results of Taubin which step is 0.5, 8(d) and 9(d) is the results of mean curvature flow, 8(e)

and 9(e) is the results of this algorithm. The result of Laplacian is oversmoothing, mean

curvature flow method is oversmoothing in Figure 8 (d) and have more residual noise. This

algorithm has a more efficient result compare with (b) and (d).

4. Conclusion

This paper proposed a feature-preserving, adaptive and anisotropic smoothing algorithm

for triangular mesh models. By discussing the impact of adjacent surface normal vector, we

calculate the expected triangles normal vector. By developing an adaptive coefficient scheme,

we compute the offset coefficient values using the umbrella operator. Finally adjust the

position of the vertexes. Experiments show that this algorithm can reduce human interactions,

achieve a satisfactory smoothing effect, and preserve sharp features adaptively. By

experimental data analysis, the algorithm has a smaller error compared with other algorithms,

can effectively keep the model’s shape.

Acknowledgments

This research was supported by the National Natural Science Foundation of China General

Projects Grant No. 61272029.

References

[1] Field D A, Laplacian smoothing and Delaunay triangulations, Communications in Applied Numerical

Methods, vol. 6, no. 4, (1988), pp. 709-712.

[2] G. Taubin, “A signal processing approach to fair surface design”, Computer Graphics Proceedings, Annual

Conference Series, ACM SIGGRAPH, (1995), pp. 351-358.

[3] M. Q. Wei, W. Y. Shen, J. Qin, J. H. Wu, T. T. Wong and P. A. Heng, “Feature-preserving optimization for

noisy mesh using joint bilateral filter and constrained Laplacian smoothing”, Optics and Lasers in

Engineering, vol. 11, no. 51, (2013), pp. 1223-1234.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 11 (2014)

Copyright ⓒ 2014 SERSC 19

[4] M. Desbrun, M. Meyer，P. Schroder and A. H. Barr, “Implicit fairing of irregular meshes using diffusion and

curvature flow”, Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, (1999), pp.

317-324.

[5] Y. Ohtake, A. G. Belyaev and I. A. Bogaevski, “Mesh regularization and adaptive smoothing”,

Computer-Aided Design, vol. 4, no. 33, (2001), pp. 789-800.

[6] Z. H. Gao, Z. Y. Yu and M. Holst, “Quality tetrahedral mesh smoothing via boundary-optimized Delaunay

triangulation”, Computer Aided Geometric Design, vol. 9, no. 29, (2012), pp. 707-721.

[7] H. Yagou, Y. Ohtake and A. Belyaey, “Mesh smoothing via mean and median filtering applied to face

normals”, In: Geometric Modeling and Processing Proceedings, (2002)，pp. 124-131.

[8] J. Tang, B. Xu, Z. L. Gong, G. S. Wu, “Fast Fairing of 3D Point Clouds Using CUDA”, Journal of System

Simulation, vol. 8, no. 24, (2012), pp.1633-1642.

[9] D. M. Zhang and L. G. Liu, “Feature preserving Mesh Smoothing Algorithm Based on the Weighted Least

Squares”, Journal of Computer�Aided Design & Computer Graphics, vol. 9, no. 22, (2010), pp. 1497-1501.

[10] L. Kobbelt, S. Campagna and J. Vorsatz and H. P. Seidel, “Interactive multi-resolution modeling on arbitrary

meshes”, Computer Graphics SIGGRAPH Proceedings, (1998), pp. 105-11.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 11 (2014)

20 Copyright ⓒ 2014 SERSC

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

