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Abstract 

Despite the great success in smoothing of triangular mesh, the classical methods mostly 

require human interactions. In order to reduce the parameter settings, an adaptive and 

anisotropic smoothing algorithm for removing noise and preserving features of triangular 

mesh model was proposed. First calculate the expected normal vector of the model triangles, 

the expected normal vector should be an accurate representation of the desired movement 

direction and be similar to the original surface normal vector, and then we compute the value 

of the offset value. We develop an adaptive coefficient scheme which can avoid the parameter 

settings to obtain the coefficient value for each vertex. Finally, we updated every vertex’s 

position of the model by formula. Experimental results show that the algorithm can be 

adaptive to preserve sharp features and avoid shrinkages by comparing with classical 

methods. 
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1. Introduction 

With the development of the theory and technology of computer-aided geometric design, 

reverse engineering has become an important approach to represent three-dimensional model. 

The mock-ups are usually obtained by 3D scanner, the point cloud are collected from the 

three-dimensional data measurement tools, while on account of  human factors and other 

reasons, often lead to data noise , data redundancy and other issues. The noises should be 

removed before 3D data processing. Mesh smoothing is to eliminate the noise, to maintain its 

topology and geometry, to avoid oversmoothing and volume shrinkage. 

Existing triangular mesh smoothing algorithms have two main categories: local iterative 

method and global optimization method. Field [1] proposed a classical Laplace algorithm that 

mesh vertices move towards its neighboring's center direction. The algorithm is simple and 

fast, yet the model is prone to be shrinking and oversmoothing with the increasing number of 

iterations. Taubin [2] applied the knowledge of signal processing to remove noise, and 

presented a weighted Laplacian algorithm with two alternative scale factors of opposite signs. 

Such smoothing can suppress high frequency and enhance low frequency slightly without 

volume shrinkage. Mingqiang Wei et al., [3] present a feature-preserving optimization for 

noisy mesh algorithm by using joint bilateral filter and constrained Laplacian smoothing, yet 

a large computation is needed when the mesh is very large. Desbrun et al., [4] proposed the 

mean curvature flow algorithm, each mesh vertex moves towards its normal vector direction 

with the speed of mean curvature. While in some special cases, the grid is easy to cause 
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distortion. A mesh regularization and adaptive smoothing was proposed by Ohtake et al., [5], 

it used a coupled nonlinear diffusion of the mesh normal and vertices. The algorithm 

increased regularity of the mesh, reduced over-smoothing, and enhanced crease lines. Its 

drawback was to manually set some interaction parameters. Zhanheng Gao et al., [6], 

proposed a quality tetrahedral mesh smoothing via boundary-optimized Delaunay 

triangulation, the method can be readily adapted to preserve sharp features. 

Mean filter and median filter method of image processing are applied to the field of mesh 

smoothing by Yagou [7], while mean filter is not able to maintain the original sharp features, 

median filter may increase irregular grid. Tang [8] improves bilateral filtering to a fast 

smoothing algorithm based on CUDA, but it has a high computation. The most common 

energy function is global optimization method; this method first presented an energy function 

which can update the mesh vertex position by solving the function. It’s computationally 

intensive, hasn’t been widely used. In 2010, Zhang et al., presents a smoothing algorithm by 

solving the discrete linear quadratic energy function [9], low complexity without shrinkage 

but a large number of calculations. 

In order to reduce the amount of human interaction and computation, effectively remove 

noise and keep the sharp features, this paper presents an adaptive anisotropic smoothing 

algorithm. First calculate expected normal vector of surface according to its 1-ring surface 

normal vector using surface area as weights. Then calculate the offset of each vertex 

according to the expected normal vector. Finally, we get umbrella operator [10] to compute 

the offset coefficient, then update the vertex’s new position. This algorithm is more adaptive 

and efficient. 

 

2. Adaptive and Anisotropic Smoothing Algorithm 
 

2.1. Expect Normal Vector Optimization 

Graph Φ is a triangular mesh as Figure 1 shown, the target triangle 𝑅′s adjacent triangles 

are distinguished into two categories: the former which shares the same edge with 𝑅, as the 

set of 𝑆𝑖(𝑖 = 1,2,3) shown in Fig. 1, which called 1-ring neighborhood; the later which 

shares the same point with 𝑅, as the set of 𝑄𝑗(𝑗 = 1,2,3…𝑛) shown in Figure 1, which 

called 2-ring neighborhood. 

Considering to accurately calculate the expected normal vector, the desired weights 

determined by the area of the triangle adjacent triangles. The area is larger, the impact on the 

target surface is greater. 

The excepted normal vector is obtained by Eq.1: 

m(R) =
1

∑𝐴(𝑆)
∑ 𝐴(𝑆)𝑛(𝑆)𝑠∈𝑁(𝑅)   (1) 

Where 𝐴(𝑆) is the area of triangle 𝑆,  𝑁(𝑅) is the set of neighborhood of triangle 𝑅. In order 

to make the desired normal represents the real moving direction, we analysis the impact of 1-ring 

and 2-ring adjacent triangles’ normal vector on the expected normal vector calculation. As Figure 

2 shown, two intersecting planes Π1 and Π2, assuming Φ − {𝐴𝐵𝐶𝐷} is on the Π1 plane which 

contains the target triangle 𝑅, 𝐴𝐵𝐶𝐷 is on the plane Π2. 𝐴𝐵𝐶𝐷 are the points connected with 

the target triangle 𝑅. If considering both point and edge connected surface, the expected normal 

vector will deviate from the plane Π1 while the surface 𝑅 is in a relatively flat area in real 

situation. According to the experiment result, the method using 1-ring can keep sharp features and 

avoid uncertain mesh structural aberrations. 
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Figure 1. Target Triangle 𝑹’s Neighborhood 

 

Figure 2. Two Intersecting Planes 𝚷𝟏 and 𝚷𝟐 

2.2. Vertex Offset Optimization 

Literature [5] provides a function to obtain offset value, assuming 𝑉(𝑅) is the offset value 

of vertex 𝑃, 𝑉(𝑅) is defined by Eq.2: 

          𝑉(𝑅) = ⌊𝑃𝐶⃗⃗⃗⃗  ⃗ ∙ 𝑚(𝑅)⌋𝑚(𝑅)                          (2) 

Where 𝑅 is the triangle containing vertex 𝑃, 𝐶 is the triangle-center of 𝑅, 𝑚(𝑅) is the 

expected normal vector of 𝑅. As Figure 3 shows, 𝑚(𝑅) is close to the original normal vector 

𝑛(𝑅) if the area is flatter, and so 𝑃𝐶⃗⃗⃗⃗  ⃗ ∙ 𝑚(𝑅) → 0, 𝑉(𝑅) will be smaller, the vertex moves 

relatively small which can obtain the sharp features. If 𝑃𝐶⃗⃗⃗⃗  ⃗ ∙ 𝑚(𝑅) is larger, it means the 

vertex is in an uneven region and it requires more adjustments to achieve the purpose of 

smoothing. 
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Figure 3. Vertex Offset Direction 

2.3. The Offset Coefficient Optimization 

This algorithm proposes a conception called offset coefficient to reduce human interaction, 

remove noise quickly and improve the adaptability. The offset coefficient is a value which 

changes based on the features of 𝑣𝑖 regions. Supposed the offset coefficient is 𝑑𝑖, 𝑑𝑖 should 

have the following properties: 

1） When 𝑣𝑖 is in a flat area, 𝑑𝑖 → 0, which preserves the original features. 

2） When 𝑣𝑖 is in an uneven area, 𝑑𝑖 increases with the frequency of the noise. 

In the experiments, offset coefficient function 𝑔(𝑥)′  s argument is 𝑈(𝑖)2  which is 

calculated by Eq.(4), 𝑈(𝑖) is the umbrella operator which is computed by Eq. (3): 

𝑈(𝑖) =
1

∑ 𝑤𝑖𝑗𝑗∈𝑁𝑉(𝑖)
∑ 𝑤𝑖𝑗𝑗∈𝑁𝑉(𝑖) 𝑣𝑗 − 𝑣𝑖         (3) 

𝑈(𝑖)2 = (𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2)             (4) 

𝑁𝑉(𝑖) is the set of 𝑣𝑖’s adjacent vertexes, which are directly connected with 𝑣𝑖. 𝑤𝑖 is the 

weight of 𝑣𝑖, 1) Let 𝑤𝑖 = 1, all the vertexes have the same weight. 2) Using reciprocal of the 

distance 𝑒𝑖𝑗 of vertex 𝑣𝑖 and 𝑣𝑗 , evidently a close vertex has a greater weight. In our 

experiment, we choose the former one for simple computation. 

As Figure 4 shown, when 𝑈(𝑖) < 0, 𝑣𝑖 move downward, the high frequency information 

is suppressed; as Figure 5 shown, when 𝑈(𝑖) > 0, 𝑣𝑖 move upward, the high frequency 

information is suppressed. 𝑈(𝑖)2 is a good representation of the size of the noise. 

For the function 𝑔(𝑥), this paper attempts the following functions: 

𝑔(𝑥) = 𝑥          (5)      

𝑔(𝑥) = exp (𝑥)     (6)   

   𝑔(𝑥) = 1 − 𝑒−(𝑥−𝑢)2/𝜎2
, where 𝜇 = 0, 𝜎  is a small positive variable  (7) 

The above function are all monotonically increasing function in the definition of 

domain-wide (𝑥 ≥ 0) which meet the requirements of the offset coefficient 𝑑𝑖. Experiments 

show that: Eq.5 can keep the sharp features but needs multiple iterations. Eq. 7 requires 

multiple experimental 𝜎′ value. Eq. 6 can quickly and efficiently remove the noise and 

preserve the features. 
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Figure 4. Umbrella Operator 𝑼(𝒊) < 𝟎 

 

Figure 5. Umbrella Operator 𝐔(𝐢) > 𝟎 

a) Update Vertex Position 

We get updated vertex position by the Eq. (8) after calculate the offset and offset 

coefficient: 

                            𝑣𝑖
′ = 𝑣𝑖 + 𝑑𝑖𝑉(𝑅)    (8)                                     

Where 𝑣𝑖 represents the coordinate before iterations and 𝑣𝑖
′ represents the coordinate 

after updating.  
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b) Fairing Error Analysis 

In order to compare the results between the classical algorithms and this algorithm, using 

literature [5] proposed vertex error method. Assuming 𝑀 is the original mesh, 𝑀′ is the 

mesh model after smoothing. We calculate the error by Eq.9: 

𝐸𝑣 = √
1

3𝐴(𝑀′)
∑ 𝐴(𝑃′)𝑑𝑖𝑠𝑡(𝑃′,𝑀)2

𝑃∈𝑀′     (9) 

𝑃′ is one vertex in mesh 𝑀′, 𝑑𝑖𝑠𝑡(𝑃′, 𝑀) is the distance between vertex 𝑃′ and the 

triangle which is nearest vertex 𝑃′ in mesh 𝑀. 𝐴(𝑃′) is the total area of triangles with 

vertex 𝑃′ in model 𝑀′. 𝐴(𝑀′) is the area of the model 𝑀′. This error can generally reflect 

the volume change of the model. 

 

3. Experimental Results 

The experiment run on a PC which frequency is 2.10GHz, RAM 4.00GB (2.96GB 

available) and Pentium Dual-Core CPU. Programming platform is Microsoft Visual Studio 

2010 with OpenGL graphics library. Comparative results are as follows: 

Choosing moai model and add 20% random noise, compare this algorithm with Laplacian 

[1], Taubin’s 𝜆/𝜇 algorithm and mean curvature flow algorithm for smoothing results. As 

Figure 6 shown, the data comparing results show in Table 1. 
 

 
(a) original model (b) add 20% noise (c) Laplacian (d) Taubin  (e) mean curvature flow (f)this algorithm 

Figure 6. Comparing this Algorithm with Classical Algorithms Using Model Moai 

Table 1. Moai Data Comparison 

algorithm Vertex 

num 

Triangles 

num 

step iterations error Running 

time 

Laplacian 10002 20000 0.5 20 0.022616 78ms 

Taubin  λ/μ   10002 20000 0.5 20 0.006112 172ms 

mean curvature flow 10002 20000 —— 20 0.010658 1060ms 

this algorithm 10002 20000 —— 20 0.005699 5601ms 

Choosing Octa-flower model and add 20% random noise, compare this algorithm with 

Laplacian [1], Taubin’s 𝜆/𝜇 algorithm and mean curvature flow algorithm for smoothing 

results. As Figure 7 shown, the data comparing results show in Table 2. 
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(a) original model (b) add 20% noise  (c) Laplacian (d) Taubin (e) mean curvature flow (f) this algorithm 

Figure 7. Comparing this Algorithm with Classical Algorithms using Model 
Octa-flower 

Table 2. Octa-flower Data Comparison 

algorithm Vertex 

num 

Triangles 

num 

step iterations error Running 

time 

Laplacian 7919 15834 0.5 20 0.135568 62ms 

Taubin λ/μ   7919 15834 0.5 20 0.035798 125ms 

mean curvature flow 7919 15834 —— 20 0.041597 1045ms 

this algorithm 7919 15834 —— 20 0.030784 3604ms 

Figure 6 and Figure 7 represent the models after adding noise to the original model, (a) is 

the original model, (b) is the model which adding 20% noise, (c)-(f) are the smoothing results 

after 20 time iterations. (c) is the result of Laplcian which is oversmoothing. (e) shows the 

result of mean curvature flow, obviously leads to an irregular grid. (d) and (f) have the similar 

result, from the Table 1 and 2, (f) smoothing result has a smaller error compare with (d). For a 

higher computation, the running time of this algorithm is longer. 

 

 
(a) original model (b) add 20% noise  (c) Laplacian (d) Taubin  (e) mean curvature flow (f)this algorithm 

Figure 8. Comparing this Algorithm with Classical Algorithms Using Model 
Bunny 
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(a) original model (b) add 20% noise  (c) Laplacian (d) Taubin  (e) mean curvature flow (f)this algorithm 

Figure 9. Comparing this Algorithm with Classical Algorithms using Model 
Monk 

Figure 8 and Figure 9 respectively represent the bunny and monk models’ smoothing 

results after 10 times iterations. Figure 8(a) is the bunny noise model, Figure 9 (a) is the monk 

noise model, 8(b) and 9(b) is the results of Laplacian which step is 0.5, 8(c) and 9(c) is the 

results of Taubin which step is 0.5, 8(d) and 9(d) is the results of mean curvature flow, 8(e) 

and 9(e) is the results of this algorithm. The result of Laplacian is oversmoothing, mean 

curvature flow method is oversmoothing in Figure 8 (d) and have more residual noise. This 

algorithm has a more efficient result compare with (b) and (d). 

 

4. Conclusion 

This paper proposed a feature-preserving, adaptive and anisotropic smoothing algorithm 

for triangular mesh models. By discussing the impact of adjacent surface normal vector, we 

calculate the expected triangles normal vector. By developing an adaptive coefficient scheme, 

we compute the offset coefficient values using the umbrella operator. Finally adjust the 

position of the vertexes. Experiments show that this algorithm can reduce human interactions, 

achieve a satisfactory smoothing effect, and preserve sharp features adaptively. By 

experimental data analysis, the algorithm has a smaller error compared with other algorithms, 

can effectively keep the model’s shape. 
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