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require human interactions. In order to reduce the p se |ng adaptive and
anisotropic smoothing algorithm for removing n0| rying res of triangular
mesh model was proposed. First calculate the expe rmal \/Y the model triangles,
the expected normal vector should be an accurate representati he desired movement
direction and be similar to the original surfac Féﬂal vecl@i then we compute the value
of the offset value. We develop an adaptlve C C|ent schem ich can avoid the parameter
settings to obtain the coefficient value ch ve inally, we updated every vertex’s

position of the model by formula. enta show that the algorithm can be
adaptive to preserve sharp feﬂ d av0|d Ihkages by comparing with classical

Abstract qa
Despite the great success in smoothing of triangular é classic ds mostly

methods.
Keywords: smoothing; apisotropic; a@e triangular mesh; feature-preserving

1. Introduction .* Q %

With the develg of the\@ry nd technology of computer-aided geometric design,
reverse engls bec an important approach to represent three-dimensional model.
The mock-up usual ned by 3D scanner, the point cloud are collected from the
rement tools, while on account of human factors and other
reasons, often lead noise , data redundancy and other issues. The noises should be
removed before @ processing. Mesh smoothing is to eliminate the noise, to maintain its
topology and i(eo try, to avoid oversmoothing and volume shrinkage.

three- dlmen3|0nal dat

Existing ular mesh smoothing algorithms have two main categories: local iterative
method a bal optimization method. Field [1] proposed a classical Laplace algorithm that
mesh s move towards its neighboring's center direction. The algorithm is simple and
f e model is prone to be shrinking and oversmoothing with the increasing number of
iteratjons. Taubin [2] applied the knowledge of signal processing to remove noise, and
presented a weighted Laplacian algorithm with two alternative scale factors of opposite signs.
Such smoothing can suppress high frequency and enhance low frequency slightly without
volume shrinkage. Minggiang Wei et al., [3] present a feature-preserving optimization for
noisy mesh algorithm by using joint bilateral filter and constrained Laplacian smoothing, yet
a large computation is needed when the mesh is very large. Desbrun et al., [4] proposed the
mean curvature flow algorithm, each mesh vertex moves towards its normal vector direction
with the speed of mean curvature. While in some special cases, the grid is easy to cause
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distortion. A mesh regularization and adaptive smoothing was proposed by Ohtake et al., [5],
it used a coupled nonlinear diffusion of the mesh normal and vertices. The algorithm
increased regularity of the mesh, reduced over-smoothing, and enhanced crease lines. Its
drawback was to manually set some interaction parameters. Zhanheng Gao et al., [6],
proposed a quality tetrahedral mesh smoothing via boundary-optimized Delaunay
triangulation, the method can be readily adapted to preserve sharp features.

Mean filter and median filter method of image processing are applied to the field of mesh
smoothing by Yagou [7], while mean filter is not able to maintain the original sharp features,
median filter may increase irregular grid. Tang [8] improves bilateral filtering to a fast
smoothing algorithm based on CUDA, but it has a high computation. The most common
energy function is global optimization method; this method first presented an energy function
which can update the mesh vertex position by solving the function. It’s computationaldy
intensive, hasn’t been widely used. In 2010, Zhang et al., presents a smoothing a w
solving the discrete linear quadratic energy function [9], low complexity nkage
but a large number of calculations. Q

In order to reduce the amount of human interaction an putation¢ effectively remove
noise and keep the sharp features, this paper presents tive ani pic smoothing
algorithm. First calculate expected normal vector o ce accordi its 1-ring surface
normal vector using surface area as weights. T
according to the expected normal vector. Finally, we'get umbre erator [10] to compute
the offset coefficient, then update the vertex’s \’@)osmon % algorithm is more adaptive

and efficient. 0
2. Adaptive and Anisotropic Snk%t?ung Klsk m

2.1. Expect Normal Vector Qqﬁg{won 0\%

Graph @ is a triangulargmesh as Fig@wown the target triangle R's adjacent triangles
are distinguished mtqt gorles the fermer which shares the same edge with R, as the
set of S;(i=1,2, 3 in ﬁ\whlch called 1-ring neighborhood; the later which

called 2-ring borhoog

Considering to acc calculate the expected normal vector, the desired weights
determined by the are(bvx e triangle adjacent triangles. The area is larger, the impact on the
target surface is t

The excepted al vector is obtained by Eq.1:

shares the sai W|th R e set of Q;(j =1,2,3..n) shown in Figure 1, which

m(R) ZSEN(R)A(S)n(S) 1)

. A(S) is the area of triangle S, N(R) is the set of neighborhood of triangle R. In order
to «@" the desired normal represents the real moving direction, we analysis the impact of 1-ring
and Z-ring adjacent triangles’ normal vector on the expected normal vector calculation. As Figure
2 shown, two intersecting planes I1; and II,, assuming @ — {ABCD} is on the II; plane which
contains the target triangle R, ABCD is on the plane II,. ABCD are the points connected with
the target triangle R. If considering both point and edge connected surface, the expected normal
vector will deviate from the plane I1; while the surface R is in a relatively flat area in real
situation. According to the experiment result, the method using 1-ring can keep sharp features and
avoid uncertain mesh structural aberrations.
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2.2. Vertex @ Optir&@h

Literature [5] provi nction to obtain offset value, assuming V(R) is the offset value
of vertex P, V(R ned by Eq.2:

+

rsecting Planes I1I; and II,

V(R) = |PC - m(R)|m(R) (2)

the triangle containing vertex P, C is the triangle-center of R, m(R) is the
al vector of R. As Figure 3 shows, m(R) is close to the original normal vector
e area is flatter, and so PC-m(R) - 0, V(R) will be smaller, the vertex moves

ly small which can obtain the sharp features. If PC-m(R) is larger, it means the
vertex is in an uneven region and it requires more adjustments to achieve the purpose of
smoothing.
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Figure 3. Vertex Offset Dlrectlon 0

2.3. The Offset Coefficient Optimization

"

This algorithm proposes a conception called offse I ntt uman interaction,
remove noise quickly and improve the adaptablllt offset ent is a value which
changes based on the features of v; regions. Su e off C|ent is d;, d; should

have the following properties:

1>  When v; isinaflatarea, d; —>0 h prese \eorlgmal features.

2)  When v; isinan uneven ar % cre he frequency of the noise.

In the experiments, offset co ’g}m functi ) g argument s U(i)? which is
calculated by Eq.(4), U(i) isthe lla ope@ which is computed by Eqg. (3):

”@ ﬁ@o Wiy vy =, @

U2 % O +y2 +27) 4
NV (i) is the se \ s ad_]a ertexes, which are directly connected with v;. w; is the
weight of v;, = 1 all thesvertexes have the same weight. 2) Using reciprocal of the
distance e;; rex ], evidently a close vertex has a greater weight. In our
experiment, we€hoose t mer one for simple computation.
As Figure 4 show U@ < 0 v; move downward, the high frequency information

is suppressed; asgefighre 5 shown, when U(i) > 0 wv; move upward, the high frequency
information, iqsup essed. U(i)? is a good representation of the size of the noise.

For th@
@O glx) =x (5)
g(x) = exp(x) (6)

g(x) =1 —e~&~w*/9* 'where u=0,0 isasmall positive variable (7)

ion g(x) this paper attempts the following functions:

The above function are all monotonically increasing function in the definition of
domain-wide (x = 0) which meet the requirements of the offset coefficient d;. Experiments
show that: Eq.5 can keep the sharp features but needs multiple iterations. Eq. 7 requires
multiple experimental ¢’ value. Eq. 6 can quickly and efficiently remove the noise and
preserve the features.
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Figure 5. Umbrella Operator U(i) > 0

% Update Vertex Position
get updated vertex position by the Eq. (8) after calculate the offset and offset
coefficient:

17,:’ =V + le(R) (8)

Where v; represents the coordinate before iterations and v; represents the coordinate
after updating.
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b) Fairing Error Analysis

In order to compare the results between the classical algorithms and this algorithm, using
literature [5] proposed vertex error method. Assuming M is the original mesh, M’ is the
mesh model after smoothing. We calculate the error by Eq.9:

Bo = 5z Srem AC)dist (P, )2 (9)

P’ is one vertex in mesh M’, dist(P’,M) is the distance between vertex P’ and the
triangle which is nearest vertex P’ in mesh M. A(P') is the total area of triangles with
vertex P’ in model M'. A(M") is the area of the model M’. This error can generally reflect
the volume change of the model.

*
3. Experimental Results ?\’

The experiment run on a PC which frequency is 2.10GHz, RAM 4@ (2.96GB
available) and Pentium Dual-Core CPU. Programming pl is Micp0s sual Studio
2010 with OpenGL graphics library. Comparative results x lo s

Choosing moai model and add 20% random noi e this aI m with Laplacian
[1], Taubin’s A/u algorithm and mean curvature @Igorlth oothing results. As
Figure 6 shown, the data comparing results show j \

(a) original model (b) add . p0ise (c) Laplacian (d) Taubin (e) mean curvature flow (f)this algorithm

Figure 6. Comparing-this Algorithm with Classical Algorithms Using Model Moai
A I Table 1. Moai Data Comparison
aIgorithrO Vertex Triangles  step iterations error Running
O num num time
cian 10002 20000 0.5 20 0.022616 78ms
Taubin A/p 10002 20000 0.5 20 0.006112 172ms
mean curvature flow 10002 20000 — 20 0.010658 1060ms
this algorithm 10002 20000 — 20 0.005699 5601ms

Choosing Octa-flower model and add 20% random noise, compare this algorithm with
Laplacian [1], Taubin’s A/u algorithm and mean curvature flow algorithm for smoothing
results. As Figure 7 shown, the data comparing results show in Table 2.
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(a) original model (b) add 20% noise (c) Laplacian (d) Taubin (e) mean curvature flow (f) this algorithm

Figure 7. Comparing this Algorithm with Classical Algorithms using Model
Octa-flower

Table 2. Octa-flower Data Comparison

algorithm Vertex Triangles  step iterations error nw’
ti$ g

num num

Laplacian 7919 15834 0.5

Taubin A/ 7919 15834 0.5 \*

mean curvature flow 7919 15834 —

this algorithm 7919 15834 \\03 84 3604ms

Figure 6 and Figure 7 represent the models a addlng n hhe original model, (a) is
dgdi
ian w

the original model, (b) is the model which a % n0| f) are the smoothing results
after 20 time iterations. (c) is the result oversmoothlng (e) shows the
result of mean curvature flow, obV|0usI to an r grld (d) and (f) have the similar
result, from the Table 1 and 2, (f) sm resul maller error compare with (d). For a
higher computation, the running t is aI is Ionger

W
i

(a) original W) add 20% noise (c) Laplacian (d) Taubin (e) mean curvature flow (f)this algorithm
Figur@ omparing this Algorithm with Classical Algorithms Using Model

O Bunny
o
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(a) original model (b) add 20% noise (c) Laplacian (d) Taubin (e) mean curvature fl

Figure 9. Comparing this Algorithm with Classm\ 6r|th

Monk
Figure 8 and Figure 9 respectively represent t ny an w models’ smoothing
results after 10 times iterations. Figure 8(a) is theunny noise ure 9 (a) is the monk

noise model, 8(b) and 9(b) is the results of n whi |s 0.5, 8(c) and 9(c) is the
results of Taubin which step is 0.5, 8(d) ;: @0 is the results of mean curvature flow, 8(e)

and 9(e) is the results of this algorith resy placian is oversmoothing, mean
Figu and have more residual noise. This
(

curvature flow method is oversmoothi
algorithm has a more efficient ﬁl are with (bhand (d).

*

\

re-preser adaptlve and anisotropic smoothing algorithm

for triangular meshamedels® By diseussing the impact of adjacent surface normal vector, we

calculate the expe nglesh@ ector. By developing an adaptive coefficient scheme,
i

we compute Qll set coefficient values using the umbrella operator. Finally adjust the
[/

4. Conclusion

This paper proposed

position of the exes. ents show that this algorithm can reduce human interactions,
achieve a satiStactor thing effect, and preserve sharp features adaptively. By
experimental data ana@ he algorithm has a smaller error compared with other algorithms,
can effectively ke odel’s shape.
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