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Abstract 

Intelligent Transportation Systems (ITS) is one of the important application areas of the 

Internet of Things (IoT). The key issue is how to process the huge events generated by IoT 

system to support ITS. In this paper a proactive parallel complex event processing method is 

proposed for congestion control in large-scale ITS. A Bayesian model averaging method is 

used to obtain accurate predictions under different event context. Based on the predictive 

analysis, a parallel Markov decision processes model is designed to support decision making 

for large-scale ITS. An optimized parallel policy iteration algorithm is proposed based on 

state partition and policy decomposition. The experimental evaluations show that this method 

has good accuracy and scalability when used to process congestion control in large-scale 

ITS. 

Keywords: Internet of Things; Complex Event Processing; Predictive Analytics; Markov 

Decision Processes 

 

1. Introduction 

Internet of Things (IoT) can be defined as a dynamic global network infrastructure where 

objects in real world are connected into the internet through standard and interoperable 

communication protocols based on various kinds of sensors such as RFID and GPS.  The 

events that generated by devices directly are called primitive events. Usually there is limited 

semantic information inside primitive events. In real application, people mainly concern 

about high-level information such as business logic and rules. For example, each reading 

operation of the RFID reader at a garage generates a primitive event but only complex events 

like "the car leaves the garage" are events that people really concern. We can get these 

complex events by combining many primitive events according to some patterns. Complex 

Event Processing (CEP) [1] is used to process huge primitive events and get valuable high-

level information from them. 

In some IoT application, actions can be executed on some devices to change the state of 

the system. The traditional event processing methods are called reactive methods since the 

actions are triggered by the state change of the system.  A proactive event processing system 

has the ability to mitigate or eliminate undesired future events, or to identify and take 

advantage of future opportunities, by applying prediction and automated decision making 

technologies [2]. For example, in ITS we can predict some congestion states according to the 

current state and historical data and then take some actions to avoid some future congestion 

states.  Predictive Analytics (PA) is the technology that predicts future events through the 

analysis of historical events. CEP and PA is studied widely but currently there are few papers 

about how to integrate these two technologies to develop proactive event-driven system. As 

an optimal decision-making process for stochastic dynamic systems, Markov Decision 

Processes (MDP) is a reasonable choice for proactive event processing but there are few 
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papers about how to integrate MDP into proactive event processing and how to process the 

huge state space of MDP in this area. 

In this paper, we propose a proactive parallel complex event processing architecture and 

method (PPCEP) for large-scale ITS. Based on probabilistic complex event processing, this 

method uses a Bayesian model averaging model to predict future events and system states. A 

novel parallel MDP method based on state partition and concurrent actions is proposed to 

support proactive event processing. An optimized parallel policy iteration algorithm is 

proposed. The method is evaluated for a simulated intelligent transportation system. 

 

2. Related Works 

Complex event processing recognizes complex events from a set/sequence of raw events 

by continuously monitoring the message flow. Etzion et al., described the basic concept and 

architecture of complex event processing in their book [3]. Event Processing Agent (EPA) is 

a component that takes a set of input events as input and output a set of complex events 

according to some logic. Event Processing Network (EPN) is a network composed of EPAs, 

event producers, and event consumers linked by channels. Luckman first introduced the event 

processing network in the field of modeling [1]. Based on his idea, the conceptual model of 

EPN was further elaborated by Sharon and Etzion [4]. Most of the current CEP methods use 

fixed data structure such as tree, directed graph and Petri-Net. SASE [5] is a high 

performance query-plan based complex event processing method that uses Nondeterministic 

Finite Automaton (NFA) and Active Instance Stacks (AIS). Recently some improved versions 

of SASE are proposed [6]. 

In order to support imprecise event, many CEP engines use variants of probabilistic 

graphical models. In the work of Richardson et al., [7], Markov Logic Networks (MLNs) 

have been used to handle uncertainty in complex event processing.  Recently some work 

about processing complex events in probabilistic event streams based on NFA is proposed 

[8]. Compared with our work, the current CEP methods are reactive and are not integrated 

with PA to support proactive applications. 

The predictive analytics methods based on complex events can predict the future values of 

some attributes of the monitored system based on the historical data. As a valid model for 

uncertain knowledge representation and inference, Bayesian Network (BN) is widely used in 

predictive analytics. Castillo et al. proposed a Dynamic Bayesian Network (DBN) model that 

can predict spatio-temporal events in sensor networks [9]. In the work proposed by Pascale et 

al., an adaptive Bayesian network was used in traffic flow prediction [10]. In the work of Sun 

et al., channel quality prediction in cognitive radio networks is supported using Bayesian 

Networks [11]. By averaging over many different competing models, Bayesian model 

averaging (BMA) incorporates model uncertainty into conclusions about parameters and 

prediction. Recently there are some work about BMA and model selection [12, 13], but 

there are few papers about using BMA in CEP applications. 

Proactive event based systems have been studied by many researchers recently. Some 

examples include proactive management of transport processes [14] and proactive application 

event notification in sensor network [15]. Engel et al., proposed a proactive event processing 

framework based on CEP, PA and MDP [2, 16]. In their work, two new types of agents are 

added: predictive agents which can derive future uncertain events based on prediction models, 

and proactive agents which can choose the best proactive action that should be taken. 

Compared with our work, the work of Engel et al., lacks of implementation detail and is not 

optimized for large scale IoT application. 
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MDP has been studied for many years and recently some variants of MDP emerged. When 

using in large-scale IoT application, the main challenge is the combination explosion problem 

caused by large state space and action space. The current research on this problem can be 

classified into two directions. In the first direction the problem is simplified by using the 

information from the application domain [17]. In the second direction, approximate methods 

are used for large scale MDP [18]. When applying to large-scale IoT, MDP has larger state 

space and some new properties which bring new challenges for model design and calculation. 

Compared with our work, the current MDP methods are not optimized for large state space in 

large-scale proactive event-based system. 

 

3. Proactive Complex Event Processing Method 

3.1. System Architecture 

The architecture of our work is shown in Figure 1. We extended the EPN framework into 

Probabilistic Event Processing Network (PEPN), which can process probabilistic raw events 

to get probabilistic complex events, such as the running path of a vehicle. Based on the 

probabilistic complex events, the PA component with BMA can predict the congestion states 

of the system. Complex events are saved into event database and the historical events can be 

used by the machine learning methods in PA for more accurate predict. In the proactive 

executor component, the decision maker with PPMDP selects appropriate actions according 

to the predicted states and assigns corresponding proactive agents (PRA) to execute the 

actions. 
 

PEPA

PEPA

PEPA

PEPA

PEPA

Probabilistic event processing network

devices

PRA

Proactive executor

Event DB

Raw 

events

Predictive 

Analytics 

with  

Bayesian 

Model 

Averaging

PRA

PRA

states

Decision maker 

with PPMDP

Event Context

 

Figure 1. System Architecture 

3.2. Predictive Analytics using Bayesian Model Averaging 

 

3.2.1. Basic Predictive Analytic Method 

An event context is a specification of conditions that groups event instances so that 

these instances can be processed in a related manner. The event context assigns each 

event instance to one or more context partitions. Our basic PA model is a context-aware 

model since it acts differently under different context. 
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We consider a traffic network as a Bayesian network in which the state of a node i at time t 

is affected by many other nodes before time t. Let fi,t represent the flow state of (i,t) and pa(i,t) 

represent the parent nodes of (i,t) in the Bayesian network. NP denotes the number of nodes in 

pa(i,t). The set of flow states for pa(i,t) is Fpa(i,t)={fj,s : (j,s)  pa(i,t)}. According to the BN 

theory, the joint distribution of all nodes in the flow states network can be expressed as: 


ti

titipati CFfpFp
,

,),(, ),|()(  (1) 

where Ci,t is the context of (i,t). The conditional probability p(fi,t| Fpa(i,t),Ci,t) can be calculates 

as: 

),(/),,(),|( ,),(,),(,,),(, titipatitipatititipati CFpCFfpCFfp   (2) 

The p(fi,t, Fpa(i,t), Ci,t) and p(Fpa(i,t), Ci,t) are difficult to calculate. Based on the fact that many 

nodes share the same context and there are only few context types, we partition the events 

according to context and train a model for every context.  During real time predictive analysis, 

if the nodes share the same context, we use the corresponding model. Otherwise, we use 

Bayesian model averaging. For a given context, we model the joint distribution p(fi,t , Fpa(i,t))  

with GMM like the work of [10]: 






M

m
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where M is the nodes number and gm(·|μm,Cm) is the m-th Gaussian distribution with (NP + 1) 

× 1 vector of mean values μm and (NP + 1) × (NP + 1) covariance matrix Cm. EM algorithm is 

used to infer parameters M

mmmm C 1},,{   from the historical data. Once p(fi,t , Fpa(i,t)) has been 

obtained, the conditional distribution p(fi,t| Fpa(i,t)) can be derived and the estimate tif ,
ˆ can be 

calculated from Fpa(i,t) using the minimum mean square error (MMSE) method. 

 

3.2.2. Bayesian Model Averaging 

Assume there are K context types in data D where each context has a model, the model 

ensemble posterior distribution of a quantity Q is: 






K

k

DMpDMQpDQp kk
1
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where p(Q, Mk, D) is the posterior distribution of quantity Q under model Mk and data D. 

p(Mk|D) is the posterior model probability (model weight). This is a linear combination of the 

basic models where the model weight parameters are decided by the posterior model 

probabilities. The mk parameters of model Mk are represented by a vector k=(1k, 2k,.., mk). 

D is the observation on the mk parameters which is represented by a vector D=(d1,d2,…,dn). 

According to Bayesian theory we get: 
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  (5) 

The marginal likelihood p(D|Mk) is called model evidence: 

kkkkkk dMpMDpMDp  )|(),|()|(   (6) 

The posterior probability p(Mk,D) can be calculated by: 
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where p(Mk) is the prior distribution of model k. Usually we assume all models have the same 

prior probability if we have no preference for them. The quality of different model is mainly 

determined by p(D|Mk) since data distribution p(D) is not related to models. Therefore 

Equation (7) can be transformed to: 





K

i

i

k
k

MDp

MDp
DMp

1

)|(

)|(
)|(

 (8) 

The integration in equation (6) is not easy to be calculated directly. We use cross validation 

distribution to estimate the model evidence p(D|Mk): 





n
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where p(yi|Mk) can be calculate by: 

kkkkkiki dMpMypMyp  )|(),|()|(   (10) 

If the model is relatively complex, equation (10) is still difficult to be calculated directly. 

We use MCMC method for approximate calculation. A series of independent samples k
(t)：

t=1,…,T of k are sampled from the distribution p(k |Mk). Then equation (10) can be 

approximated by: 
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In order to find independent series of samples for MCMC, we use Markov chain 

0,1,…, in which every i depends on i-1 only. When some condition is satisfied, the 

series will converge to static distribution p() after m iterations despite the original 

value of the series. Then the samples generated by iterations since m+1 can be used as 

independent samples for MCMC. 

 

3.3. Decision Making with Proactive Parallel MDP 

Definition 1 (Proactive Parallel MDP): A proactive parallel MDP (PPMDP) is 

represented by  CSRPASI p,,,,,,


, where I is the set of agents that process actions proactively, 

and S denotes the set of system states with a special initial state S0. iAA
Ii




 denotes the set 

of actions in which Ai is the action from the i-th agent. P: SAS→[0, 1] is the set of state 

transformation function, where P(s,α,s') denotes the probability that state s transforms to state 

s' with the execution of action α. R: S→Re is the set of reward functions (Re means the set of 

real numbers). Every (s,α) SA satisfies 1'),,(
'

 Ss
ssp  . Sp is the set of future states 

predicted by PA components and C is the context of events. 

The system starts from an original state and recursively selects a set of actions executed by 

agents parallel according to the predictive analysis result. The key issue of PPMDP is to find 

a policy  : SSp→A

 which reflect the current state and predictive state to a set of actions.  

In traditional MDP, the selection of policy is based on the following equations (value 

function and policy update equation): 
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where γ is the decay factor. This method is inefficient for large-scale intelligent transportation 

system because there are too many possible states and actions. PPMDP uses an optimized 

policy iteration algorithm and executes actions parallel based on the following observations: 

Observation 1: The state in large-scale transportation IoT can be partitioned and each 

group is related to a sub state of the system. We need to consider the sub states of the system 

but not the state of every vehicle. 

Observation 2: In large-scale transportation IoT, the state of a node depends on the states 

of its neighbors (the neighbors here means the nodes that are linked with the current node 

within certain distance). 
 

····

··
··

····

Normal 

node

Congestion 

node  

Figure 2. Network Partition based on 
Congestion Nodes 

Normal node Congestion node

 

Figure 3. Bayesian Network 
Partition 

With the result of predictive analytic, the network can be partitioned based on the 

congestion nodes as shown in figure 2. One or more nodes which have high congestion level 

(estimated by PA component) are selected as the center of the group. The nodes have distance 

smaller than a threshold value D from the center are partitioned into the group. Assume there 

are N nodes: J={j1,j2,…,jN}. We partition the vehicle flow value into K levels and represent it 

as CS={c1,c2,…,cK}. Then the state in PPMDP can be represented as st =<st1,st2,…,stN> where 

stiS is the congestion state of node ji at time t and si CS. A policy it={ait1,ait2,…,aitM} 

where aitk is an action aim to reduce the congestion of group k at time t by guiding some 

vehicles to change their paths. In this paper we assume the distance between any two group 

centers is large enough which means the sub-actions are independent and they can be 

executed parallel. Let G=(V,E) represent the set of sub graphs where V is the set of vertexes 

for a sub graph and E is the set of edges. 
Definition 2 (congestion state decomposition): The congestion state of the system C(S) 

can be decomposed by: 
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where Gs is the set of state partitions and Ci is the set of predicted congestion nodes in 

partition i.  

Definition 3 (neighbor nodes): For any node i∈V, the neighbor nodes are N(i)={j∈V 

|di,j≤k}, where di,j is the distance of node i and j, and k is a threshold value. 

Definition 4 (policy decomposition): A policy  can be decomposed by: 
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Definition 5 (state transformation decomposition): The state transformation possibility 

can be decomposed by: 
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Definition 6 (reward function): The reward function of state s can is defined as: 

)()1()()( sLsCsR    (17) 

where L(s) denotes the total path length of all vehicles and αis a weight factor.  

Definition 6 means we want to minimum the total congestion and total path length. Now 

the key issue is how to find the optimized policy * for each sub-state. We partition the 

Bayesian network in the PA model according to congestion nodes as shown in figure 3. All 

nodes that affect the congestion node are partitioned into the same group. Overlapped nodes 

are partitioned into groups on average. In order to reduce the congestion, in each sub-action 

the normal nodes in each group are redirected to other nodes outside the groups. The reward 

of subsequent sub-states can be calculated using the PA method. The policy iteration 

algorithm is shown in Figure 4. 

 

function policy_iteration(ppmdp) returns a policy 

  Gs←state_partition(S) 

  for each si in Gs do parallel 

si←sub_policy_iteration(ppmdp, si) 

  ←combine_policy(set of si) 

return  

function sub_policy_iteration(ppmdp, s) returns a sub policy 

  repeat 

unchanged? ←true 

for each state si in s 

      BGsi←BN_partition(si) 

      for each gj in BGsi do parallel 

ak←find_optimized_sub_actions(gj) 

      as←find_ optimized _actions(set of ak) 

if 
'

'' ][),|(
is

isii sUassP  > 
'

'' ][])[,|(
is

iisii sUsssP   then 

    s[si]←as 

      unchanged? ←false 

  until unchanged? 

  Return s 

Figure 4. Policy Iteration Algorithm 

The state_partition function partition the traffic network according to Figure 2 and sub-

policies can be found based on this partition. The BN_partition function partition the 

Bayesian network according to Figure 3 to get the original states of sub-networks. The 

find_optimized_sub_actions function finds a series of local optimized actions using 
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stochastic gradient descent method. If there is no overlap in the partitions of 

BN_partition, the local optimized actions can be composed directly to get the total 

optimized policy in find_ optimized _actions. Otherwise, the find_ optimized _actions 

iterate select the most congested node according to PA and find an optimized sub-

policy to reduce the congestion level using stochastic gradient descent method until no 

congested node can be found or no optimized sub-policy can be found. 

 

4. Experimental Evaluations 

4.1. System Implementation 

Our method is implemented based on the Berkeley Data Analytics Stack (BDAS) which is 

an open source software stack that integrates software components to make sense of big data. 

The system implementation architecture is shown in Figure 5. The historical event data is 

stored in the HDFS. The PCEP (Probabilistic CEP) engine is created based on Spark 

Streaming.  The filter and window function of Spark Streaming can help to process complex 

event patterns. The PA engine is created based on Spark and Spark Streaming. This 

architecture can support large-scale historical data processing and with the help of in-memory 

file system we can get high performance. 

 

Historical Data (HDFS)

Tachyon in-memory file system 

Spark 

PCEP 

engine

PEPN
PPMDP 

engine

PA engine
Spark Streaming

 

Figure 5. System Implementation 

Architecture 

Table 1. Deviation of two Methods. 

The Average Percent is Calculated 

by (average deviation)/(average 

observed vale)*100% 
 deviation 

ABN PPCEP 

Max 286 109 

Min 7 11 

Average 111.6 56.4 

Average percent 14.53% 7.34% 
 

We developed a transportation IoT simulation system based on the road traffic simulation 

package SUMO. SUMO supports "induction loops" which can detect vehicles that pass 

corresponding areas. Getting the location of each vehicle is also supported. We use the TraCI 

interface of SUMO to get the induction loop variables and vehicle location variables, and then 

use these variables to simulate virtual RFID and GPS readers. In the experiment we selected 

84 junctions from the map and set 80 thousand vehicles. In order to simulate real traffic 

system, a set of rules are defined. Each vehicle has a home location and an office location. A 

vehicle vi runs between home and office with probability pi. The vehicles also go to other 

places such as supermarket, hospital, etc., with corresponding probabilities. Based on this 

simulation system we evaluated the precision and performance of our method. We used 4 

servers with Xeon E3 processor and 16GB memory as data processing servers and the 

operating system is Ubuntu 12.  Another PC with 4GB memory is used to run SUMO. 

 

4.2. Experimental Evaluations for Proactive Complex Event Processing 

We first run the simulation for many times to get the historical data of the vehicle paths. 

The conditional probability table is created from the historical data. In the first experiment we 

compared the accuracy of our PA method with the work of Xing et al., [12] which uses 
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Adaptive Bayesian Network (ABN). The result is shown in Figure 6 and Table 1. From the 

figure we can see the accuracy of our PA method is better than traditional method ABN. The 

reason is that we use BMA to support better PA under different event context. 

In the next experiment, we evaluated the mean congestion level of the system and the 

result is shown in Figure 7. We partitioned the congestion value into 10 levels where "0" 

means no congestion and "9" means the highest congestion. Since we have not found other 

methods have the same function with ours, our method is only compared with the default 

simulation system. From the figure we can see the mean congestion level reduced obviously 

when our method is used. The reason is that our method can predict the congestion state and 

take some actions to avoid it proactively. We can also find the reduction of congestion level is 

more obvious when the congestion level becomes high. The reason is that the system can 

redirect more vehicles to light loaded nodes in such circumstance. 

 

 

Figure 6. PA Accuracy for a 
Typical Node 

 

Figure 7. Mean Congestion 
Level Over Time 

In the next experiment, we evaluated the performance of our method with different server 

number and data size. The number of important node is fixed at 25 and the constructing time 

of Bayesian model is not included. The result is shown in Figure 8. From the figure we can 

find the average running time for decisions increases when the vehicle numbers becomes 

larger. The reason is that more vehicles need more sub-actions which increase the complexity 

of the algorithm. We can also find the performance for 4 servers is higher than 2 servers and 

the running time of the former increases more slowly. The reason is that the parallel method 

in our system can take advantage of multiple servers. 

We also evaluated the performance of our method with different server number and 

average congestion node number. The result is shown in Figure 9. The vehicle number is 

fixed at 80 thousand. We can find the running time increases obviously when the important 

node number becomes larger. The reason is that more important nodes means more sub-states 

in the parallel MDP which increases the complexity of the algorithm. 

 

 

Figure 8. Performance for Different 
Vehicle nNumber 

 

Figure 9. Performance for Different 
Congestion Node Number 
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From all the experiments we can see PPCEP can support proactive complex event 

processing well in large-scale ITS applications. Based on BMA, the PA method can get 

higher accuracy than traditional methods. The PPMDP model has obvious effect for 

congestion control in large transportation IoT. The performance of the PPMDP decreases 

when the vehicle number and important node number becomes large but we can get better 

performance with more servers. 

 

5. Discussions and Conclusion 

In this paper we proposed a proactive complex event processing method using parallel 

MDP for large-scale ITS. A Bayesian model averaging method is proposed to support 

accurate PA for different event context. Based on state partition and policy decomposition, an 

optimized parallel policy iteration algorithm for MDP is proposed to support large-scale IoT. 

The experimental evaluations show that this method has good accuracy and scalability when 

used for large-scale ITS. 

The performance and scalability of PPCEP still need to be improved. The PA method 

is not efficient enough if there are too many nodes. In the parallel MDP, the sub-states 

and sub-action space can also be very large which makes the algorithm inefficient. We 

need to develop new parallel or approximation algorithms to improve the performance. 
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