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Abstract
Intelligent Transportation Systems (ITS) is one of the important application areas, of the
Internet of Things (loT). The key issue is how to process the huge events gener loT
system to support ITS. In this paper a proactive parallel complex event proc ethod is

proposed for congestion control in large-scale ITS. A Bayesian model ayer method is
used to obtain accurate predictions under different event\conlext. Ba@the predictive
analysis, a parallel Markov decision processes model is d€Si por¥decision making
for large-scale ITS. An optimized parallel policy it€rati algo %roposed based on
state partition and policy decomposition. The experifgensal evalu show that this method
has good accuracy and scalability when used rocess ¢ stl n control in large-scale

ITS
Keywords: Internet of Things; Com @th Pro g, Predictive Analytics; Markov

Decision Processes s\\

Internet of Things (IoT) n be defl ynamlc global network infrastructure where
objects in real world ar nected | e internet through standard and interoperable
communication prot sed on rious kinds of sensors such as RFID and GPS. The
events that generat evic are called primitive events. Usually there is limited

a{ oh. n

1. Introduction

semantic inform S|de pri e events. In real application, people mainly concern
about high- I& ch as business logic and rules. For example, each reading
operation oft IDre garage generates a primitive event but only complex events
like "the car leaves age" are events that people really concern. We can get these
complex events b ning many primitive events according to some patterns. Complex
Event Processin ) [1] is used to process huge primitive events and get valuable high-
level informatjon ffom them.

In some plication, actions can be executed on some devices to change the state of
the syste ' he traditional event processing methods are called reactive methods since the
ac@ @ triggered by the state change of the system. A proactive event processing system
d

H ability to mitigate or eliminate undesired future events, or to identify and take
advaritage of future opportunities, by applying prediction and automated decision making
technologies [2]. For example, in ITS we can predict some congestion states according to the
current state and historical data and then take some actions to avoid some future congestion
states. Predictive Analytics (PA) is the technology that predicts future events through the
analysis of historical events. CEP and PA is studied widely but currently there are few papers
about how to integrate these two technologies to develop proactive event-driven system. As
an optimal decision-making process for stochastic dynamic systems, Markov Decision
Processes (MDP) is a reasonable choice for proactive event processing but there are few
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papers about how to integrate MDP into proactive event processing and how to process the
huge state space of MDP in this area.

In this paper, we propose a proactive parallel complex event processing architecture and
method (PPCEP) for large-scale ITS. Based on probabilistic complex event processing, this
method uses a Bayesian model averaging model to predict future events and system states. A
novel parallel MDP method based on state partition and concurrent actions is proposed to
support proactive event processing. An optimized parallel policy iteration algorithm is
proposed. The method is evaluated for a simulated intelligent transportation system.

2. Related Works

Complex event processing recognizes complex events from a set/sequence of raw events
by continuously monitoring the message flow. Etzion et al., described the basic
architecture of complex event processing in their book [3]. Event Processing

according to some logic. Event Processing Network (EPN) is of EPAs,
event producers, and event consumers linked by channels L ced the event
processing network in the field of modeling [1]. Bas conceptual model of
EPN was further elaborated by Sharon and Etzion [@o t CEP methods use
fixed data structure such as tree, directed grap d Petrl- tY'SASE [5] is a high

performance query-plan based complex event pggssmg me that uses Nondeterministic
Finite Automaton (NFA) and Active Instanc (AIS). Ng tly some improved versions
of SASE are proposed [6].

In order to support imprecise evi @any @nes use variants of probabilistic
graphical models. In the work of @'dson et , Markov Logic Networks (MLNs)
have been used to handle un%r&" in cgn% event processing. Recently some work
about processing complex eve probahilistie”event streams based on NFA is proposed
[8] Compared with our w the curr@ methods are reactive and are not integrated

i plications

ethod ed on complex events can predict the future values of
éﬂ‘;?te based on the historical data. As a valid model for

tioffand inference, Bayesian Network (BN) is widely used in

I. proposed a Dynamic Bayesian Network (DBN) model that
can predict spatio-tempo ents in sensor networks [9]. In the work proposed by Pascale et
al., an adaptive Bayes@etwork was used in traffic flow prediction [10]. In the work of Sun
et al., channel g ediction in cognitive radio networks is supported using Bayesian
Networks [11]. eraging over many different competing models, Bayesian model
averaging A) incorporates model uncertainty into conclusions about parameters and
predictio ently there are some work about BMA and model selection [12, 13], but
there papers about using BMA in CEP applications.
e event based systems have been studied by many researchers recently. Some
es include proactive management of transport processes [14] and proactive application
event notification in sensor network [15]. Engel et al., proposed a proactive event processing
framework based on CEP, PA and MDP [2, 16]. In their work, two new types of agents are
added: predictive agents which can derive future uncertain events based on prediction models,
and proactive agents which can choose the best proactive action that should be taken.
Compared with our work, the work of Engel et al., lacks of implementation detail and is not
optimized for large scale 10T application.
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MDP has been studied for many years and recently some variants of MDP emerged. When
using in large-scale IoT application, the main challenge is the combination explosion problem
caused by large state space and action space. The current research on this problem can be
classified into two directions. In the first direction the problem is simplified by using the
information from the application domain [17]. In the second direction, approximate methods
are used for large scale MDP [18]. When applying to large-scale 10T, MDP has larger state
space and some new properties which bring new challenges for model design and calculation.
Compared with our work, the current MDP methods are not optimized for large state space in
large-scale proactive event-based system.

3. Proactive Complex Event Processing Method

3.1. System Architecture \/

The architecture of our work is shown in Figure 1. We extended the EP ork into
Probabilistic Event Processing Network (PEPN), which can pr; cess pr |®aw events
to get probabilistic complex events, such as the runnin @Based on the
probabilistic complex events, the PA component with B nére ongestion states
of the system. Complex events are saved into event e and rical events can be
used by the machine learning methods in PA for g accurax&ilct In the proactive
executor component, the decision maker with DP sel ects=appr prlate actions according
to the predicted states and assigns corresp proactl ents (PRA) to execute the

actions.
‘ . n‘évent Conteg a :

. v
\% Proactive executor
>

Predictive states PRA
Analytics

with _
Bayesian

Averaging

Event DB

O\{” ¥ - "y E3-

devices

Decision maker
with PPMDP

O Figure 1. System Architecture
3.2. Predictive Analytics using Bayesian Model Averaging

3.2.1. Basic Predictive Analytic Method

An event context is a specification of conditions that groups event instances so that
these instances can be processed in a related manner. The event context assigns each
event instance to one or more context partitions. Our basic PA model is a context-aware
model since it acts differently under different context.
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We consider a traffic network as a Bayesian network in which the state of a node i at time t
is affected by many other nodes before time t. Let f;; represent the flow state of (i,t) and pa(i,t)
represent the parent nodes of (i,t) in the Bayesian network. Np denotes the number of nodes in
pa(i,t). The set of flow states for pa(i,t) is Fpin={fis: (,5) € pa(i,t)}. According to the BN
theory, the joint distribution of all nodes in the flow states network can be expressed as:

p(F) = H p(f},l | ﬁ;;a(j, 1), a, 1,) (1)

where C;; is the context of (i,t). The conditional probability p(fi| Fpay,Ci:) can be calculates
as:

D(Ei e | Foar 0, Ci o) = p(Eo e, Fpatr, 00, Ciy ) /| p(Fpati, 0, Cr, ¢) 2)

The p(fi, Fpa, Cit) and p(Feagy, Ciy) are difficult to calculate. Based on the fact that many
nodes share the same context and there are only few context types, we partitio l‘Kg&nts
according to context and train a model for every context. During real time pre alysis,
if the nodes share the same context, we use the corresponding model. Ot@ we use
Bayesian model averaging. For a given context, we model the Joint disty fit

with GMM like the work of [10]:

p(fi.t, Fpai,v) - gamgm( fi.Fpa.o]¢am,Crm) OQ ©)

where M is the nodes number and (- |tm,Cm) iQ\ m-th Ga n dlstrlbutlon with (Np + 1)
x 1 vector of mean values p,, and (Np + 1), X 1) covar matrix C,,. EM algorithm is

used to infer parameters {om, um,Cn}", f hist rlqata Once p(fi; , Fpap) has been
oa, t))gx%e rived and the estimate f,.can be

obtained, the conditional dlstrlbutl i
calculated from Fpy) using t mean éj error (MMSE) method.

pa(l t))

3.2.2. Bayesian Model Averaglng ’&
Assume there are K types,in D where each context has a model, the model
ensemble posterior % on of aq%tity Qis:
p@Q | D) - D) (4)
where p(Q, ) is th rior distribution of quantity Q under model My and data D.
p(My|D) is the posteri | probability (model weight). This is a linear combination of the

probabilities. Th rameters of model My are represented by a vector ®,=(01, O2,.., Omk)-
D is the ohsegvation on the my parameters which is represented by a vector D=(d;,d,,...,d,).
Accordin esian theory we get:

M) = p(D | ®«, Mk) p(®«k | Mk)
F@ ) p(D| M) ©)

The¢arginal likelihood p(D|My) is called model evidence:

basic models wheS model weight parameters are decided by the posterior model

pP(D| M) = [ p(D | &, M)p(& | M)d & (6)
The posterior probability p(M,,D) can be calculated by:

My | D) = PP MK p(M)
P(M«| D) 5(D)

()
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where p(My) is the prior distribution of model k. Usually we assume all models have the same
prior probability if we have no preference for them. The quality of different model is mainly
determined by p(D|My) since data distribution p(D) is not related to models. Therefore
Equation (7) can be transformed to:

(i \ D) = ‘D(D—|M‘>
WARD ®

The integration in equation (6) is not easy to be calculated directly. We use cross validation
distribution to estimate the model evidence p(D|My):

B(D M0 = ] p(yi| M9, (. y9) € D ?\aﬁ
where p(yilMy) can be calculate by: 0
pCyi | M) = [ p(yi 16k, Mi) p(6 | M) d & \* Q/ (10)

If the model is relatively complex, equation (10) @ I dlffmx\/alculated directly.
We use MCMC method for approximate calculation. A’series of ifdependent samples 6, :

t=1,...,T of 06, are sampled from the dlstrl iore p(6y ﬂ@'hen equation (10) can be
approximated by:

p(y.|Mk)—sz(y. 109 @l\«f'ﬂ s&@ 1

In order to find mdepen eries of
00,01,..., in which every epends i ly. When some condition is satisfied, the
series will converge t distrib p(0) after m iterations despite the original

value of the series e samplés generated by iterations since m+1 can be used as
independent sam MCMQ
3.3. DeCISIO @ ing wi @mtlve Parallel MDP

Definition 1 (Pr Parallel MDP): A proactive parallel MDP (PPMDP) is
represented by (/ & , S, C), Where | is the set of agents that process actions proactively,
c

les for MCMC, we use Markov chain

and S denotes the(set,of system states with a special initial state So. 4 = x _ 4; denotes the set

of actions iQ Which’ A; is the action from the i-th agent. P: SxAxS—[0, 1] is the set of state
transform %nction, where P(s,0,5") denotes the probability that state s transforms to state
s' with &cution of action a. R: S—Re is the set of reward functions (Re means the set of

rs). Every (s,a) €SxA satisfies 25 pls,a,5°) = 1.5 1s the set of future states

r
p%d by PA components and C is the context of events.

The system starts from an original state and recursively selects a set of actions executed by
agents parallel according to the predictive analysis result. The key issue of PPMDP is to find
apolicy 7z: SxS,— 4 which reflect the current state and predictive state to a set of actions.

In traditional MDP, the selection of policy is based on the following equations (value
function and policy update equation):

Ve(s) = r(s, 7(s)) + y > p(s”| s, () Wals™) (12)

s'eS
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7' (s) = arg max(r(s a + 72P(s | s, alVi(s’)) (13)

s’es

where v is the decay factor. This method is inefficient for large-scale intelligent transportation
system because there are too many possible states and actions. PPMDP uses an optimized
policy iteration algorithm and executes actions parallel based on the following observations:

Observation 1: The state in large-scale transportation loT can be partitioned and each
group is related to a sub state of the system. We need to consider the sub states of the system
but not the state of every vehicle.

Observation 2: In large-scale transportation 10T, the state of a node depends on the states
of its neighbors (the neighbors here means the nodes that are linked with the current node
within certain distance).

Normal Eazr‘{gestion
O o (52 node Q QN(@ node @ Congestion node

Figure 2. Network Partition bas ure 3. Bayesian Network
Congestion Nodes Partition

With the result of predictiv tlc JX etwork can be partitioned based on the
congestion nodes as shown in Y’& 2. One e nodes which have high congestion level
(estimated by PA compone re selecl@h center of the group. The nodes have distance
smaller than a threshold from th ter are partitioned into the group. Assume there
are N nodes: J={j,,j We par n the vehicle flow value into K levels and represent it
as CS={c,,c,,...,C J%n the ste MDP can be represented as s; =<Sy,St, . . .,Sw> Where
sieS is the i stat n de j; at time t and s;e CS. A policy m={aiu,aitw....,aim}
where ajy is ion ai duce the congestion of group k at time t by guiding some
vehicles to change thei @5 In this paper we assume the distance between any two group
centers is large eno hich means the sub-actions are independent and they can be
executed parallel. =(V,E) represent the set of sub graphs where V is the set of vertexes
for a sub graph a is the set of edges.

Definiti &‘pongestlon state decomposition): The congestion state of the system C(S)

can be de sed by:

=1 i=1 j=1

@Of ‘; c(s) ‘(Z“‘ i c(Si) (14)

where G; is the set of state partitions and C; is the set of predicted congestion nodes in
partition i.

Definition 3 (neighbor nodes): For any node i€V, the neighbor nodes are N(i)={j €V
|di <k}, where d;; is the distance of node i and j, and k is a threshold value.

Definition 4 (policy decomposition): A policy r can be decomposed by:
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T = =, Zimw (15)

Definition 5 (state transformation decomposition): The state transformation possibility
can be decomposed by:

|Gs|
Pis | S n) = ZP(S: | S, 7.) 2P<S | Symo | 7 e G)) (16)

i=1
Definition 6 (reward function): The reward function of state s can is defined as:
R(s) = aC(s) + (1 — a)L(s) (17)

where L(s) denotes the total path length of all vehicles and ais a weight factor.

Definition 6 means we want to minimum the total congestion and total p Now
the key issue is how to find the optimized policy »* for each sub-state. |t|on the
g

Bayesian network in the PA model according to congestig es as s ure 3. All

nodes that affect the congestion node are partitioned into e group? rlapped nodes
are partitioned into groups on average. In order to regtCe conge n each sub-action
the normal nodes in each group are redirected to ot odes o the groups. The reward

of subsequent sub-states can be calculated using ™€ PA methed. The policy iteration

algorithm is shown in Figure 4.
- O

function policy_iteratio ) re olicy
G~ state partltlon( s&

for each s; in llel
li

Zi<—sub_ “O"K@O s)

7r<—comb|ne P cy(s
furmt " policy tera n(ppmdp s) returns a sub policy

return =
anged’7@
<: oreach esiins

 partition(s;)
f g; in BGs; do parallel

find_optimized_sub_actions(g;)
&«—find_ optimized _actions(set of ay)

R l > P(s, | s,,a)ls;]> Y. P(s; | s, 7[s,1)0Ls,] then

%[Si]‘_as
unchanged? <false

@: until unchanged?
Return 7

Figure 4. Policy Iteration Algorithm

The state_partition function partition the traffic network according to Figure 2 and sub-
policies can be found based on this partition. The BN_partition function partition the
Bayesian network according to Figure 3 to get the original states of sub-networks. The
find_optimized_sub_actions function finds a series of local optimized actions using
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stochastic gradient descent method. If there is no overlap in the partitions of
BN_partition, the local optimized actions can be composed directly to get the total
optimized policy in find_ optimized _actions. Otherwise, the find_ optimized _actions
iterate select the most congested node according to PA and find an optimized sub-
policy to reduce the congestion level using stochastic gradient descent method until no
congested node can be found or no optimized sub-policy can be found.

4. Experimental Evaluations
4.1. System Implementation

Our method is implemented based on the Berkeley Data Analytics Stack (BDAS) which is
an open source software stack that integrates software components to make sense of 'g data.
The system implementation architecture is shown in Figure 5. The historical e is
stored in the HDFS. The PCEP (Probabilistic CEP) engine is created park
Streaming. The filter and window function of Spark Strea ming can help o complex
event patterns. The PA engine is created based on nd Sp ming. This
architecture can support large-scale historical data proces of in-memory
file system we can get high performance.

PPMDP
engine

Q%

engine

P —— j PA engine Ta | DeV|at|on of two Methods.
rage Percent is Calculated
Spark N \(average deviation)/(average

Tachyon in-memory file s deviation

Historical Data (M Max Azggl PF]’_SEP
Q Min 7 11
Flgure 5. SySt pleme ion Average 111.6 56.4

ure Average percent 14.53%  7.34%

We devel’ transp loT S|mulat|on system based on the road traffic simulation
package SUMO. SU ports "induction loops" which can detect vehicles that pass
g t

,\6 observed vale)*100%

Y Y Ya

corresponding areas. he location of each vehicle is also supported. We use the TraCl
interface of SUM the induction loop variables and vehicle location variables, and then
use these variabl t S|mulate virtual RFID and GPS readers. In the experiment we selected
84 junctio the map and set 80 thousand vehicles. In order to simulate real traffic
system, a rules are defined. Each vehicle has a home location and an office location. A
vehlclm s between home and office with probability p;. The vehicles also go to other
h as supermarket, hospital, etc., with corresponding probabilities. Based on this
ion system we evaluated the precision and performance of our method. We used 4
servers with Xeon E3 processor and 16GB memory as data processing servers and the
operating system is Ubuntu 12. Another PC with 4GB memory is used to run SUMO.

4.2. Experimental Evaluations for Proactive Complex Event Processing

We first run the simulation for many times to get the historical data of the vehicle paths.
The conditional probability table is created from the historical data. In the first experiment we
compared the accuracy of our PA method with the work of Xing et al., [12] which uses
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Adaptive Bayesian Network (ABN). The result is shown in Figure 6 and Table 1. From the
figure we can see the accuracy of our PA method is better than traditional method ABN. The
reason is that we use BMA to support better PA under different event context.

In the next experiment, we evaluated the mean congestion level of the system and the
result is shown in Figure 7. We partitioned the congestion value into 10 levels where "0"
means no congestion and "9" means the highest congestion. Since we have not found other
methods have the same function with ours, our method is only compared with the default
simulation system. From the figure we can see the mean congestion level reduced obviously
when our method is used. The reason is that our method can predict the congestion state and
take some actions to avoid it proactively. We can also find the reduction of congestion level is
more obvious when the congestion level becomes high. The reason is that the system can
redirect more vehicles to light loaded nodes in such circumstance. \/o

—— Observed ABN  -------- PPCEP —+— Default “mbeas ;
1500

=
o
[=]
o

traffic flow

v
o
o

congestion level

0

time (X60s)

) .
Figure 6. PA Accuracy for g Figure @an Congestion

Typical Node vel Over Time

N
\
In the next experiment, we ev. ILQ%% perfo*{% of our method with different server
number and data size. The numb% j porIar%?e is fixed at 25 and the constructing time
of Bayesian model is not incl

find the average running t

The res own in Figure 8. From the figure we can

for dec@creases when the vehicle numbers becomes
larger. The reason is thal vehicles néeg” more sub-actions which increase the complexity
also find erformance for 4 servers is higher than 2 servers and

of the algorithm.
the running time ¢ rmer ?ﬁlse more slowly. The reason is that the parallel method
e ultiple servers.

in our system gan advant
We also ted th rmance of our method with different server number and
average congestion nod er. The result is shown in Figure 9. The vehicle number is

fixed at 80 thousand. n find the running time increases obviously when the important
node number bec ger. The reason is that more important nodes means more sub-states
in the parallel M hich increases the complexity of the algorithm.

-

A J
—— 2 servers —=—4 servers —— 2 servers —w—4 servers

N
wn

average runningtime for
decisions (seconds)
= N
o wn o

[=TV ]

6 8 10 12 14 16 10 15 20 25 30 35
vehicle number (X10000) average congestion node number

Figure 8. Performance for Different  Figure 9. Performance for Different
Vehicle nNumber Congestion Node Number
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From all the experiments we can see PPCEP can support proactive complex event
processing well in large-scale ITS applications. Based on BMA, the PA method can get
higher accuracy than traditional methods. The PPMDP model has obvious effect for
congestion control in large transportation 10T. The performance of the PPMDP decreases
when the vehicle number and important node number becomes large but we can get better
performance with more servers.

5. Discussions and Conclusion

In this paper we proposed a proactive complex event processing method using parallel
MDP for large-scale ITS. A Bayesian model averaging method is proposed to support
accurate PA for different event context. Based on state partition and policy decomposition, an
optimized parallel policy iteration algorithm for MDP is proposed to support larg -SMT.
The experimental evaluations show that this method has good accuracy and sc Ia%when
used for large-scale ITS. Q

The performance and scalability of PPCEP still need to A method
is not efficient enough if there are too many nodes. In he sub-states

and sub-action space can also be very large which @s i inefficient. We
need to develop new parallel or approximation aI S tow he performance.
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