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Abstract 

In this paper we propose a hybrid maximum likelihood decoding (MLD) for linear block 

codes. For the reliable data transmission over noisy channels, convolutional and block codes 

are widely used in most digital communication systems. Much more efficient algorithms have 

been found for using channel measurement information in the decoding of convolutional 

codes than in the decoding of block codes. Word correlation method can be utilized to use 

channel measurement information in the decoding of block codes. However as the number of 

code words becomes larger, the decoding complexity increases dramatically to the power of 

the number of information bits. The hybrid maximum likelihood decoding can solve the 

problem of the hardware complexity as well as the computational time. Simulation result for 

Reed Muller code is presented to demonstrate the effectiveness of the algorithm. 

Keywords: Block code, hybrid maximum likelihood decoding, channel measurement 

information 

1. Introduction 

In most modern digital communication systems, various error correction coding 

schemes are adopted to improve system performance [1-5]. There are two distinct error 

correction coding methods: convolutional and block codes [6-9]. The most important 

difference in terms of decoding between two codes is that the convolutional code can 

use channel measurement information more efficiently than block codes. Viterbi 

algorithm and BCJR algorithm can be used to decode convolutional codes [10-11]. 

Wolf presented the maximum likelihood decoding (MLD) of linear block codes using 

channel measurement information, which is very practical in decoding high-rate codes 

since the complexity of the algorithm is upper-bounded by a function of the number of 

parity symbols [9]. Using the algorithm, we can perform MLD of any (𝑛, 𝑘) linear block 

code over GF (q) using the Viterbi algorithm applied to a trellis having no more than 

𝑞(𝑛−𝑘) states. For example, if this method is applied to a (23,  11) binary Golay code, we 

need a trellis with 212 states to do MLD using channel measurement information. In this 

case, the decoding complexity is higher than the word correlation decoding which 

requires 211 correlations. Thus the Wolf’s method is not so effective for medium-rate or 

low-rate codes. 

In this paper we propose a hybrid maximum likelihood decoding (H-MLD) for linear 

block codes. This method divides a generator matrix of a linear block code into two 

sub-generator matrices. One sub-generator matrix is used to construct a parallel 

correlation bank and the parallel correlation is repeated for every code word generated 

from the other sub-generator matrix. And then we estimate the transmitted message 

with affordable hardware complexity while maintaining the same performance of MLD. 
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The algorithm described here is very efficient for a linear block code when the code rate 

is not high-rate. An experimental result for a Reed Muller code is presented to 

demonstrate the effectiveness of the algorithm. 

 

2. Maximum Likelihood Decoding 

Assume a code word  𝒄 = (𝑐1, 𝑐2, … , 𝑐𝑛)of an (𝑛, 𝑘) linear block code 𝐶  is transformed 

into a binary antipodal signal 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) with 𝑥𝑖 = (−1)𝑐𝑖 , and the signal is 

transmitted over additive white Gaussian noise (AWGN) channel. Then a received signal 

𝒓 = (𝑟1, 𝑟2, … , 𝑟𝑛) is represented as 𝑟𝑖 = 𝑥𝑖 + 𝑛𝑖  where 𝑛𝑖 is an independent and identically 

distributed Gaussian random variable with zero mean and variance 𝜎2 . Then if we use 

maximum likelihood decoding, the optimum decoded word 𝑑 = (𝑑1, 𝑑2, … , 𝑑𝑛) is given by 

[12] 

 

𝒅 = 𝒄(𝑖)if|𝒓 − 𝒄(𝑖)|
2

≤ |𝒓 − 𝒄(𝑗)|
2
   ∀𝑗 ∈ [1, 2𝑘], 𝑖 ≠ 𝑗                           (1) 

 

where 𝒄(𝑖) = (𝑐1
(𝑖)

, 𝑐2
(𝑖)

, … , 𝑐𝑛
(𝑖)

) is the i-th (𝑛, 𝑘)  linear block code and the squared 

Euclidean distance between 𝒓 and 𝒄(𝑖) is  

 

|𝒓 − 𝒄(𝑖)|
2

= ∑ (𝑟𝑡 − 𝑥𝑡
(𝑖)

)2𝑛
𝑡=1 .                                         (2) 

 

If we use an exhaustive search for the optimum code word 𝒅, the computational 

complexity increases dramatically and becomes unrealistic for the long information bits.  

To solve this problem, Chase proposed an algorithm of low complexity for near 

maximum likelihood decoding of linear block codes [13]. This algorithm limited the 

reviewed code words of (1) to those in the sphere of radius  (δ − 1), where δ is the 

minimum distance of the code. Chase used the channel information to reduce the 

number of reviewed code words within the sphere. However this method does not 

always achieve maximum likelihood decoding. 

Afterwards, Wolf presented the maximum likelihood decoding of linear block codes 

using a trellis which is efficient in decoding high-rate codes [9]. Using the algorithm, 

we can perform maximum likelihood decoding of any (𝑛, 𝑘) linear block code over GF 

(q) using the Viterbi algorithm applied to a trellis having no more than 𝑞(𝑛−𝑘) states. 

The following is the Wolf’s algorithm. Denote the elements of the finite field GF (q) as 

𝛼𝑗,𝑗 = 0,1,2,… , (𝑞 − 1). Let 𝑯be a parity check matrix of a (𝑛, 𝑘) linear code over GF (q) 

and 𝒉𝑖, 𝑖 = 1,2,… , 𝑛 are (𝑛 − 𝑘)-tuples with elements from GF(q). Constructing a trellis 

for a linear code is based on the concept 𝐜𝑯𝑇 = 0. Each distinct code word corresponds 

to a distinct path in the trellis. Using the following 3 steps, we can construct a trellis of 

a linear code: 

 

Step 1) At depth 𝑘, the trellis contains only one node, namely 𝒔0(0), the all-zero (𝑛 − 𝑘)-

tuple. 

Step 2) For each 𝑘 = 0,1,… , (𝑛 − 1), the collection of nodes at depth (𝑘 + 1) is obtained 

from the collection of nodes at depth 𝑘 by the formula 

 

𝒔𝑙(𝑘 + 1) = 𝒔𝑖(𝑘) + 𝛼𝑗𝒉𝑘+1,                                             (3) 
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for all 𝑖 ∈ 𝐼𝑘 and 𝑗 = 0,1,… , (𝑞 − 1), where I𝑘 ∈ {0,1,… , (𝑞(𝑛−𝑘) − 1)}.  
Step 3) Remove any nodes that do not have a path to the all -zero state at depth n, and 

remove all lines drawn to these expurgated nodes. 

 

For example, consider a (5, 2) linear block code with parity check matrix 

 

𝑯 = [
10100
11010
01001

] = [𝒉1𝒉2𝒉3𝒉4𝒉5]. 

 

Figure 1 shows the constructed trellis before expurgation of nodes after step 2. If we 

perform the final step, we obtain the expurgated trellis of figure 2 where the Viterbi 

algorithm can be used.  

However, when this method is applied to a (30, 14) binary code, we need a trellis 

with 216  states to do maximum likelihood decoding using channel measurement 

information. In this case, the decoding complexity is higher than the word correlation 

decoding which requires 214 correlations. Thus the Wolf’s method seems unrealistic for 

this case. 
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Figure 1. Trellis for Binary (5, 2) Linear Block Code before Expurgation 
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Figure 2. Expurgated Trellis for Binary (5, 2) Linear Block Code 

3. Hybrid MLD 

We can obtain the optimum decoded word 𝑑 = (𝑑1, 𝑑2, … , 𝑑𝑛)using (1) and the squared 

Euclidean distance between 𝒓 and 𝒄(𝑖) is  

 

|𝒓 − 𝒄(𝑖)|
2

= ∑ (𝑟𝑡 − 𝑥𝑡
(𝑖))2 =𝑛

𝑡=1 ∑ (𝑟𝑡
2 + 𝑥𝑡

(𝑖)2 − 2𝑟𝑡𝑥𝑡
(𝑖))𝑛

𝑡=1 .            (4) 

 

Since, 𝑟𝑡
2 + 𝑥𝑡

(𝑖)2
 is constant for all code words, the optimum decoded word becomes 

 

𝒅 = 𝒄(𝑖)if〈𝒓, 𝒄(𝑖)〉 ≥ 〈𝒓, 𝒄(𝑗)〉   ∀𝑗 ∈ [1, 2𝑘], 𝑖 ≠ 𝑗           (5) 

 

where the correlation between 𝒓 and 𝒄(𝑖) is  

 

〈𝒓, 𝒄(𝑖)〉 = ∑ 𝑟𝑡𝑥𝑡
(𝑖)𝑛

𝑡=1 .                                                  (6) 

 

Thus minimum Euclidean distance means maximum correlation and we use correlation 

instead of Euclidean distance to find optimum decoded word.  

Let 𝑮 be a𝑘 × 𝑛 generator matrix of an (𝑛, 𝑘) binary linear block code given by 
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𝑮 = [

𝒈1

𝒈2

⋮
𝒈𝑘

] 

 

where 𝒈𝑖, 𝑖 = 1,2,… , 𝑘, are n-tuples and 𝒎 = (𝑚1,𝑚2, … ,𝑚𝑘) be a k-tuple message. 

Then the code word for the message is represented by 

 

𝒄 = 𝒎𝑮 = 𝑚1𝒈1 + 𝑚2𝒈2 + ⋯+ 𝑚𝑘𝒈𝑘.  (7) 

 

We divide the 𝑮 matrix into two sub-matrices 𝑮1 and 𝑮2 

 

𝑮1 = [

𝒈1

⋮
𝒈𝑘1

] 

 

𝑮2 = [

𝒈𝑘1+1

⋮
𝒈𝑘1+𝑘2

] 

 

where 𝑘 = 𝑘1 + 𝑘2 . Accordingly we divide the𝒎 = (𝑚1, 𝑚2, … ,𝑚𝑘)k-tuplemessage 

into 𝒎1 = (𝑚1, … ,𝑚𝑘1
)𝑘1 -tuple and 𝒎2 = (𝑚𝑘1+1, … ,𝑚𝑘1+𝑘2

)𝑘2 -tuple. Two n-

tuples𝒄1and 𝒄2are generated by 

 

𝒄1 = 𝒎1𝑮1 = 𝑚1𝒈1 + ⋯+ 𝑚𝑘1
𝒈𝑘1

  (8) 

 

𝒄2 = 𝒎2𝑮2 = 𝑚𝑘1+1𝒈𝑘1+1 + ⋯+ 𝑚𝑘1+𝑘2
𝒈𝑘1+𝑘2

.   (9) 

 

And we find that 

 

𝒄 = 𝒄1 + 𝒄2 = (𝑐1,1 + 𝑐2,1, 𝑐1,2 + 𝑐2,2, … , 𝑐1,𝑛 + 𝑐2,𝑛)  (10) 

 

An element-wise multiplication between the received signal 𝒓 = (𝑟1, 𝑟2, … , 𝑟𝑛) and an 

n-tuple𝒄1 = (𝑐1,1, 𝑐1,2, … , 𝑐1,𝑛) isdefined by 

 

𝒃 = 𝒓.∗ 𝒄1 = (𝑟1𝑥1,1, 𝑟2𝑥1,2, … , 𝑟𝑛𝑥1,𝑛)      (11) 

 

with 𝑥1,𝑖 = (−1)𝑐1,𝑖.Correlating two n-tuples 𝒃and 𝒄2,from (10)we find that 

 

〈𝒃, 𝒄2〉 = ∑ 𝑟𝑡𝑥1,𝑡
𝑛
𝑡=1 𝑥2,𝑡 = ∑ 𝑟𝑡𝑥𝑡

𝑛
𝑡=1 = 〈𝒓, 𝒄〉.                            (12) 

 

If we define the set of 2𝑘1 code words of n-tuples 𝒄1 as 
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𝑪1 =

[
 
 
 
 𝒄1

(1)

𝒄1
(2)

⋮

𝒄1
(2𝑘1)

]
 
 
 
 

 

 

then the element-wise multiplications between the received signal 𝒓  and 𝑪1 are 

expressed as 

𝑩 = 𝒓.∗ 𝑪1 =

[
 
 
 

𝒃(1)

𝒃(2)

⋮

𝒃(2𝑘1)]
 
 
 
=

[
 
 
 
 𝒓.∗ 𝒄1

(1)

𝒓.∗ 𝒄1
(2)

⋮

𝒓.∗ 𝒄1
(2𝑘1)

]
 
 
 
 

.                                 (13) 

 

Matrix 𝑩 is a memory bank of 2𝑘1 n-tuples. Let the parallel operation between 

memory bank 𝑩 and 𝒄2
(𝑗)

 for a given 𝒎2
(𝑗)

= (𝑚𝑘1+1
(𝑗)

, … ,𝑚𝑘1+𝑘2

(𝑗)
) be 

 

〈𝑩, 𝒄2
(𝑗)〉 =

[
 
 
 
 
 〈𝒃(1), 𝒄2

(𝑗)〉

⋮

〈𝒃(𝑖), 𝒄2
(𝑗)〉

⋮

〈𝒃(2𝑘1), 𝒄2
(𝑗)〉]

 
 
 
 
 

.                                               (14) 

 

If the correlation 〈𝒃(𝑖), 𝒄2
(𝑗)

〉 is the maximum value in (14), we store the maximum 

correlation value and its corresponding 𝒎1
(𝑖)

= (𝑚1
(𝑖)

, … ,𝑚1+𝑘1

(𝑖)
) 𝑘1-tuple along with the 

given𝒎2
(𝑗)

= (𝑚𝑘1+1
(𝑗)

, … ,𝑚𝑘1+𝑘2

(𝑗)
) 𝑘2 -tuple. If this operation is performed for all 𝒄2

(𝑗)
, 

1 ≤ 𝑗 ≤ 2𝑘2, then we have 2𝑘2 indiceswith local maximum correlation values where we 

can choose one maximum correlation value and its index from which we obtain the 

optimum code word 𝒄 = 𝒄1
(𝑖)

+ 𝒄2
(𝑗)

and its corresponding 𝑘  bits message 𝒎 =

(𝒎1
(𝑖)

,𝒎2
(𝑗)

). 

 

3.1. Decoding Algorithm 

Using the following 5 steps, we can achieve maximum likelihood decoding for a linear 

block code. 

Step 1) Divide the 𝑮 matrix into two sub-matrices 𝑮1 and 𝑮2with 𝑘 = 𝑘1 + 𝑘2. 

Step 2) Construct a memory bank of 2𝑘1n-tuples 𝑩. 

Step 3) Perform parallel operation between memory bank 𝑩 and 𝒄2
(𝑗)

 for𝒎2
(𝑗)

. 

Step 4) Store the maximum correlation value from 〈𝑩, 𝒄2
(𝑗)〉  and its 

corresponding𝒎1
(𝑖)

𝑘1-tuple along with the given𝒎2
(𝑗)

. If this is done for all 𝒄2
(𝑗)

,1 ≤ 𝑗 ≤

2𝑘2, then go to Step 5). Otherwise go to Step 3). 

Step 5) From 2𝑘2  indices with local maximum correlation values, we choose one 

maximum correlation value and its index from which we obtain the optimum code word 

𝒄 = 𝒄1
(𝑖)

+ 𝒄2
(𝑗)

and its corresponding 𝑘 bits message 𝒎 = (𝒎1
(𝑖)

,𝒎2
(𝑗)

). 
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3.2. Application of the Algorithm 

Consider a Reed Muller (RM) code to illustrate the effectiveness of the proposed 

algorithm. The RM code used in [14] is RM(𝑟,𝑚) = RM(2,5). The length of the code is 

𝑛 = 2𝑚 = 32 and the number of information bits is [6]-[8] 

 

𝑘 = 1 + (
𝑚
1

) + (
𝑚
𝑟
) = 16.                                        (15) 

 

The RM(2,5) code becomes systematic form using some elementary row operations. 

After removing the first two information bits becomes (30, 14) RM code. The 

systematic form of the generator matrix of the code is  

 

𝑮 = [

𝒈1

𝒈2

⋮
𝒈14

] = [𝑰14|𝑷]                                                 (16) 

 

And the parity check matrix of the code is  

 

𝑯 = [𝑷𝑇|𝑰16]                                                       (17) 

 

where 𝑰𝑘 is the identity matrix of size 𝑘and  

 

𝑷 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
1001101101100000
0010110111100000
1111110000100000
1110000000111100
1001100000111010
0101010000110110
0010110000101110
1111111111011111
1000001100111001
0100001010110101
0010000110101101
0001001001110011
0000100101101011
0000010011100111]

 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

The 𝑚 basis vectors of RM(𝑟,𝑚) code are equal to those of Walsh code of length 

𝑛 = 2𝑚  [15]. So we can use the FHT (Fast Hadamard Transform) to decode 

RM(𝑟,𝑚) [16]. The computational complexity using FHT for RM(𝑟,𝑚)  requires 𝑚 ∙
2𝑘−𝑚 correlations and this means 5 ∙ 211 correlations for RM(2,5) code. However, it is 

not easy to use FHT (Fast Hadamard Transform) for the shortened (30, 14) RM code 

because (30, 14) code is encoded in systematic form and thus we need mapping between 

systematic code word and non-systematic code word which introduces additional 

complexity and finding the mapping relationship is not clear in this case. Furthermore, 

the first two bits of the RM(2,5) code has been removed to be 30 bits and thus the 

orthogonal property of the Walsh code is not satisfied. 
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We can consider the Wolf’s MLD using a trellis to get optimum decoded word. This 

method requires216 states to use Viterbi algorithm to decode (30, 14) RM code, which 

is more complex than a correlation decoder requiring214operations. 

Now consider the proposed algorithm to decode (30, 14) RM code. We set 𝑘1 = 𝑘2 =
7  and divide the generator matrix 𝑮  matrix into two sub-matrices 𝑮1 and 𝑮2 . And 

construct a memory bank of 2𝑘1 = 27 n-tuples 𝑩  for the parallel processing which 

reduces the decoding time by 27 times. The memory bank 𝑩 needs a memory of𝑛 × 2𝑘1 

bits which is equal to 480 bytes. This is very affordable size to implement. Since one 

parallel operation time is equal to one correlation time, the total time to decode an 

optimum code word is equal to the processing time of 2𝑘2 = 128 correlations which is 

negligible compared to the speed of processor in modern communication equipment. 

Thus we can easily implement optimum decoder for (30, 14) RM code using hybrid 

MLD. Figure 3 shows the performance of (30, 14) RM code over AGWN channel where 

we see about 4 dB performance gain. 

 

 

Figure 3. Performance of (30, 14) RM Code over AWGN Channel 

4. Conclusion 

In this paper we have proposed a new maximum likelihood decoding algorithm to get 

optimum decoded word for a linear block code. Following 5 steps of the algorithm we can 

easily implement the decoder. The hybrid maximum likelihood decoding could solve the 

problem of the hardware complexity as well as the computational time. Wolf’s method is 

only effective for a high-rate code. In fact there are many popular linear block codes 

which are not high-rate codes. To show the effectiveness of the proposed method, we 

demonstrated the decoding of (30, 14) RM code over AWGN channel which shows 

about 4dB performance gain with affordable hardware complexity.  
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