International Journal of Multimedia and Ubiquitous Engineering
Vol. 9, No. 10 (2014), pp. 197-208
http://dx.doi.org/10.14257/ijmue.2014.9.10.19

Development of Android App for Smooth Multimedia Streaming
Service via Portable Media File Format

Sang-Min Seo® and Yoon-Ho Choi?®”

1 Department of Computer Science, Kyonggi University,
443-760, Suwon-Si, Gyeonggi-Do, Korea

2 Department of Convergence Security, Kyonggi University, V'
443-760, Suwon-Si, Gyeonggi-Do, Korea

dronel256@naver.com, ychoi@kyonggi.ac.kr C}Z
Abstract 6 Q)

Existing Android applications for streaming wd@ t|m are ndent on the codec,
which composes the encoding function, and the ver f An rating system. Also, for
streaming video in real time, most application uld be connested with a separate desktop
PC. In this paper, we propose a hew appjic&hich' mes these disadvantages and
thus, streams video in real time. Specifi Nh overco (%ese disadvantages, the proposed
application uses the flash video file for, %/v ichi réoommon media file format supported
by various versions of Androi J&@ syste ugh experiments, we show that it is

possible for the proposed app 0 stream o in real time while using the existing
video encoding methods.

Keywords: mobile dev '@ roid a@}rame buffer, streaming service

1. Introduction

Along with po 'Q'etworks\@p formance improvement of mobile device is facilitating
the developmeRt offmobile mmltimedia applications (hereafter, app), which deal with various
forms of multimedia info ion such as sound and image data instead of general texts [1-5].
In recent years, variou ile operating systems have been developed, and various mobile
devices including s ones have also been equipped with the high computing capability,
the large capacity emory, and the high I/O speed that are similar to those of general PCs.
Also, with tm@/relopment of link layer technologies that enables the increase of the network
bandwidth ile screen recording applications that enables video conferencing by using
high banﬁs on the networks, video-on-demand (VOD), and recording and live streaming
of wi e been commonly deployed.

for streaming video commonly consist of two functional modules: (1) one for
collecting the screen information (image) and the sound information; and (2) another for
transmitting the encoded image and sound via the wired and wireless networks. This is
because to provide smooth multimedia streaming services, not only quick speeds of data
transmission from the aspect of networks but also the high-speed process of video from the
aspect of the mobile device [6-12]. However, most existing studies have focused on the
encoding methods of multimedia sounds and images to improve the quality of streaming
services during data transmission through the networks. As representative studies, a method

“ Corresponding Author

ISSN: 1975-0080 IJMUE
Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol. 9, No. 10 (2014)

that controls optimal bit ratios for encoding was suggested for static images [13] and another
method that uses dependency among frames was proposed for moving images [14]. Also, the

|

Application {j\‘é‘;{}? [Application {/‘\Jg\\;j?
Vi

[Core Libraries(Java) /]

Java Java

I

Dalvik VM(jni)

[Native Libraries Native Services]

Linux kernel J

(a) System architecture for (b)Syste T architecty r
an

[Core Libraries(Java)

collecting screen information by ng scre formation by
using the Android API '%ﬂg thej be
Figure 1. System Architectures mgollec creen Information from
Andr0| rat tem
other methods that classify ma by consi g human visual characteristics [15] and
use the bit ratio-distortion model] were' sed

In this paper, as shown i
be used for collecting the
application program

ure 1 that two representative system structures can
mfor on Android operating system. When the Android
terface ‘7% in JAVA-written codes is called, the recording-

related APIs are call€ua,l coreL%d The respective API is converted to .class (byte codes)
and screen m. n is coll y using native libraries, which are provided by the
Android opera yste t 0 gh the Dalvik Virtual Machine (VM). Specifically, after core
libraries call the DalV1k 7s java native interface (jni) to approach the frame buffer (fb),
which stores screen ation, the Android app collects the screen information from the
path, /dev/graphic hich is the device driver. This is possible because the jni provides

the interface that penforms local system calls.
However, own in Figure 1(a), when screen information is collected by using

Android’s the image recording module undergoes various phases (JAVA—Core
Libr @Jalwk VM—Native Libraries—Native Services—Linux Kernel). Due to these
muphases, screen information is collected at a speed of 7~8 frames per second (fps),
where’such a low speed causes the quality degradation of the collected images. For this
reason, an efficient app implementation technique is required to encode an image for smooth
streaming services.

In this paper, we propose a new streaming app, called FB-MSVR, where screen
information is collected from the fb via the jni as shown in Figure 1(b). By accessing the fb
via the jni, the proposed method overcomes the limitation that the quality of image when
encoding it is not guaranteed in the process of app development. That is, when being
compared with the case of using the Android API as shown in Figure 1(a), screen information
is collected at an average speed of 23~24 fps by collecting images that are stored in the fb in
the following order: JAVA—jni—C/C++ source code—frame buffer within the Linux Kernel.

198 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol. 9, No. 10 (2014)

To realize smooth streaming function, the FB-MSVR uses flash video (flv) file format, which
is a media file format that has been provided by the lower versions of Android operating

Table 1. Summary of Codec, which is Provided by Android Operating System

[17]
Type Format/ Codec Encoder Decoder
AACLC o))
HE-AACv1 O (ver. 4.1+4) 0]

HE-AACV2 : 0 x)

AACELD O (ver. 4.1+4) O (ver. 4.1+)A‘YV
AMR-NB 0O 4. O,N\D
Audio AMR-WB 0 ,S‘% ‘0Q7
FLAC Q > @3.@)
MP3 - \ 0
MIDI) (-\(? .

Vorbis \\J - ,,\\v

0
0
PCM/WAVE/, ™ O (ver Y 0
JPEG\ 7)

0

0

Q?-?GJF \\\U"
Image , G x "0
NNYBMP 4 T -
QQY WeiPy O (ver. 4.0+) O (ver. 4.0+)

O

263 0)
. 4 AVC O (ver. 3.0+) O
Video
PEG-4 SP - o]
- '@' VP8 O (ver. 4.3+) O (ver. 4.3+)
= Flash Support adobe flash 10.1 (ver. 2.2 +)
Sys thus supports the streaming service with outstanding portability.

aper is organized in the following way. In section 2, we analyze the characteristics of
existing video streaming apps. After showing the functional architecture and operational
sequences of the proposed app in section 3, we show the graphical user interface of the
implemented app in section 4. In section 5, we show the evaluation results of the proposed
app. Finally, we summarize this paper in section 6.

2. Related Works
2.1. Overview of Codecs Provided by Android

In Table 1, we summarize codecs provided basically by Android [17].Android supports
Third-Party and Hardware Media Codecs, 1/0O devices, and interfaces for content policies. It

Copyright © 2014 SERSC 199

International Journal of Multimedia and Ubiquitous Engineering
Vol. 9, No. 10 (2014)

supports the encoder or decoder for videos and images such as 3GPP, MPEG-4, AAC, MP3,
MPEG-4, H.263, AVC, and JPEG. It also supports speech codecs including AMR-NB and
AMR-WB, audio codecs including MP3, AAC, and AAC+, media recording codecs including
3GPP, MPEG-4, and JPEG, video calls based on 324-M and Adobe Flash. With the launch of
Android, types of the supportable codecs are also being added. In addition, different smart

Table 2. Specifications of the Existing Apps and the Proposed FB-MSVR
Higher-Version

Streaming Service
Name - ¢
quality (fps) Codec x)

screen cast Not supported 6 E

video recorder [1]

screen

video recorder [2] Not@pr id \7);

Z-screenrecorder [3]

oq%)
afreecaTV [4] NB ~24 264

mobizen [5] °_ Ysupportné@reammg
FB-MSVR &

phone manufacturers provide n additi codecs thus different devices have
different types of codecs suppor Tth ng codecs embedded in Android, the flv,
which has been supported Iow ns of Android, should be used for not being
limited by smart phones a&égrmd v& S.

2.2. Characterlstl mstmq@ n Recording Programs
str

In Table 2, mpare t aming performance of recording apps, which are currently
used at commerctal Andr art phone, with that of the proposed app, FB-MSVR. On the
following Andr0|d sm ne, we evaluated the performance of the existing apps and the
proposed app:

) r0|d device: Galaxy Note 2
) pment program: eclipse juno 64bit
o roid version: Jelly Bean 4.1.2
ndroid NDK: android-ndk-r9d-windows-x86_64bit
@ Tool for checking codec information (the length of images, the type of codec):
mediainfo [20]

Among existing apps, only the screen video recorder [2] recorded the screen at an average
speed of 24 fps by using the MPEG-4. However, it provided neither audio nor streaming
services. The screen cast video recorder [1] and the Z-screenrecorder [3] did not properly
record. Also, they had the disadvantage of not providing streaming services. In the case of
AfreecaTV [4] that is most widely used for real-time streaming service, both recording and
streaming functions work only in connection with a separate desktop. Also, the streaming
function of AfreecaTV [4] was supported by using only H.264 codec. In the same way that

200 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol. 9, No. 10 (2014)

AfreecaTV provides both recording and streaming functions [4], the recording function of
mobizen [5] was also provided after being connected with a separate desktop.
2.3. Characteristics of the Proposed App

The proposed app records the audio and the screen of Android smart phones by using of
the codecs that are basically supported by Android. Thus, it is possible to share smart phone
screens and audios with other users through the streaming function. In addition, because the

4 2

. FFMPEG
[Android App] [Tomeat]
3. Encoding
treami « A 6
[Streaming] A Login 4
> 4. Transmit Vedio
‘ Streaming €
Module < 2. Collect Audi q at ’h
User EE—
2. Collect Screen [jffermati eq User
, Library n id:\P]. Selyice |
Configuration JNI(: < Recording Q\\}
¢ v Module
AR

&8

(3 ["‘" >
q) \ [REDS RTMP Server]
l‘I?

¢ Q AndroidNDevice Android Device
\\v 4d§r/gmphics/fbo MIC
Qigur 2.@chitecture of the Streaming Function

Scke cord jni fbo

1. Call jni

2. Open(“/dev/graphics/fb0™)

3.Close(*/dev/graphics/fb(")

4. Return the screen information
stored at fb(

&

Figure 3. Sequence Diagram for Collecting Screen Information from fb0

proposed app uses the flv file format for streaming service, it is possible to view the recorded
images and the audios on various devices.

Copyright © 2014 SERSC 201

International Journal of Multimedia and Ubiquitous Engineering
Vol. 9, No. 10 (2014)

3. Architecture and Operation of the Proposed App

It is worth noting that FFMPEG open source libraries [19] support various forms of
encoding and decoding for images. Thus, we implement the proposed app by using FFMPEG
open source libraries when encoding images. Specifically, the proposed app encodes an image
by using the MPEG-4 and ACC codecs, and transmits the encoded image by transforming it
into the flv file format for streaming service. Here, we use the flv file format for keeping
portability because the flv file format is supported by various versions of Android operating
system. Also, because the flv file format can maintain the quality of images while reducing
the size of the recorded image, the proposed app can take into account the unt of
bandwidth consumption while streaming the encoded image via the wireless netw: &ﬂ

ScreenRecord MIC
A .

f\ b
{{@

\Q)
N
I 2\Iﬂ¢’§r08mp0

Q“Q

Flgur en&es*ram for Collecting Sound Information

REDS
MﬂmAcm 1 OptionPage ScreenStream RTMP
q Server
I
m setOptionBtn() |

&/
:< 2.optionSave() I:E:I

|

|

|

|

| |

|

Q I:E:I 3.ScreenSream() R |

I = |

| |

| |

| |
|
|
|
|
|
|
|
|
|
|
|
|

[%4. installFFMPEG()

N ;

::_l 5.encoding()

!
| 6.Streamming()

[]

7. finish()

&
(a3

|
|
|
|
|
:
']
|
|
|
:
Figure 5. Sequence Diagram for the Streaming Function

202 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol. 9, No. 10 (2014)

be used effectively not only in the Android environment but also in the Web. In the following
subsections, we show the overall architecture and operation of the streaming function.

3.1. Overall Structure of the Streaming Function

To broadcast the current screen image and audio on the smart phone properly, the proposed
app consists of the following modules. After streaming module collects screen information
and audio information by using the jni and recording module, it encodes the screen image in
the form of video in the b0 and transmits the video file to the Red5 RTMP server [19], and
then streaming service can be provided to users via the Tomcat web server in real time. As
shown in Figure 2, the streaming function operates based on collaboration ar@hese

modules in the following way. Y

3.2. Sequence Diagrams for Supporting the Streaming Fungtion
[]

o Bt

i) scheenRecorder

N
o -

N .

(a) Screeg Wi fk@o
Figure 6. T@evelo&@pp’s Installation and Environment Setting Screens

3.2.1. Sequence Diagr:
Android devices, the
buffer include fb0 a

(b) Main screen

r Collecting Screen Information: To collect screen information on
buffer should be accessed from the application layer. Types of the frame
: fbO for storing the current screen information and fbl for storing the future

screen informatign. However, it is impossible to access the frame buffers from the application layer
directly. Th ollowing the sequence in Figure 3, the proposed app collects screen information
from fhO0.

l@n the Android source code, which is written in JAVA language, the jni is called

%or collecting the screen information stored at the fbO0.

2. 7 Because the jni can access to /dev/graphics/fb0, the screen information at the fb0 is
opened via Open(“dev/graphics/fb0”).

3. Close the b0 by using Close("/dev/graphics/fb0").

4. Screen information, which is brought from the fbO, is collected at the recording
module.

3.2.2. Sequence Diagram for Collecting Sound Information:As shown in Figure 4, sound
information is collected in the following way.
1. Sound information from the device’s microphone (MIC) is collected by calling
MediaRecorder().Start().
2. Stop collecting the sound information by calling MediaRecorder().Stop().

Copyright © 2014 SERSC 203

International Journal of Multimedia and Ubiquitous Engineering
Vol. 9, No. 10 (2014)

3.2.3. Sequence Diagram for the Streaming Function: As shown in Figure 5, the streaming
function operates in the following way.

1. After moving to the OptionPage by calling setOptionBtn(), set the environment for
recording.

2. Save values for environment setting by calling optionSave().

(a) Screen while streaming vide%\O(b) S_creent oF showing in-progress
serticéstatus

Figure}i@s wh &aming Video
Qi

. 3 .l‘. - 4
aa) Screen for Web server login (b) Screen while watching the video
Figure 8. Screens for Watching Streaming Video at the Web Server

By calling ScreenRecord(), the proposed app operates in the background mode.
FFMPEG open source libraries are installed by calling installFFMPEG().

By calling encoding() without calling Recording() as shown in Fig.7, screen
information in the fb0 is collected, and sound information is also collected from the
device’s microphone by using the basic Android audio API. Here, the collected
information is encoded in the format of flv through FFMPEG open source libraries.

6. The video stream is transmitted to the Red 5 RTMP server via the wireless network
by calling Streaming().

ok w

204 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol. 9, No. 10 (2014)

7. After finish() is called, the streaming service that has been operating in the
background is terminated and completed.

[Server]

[Client]

&

Fo= | Tomeat Web Server

1
T —— red® .
Wireless Networks(3G, LTE, Wi-fi)
Red5 RTMP Server v

Figure 9. Organization of the Experimental Enviro nt

4. Graphic User Interfaces

Figure 6 shows the installation (Figure 6(a)) mal (b)) screens of the
proposed app. While installing the proposed app, it 1s requir Ilow the proposed app
access the b0 and the microphone. Thus, wh@rallmg t the root user's right should
be accepted by the Android operating systé

Figure 7 shows the screens during s) and displaying the progress of
streaming (Figure 7(b)). While the am ates %&gkground the status bar on the upper
screen in Figure 7(a) shows alar ages su&g "Streaming is on (red box, "~E 2%
Z YY" in Korean, in Figure 7(a))". For tézminating streaming service, if you drag down

the status bar and then, clic notifieatian¥Streaming (red box, "~ E 2] " <" in Korean,
in Figure 7(b))", the stse service inated, and the control of the program returns to

the main screen.
In Figure 8, we the ‘%or the Web server log-in (Figure 8(a)) and watching
streaming Vld e 8(b) m ccess to the Web page for watching streaming service,
the login scree eJ a user successes to login to the Web server, the login screen
changes into the streamé@wce page, which is provided by the Red 5 Server, and the user
eo

can watch the strei& .
5. Perfor ce Evaluation
5.1. Exp '@ntal Environment

n in Figure 9, we organized the experimental environment, and the experiment
was p&pformed to compare the speed of obtaining video information by using the existing API
as shown in Figure 1(a) and the jni as shown in Figure 1(b), respectively. For client side, we
used the Android smart phone, whose specification was shown in section 2.2, and for the
server side, we configure it as follows.

® Server OS: Windows 7 64bit Ultimate

® \Web Server: Tomcat 7.0
® Streaming Server: Red5 1.0.1

Copyright © 2014 SERSC 205

International Journal of Multimedia and Ubiquitous Engineering
Vol. 9, No. 10 (2014)

Table 3. Average fps for Streaming Video Files by Using the APl and the

Proposed App
of trials 1 2 3 4 5 Average (fps)
API 81 74 73 89 82 7.8
FB-MSVR 243 234 242 229 248 23.6

30

: S

mber %
Figure 10. Average fps ﬁ?& ream;n%deo Files by Using the API and the
App

5.2. Evaluation Res ts&

To compare the ing spﬁ% een the existing APl and the jni, we measured fps for
10 seconds at ial in an age. In Figure 10, we show the evaluation results after
measuring the peed of obtaigl g screen information by using the Android API and accessing
b0 in the native domain e jni together with the NDK. In Table 3, we also summarize the
results in a numeric %mner. The evaluation results show that the average fps is 7.8 fps
when using the Ag& API and 23.6 fps when using the jni. That is, it is shown that while

streaming servigce provided by the Android API is not fully met the ream time streaming
service, and%the results of encoding showed video with less smoothness, streaming
service pr by the jni met over 20 frames per second, and thus provides smooth video.

lusion

The existing Android screen recording app is dependent on the system specifications of the
recording function and should provide services by connecting with a separate desktop PC in a
wired manner. Thus, this study suggested an efficient method of proving the real-time
streaming service of video file by using flash video files and then, its performance was
verified in terms of fps during stream service. From the experimental evaluation results, it
was shown that the proposed app can encode the images smooth by as much as 20 fps without
changing the encoding method. After the further improvement of the streaming service, we
expect that many users can watch the streaming video via Android devices.

206 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol. 9, No. 10 (2014)

Acknowledgments

This work was supported by the Industrial Strategic Technology Development Program
(10047541, Development of Self-Defending and Auto-Scaling SDN Smart Security
Networking System) funded by the Ministry of Knowledge Economy(MKE, Korea)".

References

[1] Screen Cast video recorder. https://play.google.com/store/apps/details?id=com.ms.screencastfree

[2] Screen video recorder v3.0. https://play.google.com/store/apps/details?id=com.cocoapps.screenrecorder
[3] Z-screenrecorder. https://play.google.com/store/apps/details?id=com.zausan.zscreenrecorder °
[4] AfreecaTV. https://play.google.com/store/apps/details?id=kr.co.nowcom.mobile.afreeca

[5] Mobizen. http://Aww.mobizen.com/

[6] H. Kim, J. Koo, and K. Chung, “Equation-based Quality Control Scheme for Improvi Multimedia

Streaming Service”, Proceeding of the KIISE Fall Conference, (2010) ove.mber Kogea rean).
[7] J. Koo and K. Chung, “A Novel Rate Control for Improving the ultime Ing Service in the
Internet Congestion”, Journal of KIISE: Information Networklng , Korean).

[8] B. Wang, W. Wei, Z. Guo, and D. Towsley, “Multipath

Benefits”, Proceeding of the ACM CoNEXT, (2007) Dece
[9] D. Nguyen and J. Ostermann, “Congestion Control for“8ecafable Vifigo ming Using the Scalability
Extension of H.264/AVC”, IEEE Journal of Selected ?gics in Signal Processing, vol. 2, no. 2, (2007).

eme, Performance and

[10] B. Libaek and O. Kure, “Generic Application Lev ontrolofo lable Video Using Shadow Probing”,
Proceeding of the ICSNC, (2009).

[11] R. Rejaie, M. Handley, and D. Estrin, “La uality A n for Internet Video Streaming”, IEEE
Journal of Selected Areas in Communlcatl I 12, N

[12] M. Zink, J. Schmitte, and R. Stei yer En deo in Scalable Adaptive Streaming”, IEEE
Transaction on Multimedia, vol. &A 05).

[13] A. Ortega, K. Ramchandran, an Vetterli,“Optimal trellis-based buffered compression and fast
approximations”, IEEE Transaegion on Ima ePrOg g, vol. 1, no. 3, (1994).

[14] K. Ramchandran, A. Orteg M. Vetter llocation for dependent quantization with applications to
multi-resolution and MP 0 coder”, ransaction on Image Processing, vol. 5, no. 3, (1994).

[15] ISO-IEC/JTCl/SCZ est Model 5, (1993).

[16] J. Zdepsky, D.Rayeha ur| a ‘é)eph “Statistically based buffer control policies for constant rate
transmission @ aressed dlgl EEE Transaction on Communications”, vol. 6, no. 39, (1991).

[17] Embedded A odec. httpy//developer.android.com/guide/appendix/media-formats.html
rﬁ'ﬁgﬁq hu/

[19] Red 5. http: //wWW reds.
[20] Mediainfo. http://medi net/ko/Medialnfo

[21] S. Choi, S. Lee, Klm and T. Jeong, “Secure Video Transmission on Smart Phones for Mobile
Intelligent Netwo™”, ¥JSIA, vol. 1, no. 1, (2013).
[22] Y.-S. Par £. Kim, J. Ahn, C.-S. Kim and J.-C. Ryou, “A Real Time Voice Transmission Method for \VVoice

Privacy be

eEMCDMA Mobile and PSTN Terminal”, 1JSIA, vol. 2, no. 1, (2007).
[23] J Veual

“Autonomy, Heterogeneity, Trust, Security, and Privacy in Mobile P2P Environments”, 1JSIA

Authors

Sang-min Seo graduated from Yong-In high school at 2008. He is
currently in the department of computer science, Kyonggi University,
Suwon, Korea. He is specialized at JAVA programming, Android
programming, Embedded System and so on.

Copyright © 2014 SERSC 207

International Journal of Multimedia and Ubiquitous Engineering

Vol. 9, No. 10 (2014)

208

Yoon-Ho Choi is an assistant professor at department of convergence
security in Kyonggi University, Suwon, Korea. He received the M.S. and
Ph.D. degrees from school of electrical and computer engineering, Seoul
National University, S. Korea, in Aug. 2004 and Aug. 2008, respectively.
He was a postdoctoral scholar in Seoul National University from Sep.
2008 to Dec. 2008 and in Pennsylvania State University, University Park,
PA, USA, from Jan. 2009 to Dec. 2009. He has served as TPC members
in various international conferences and journals. His research interests
include Deep Packet Inspection (DPI) for high-speed intrusion
prevention, mobile computing security, vehicular network segurity, sbig
data analysis and so on. ew

Copyright © 2014 SERSC

