
International Journal of Multimedia and Ubiquitous Engineering 

Vol. 9, No. 10 (2014), pp. 197-208 

http://dx.doi.org/10.14257/ijmue.2014.9.10.19 

    

 

ISSN: 1975-0080 IJMUE 

Copyright ⓒ 2014 SERSC 

Development of Android App for Smooth Multimedia Streaming 

Service via Portable Media File Format 
 

 

Sang-Min Seo
1
 and Yoon-Ho Choi

2*
 

1 Department of Computer Science, Kyonggi University, 

443-760, Suwon-Si, Gyeonggi-Do, Korea 

2 Department of Convergence Security, Kyonggi University, 

443-760, Suwon-Si, Gyeonggi-Do, Korea 

drone1256@naver.com, ychoi@kyonggi.ac.kr 

Abstract 

Existing Android applications for streaming video in real time are dependent on the codec, 

which composes the encoding function, and the version of Android operating system. Also, for 

streaming video in real time, most applications should be connected with a separate desktop 

PC. In this paper, we propose a new application, which overcomes these disadvantages and 

thus, streams video in real time. Specifically, to overcome these disadvantages, the proposed 

application uses the flash video file format, which is the common media file format supported 

by various versions of Android operating system. Through experiments, we show that it is 

possible for the proposed application to stream video in real time while using the existing 

video encoding methods. 

Keywords: mobile device, android app, jni, frame buffer, streaming service 

1. Introduction 

Along with mobile networks, the performance improvement of mobile device is facilitating 

the development of mobile multimedia applications (hereafter, app), which deal with various 

forms of multimedia information such as sound and image data instead of general texts [1-5]. 

In recent years, various mobile operating systems have been developed, and various mobile 

devices including smart phones have also been equipped with the high computing capability, 

the large capacity of memory, and the high I/O speed that are similar to those of general PCs. 

Also, with the development of link layer technologies that enables the increase of the network 

bandwidth, mobile screen recording applications that enables video conferencing by using 

high bandwidths on the networks, video-on-demand (VOD), and recording and live streaming 

of video, have been commonly deployed. 

Apps for streaming video commonly consist of two functional modules: (1) one for 

collecting the screen information (image) and the sound information; and (2) another for 

transmitting the encoded image and sound via the wired and wireless networks. This is 

because to provide smooth multimedia streaming services, not only quick speeds of data 

transmission from the aspect of networks but also the high-speed process of video from the 

aspect of the mobile device [6-12]. However, most existing studies have focused on the 

encoding methods of multimedia sounds and images to improve the quality of streaming 

services during data transmission through the networks. As representative studies, a method 

                                                           
*
 Corresponding Author 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 9, No. 10 (2014) 

 

 

198   Copyright ⓒ 2014 SERSC 

that controls optimal bit ratios for encoding was suggested for static images [13] and another 

method that uses dependency among frames was proposed for moving images [14]. Also, the  

 

 
(a) System architecture for 

collecting screen information by 

using the Android API 

 
(b) System architecture for 

collecting screen information by 

using the jni and fb0 

Figure 1. System Architectures for Collecting Screen Information from 
Android Operating System 

other methods that classify macro blocks by considering human visual characteristics [15] and 

use the bit ratio-distortion model [16] were proposed. 

In this paper, as shown in Figure 1, we note that two representative system structures can 

be used for collecting the screen information on Android operating system. When the Android 

application programming interface (API) in JAVA-written codes is called, the recording-

related APIs are called in core libraries. The respective API is converted to .class (byte codes) 

and screen information is collected by using native libraries, which are provided by the 

Android operating systems through the Dalvik Virtual Machine (VM). Specifically, after core 

libraries call the Dalvik VM’s java native interface (jni) to approach the frame buffer (fb), 

which stores screen information, the Android app collects the screen information from the 

path, /dev/graphics/fb0, which is the device driver. This is possible because the jni provides 

the interface that performs local system calls. 

However, as shown in Figure 1(a), when screen information is collected by using 

Android’s API, the image recording module undergoes various phases (JAVA→Core 

Libraries→Dalvik VM→Native Libraries→Native Services→Linux Kernel). Due to these 

multiple phases, screen information is collected at a speed of 7~8 frames per second (fps), 

where such a low speed causes the quality degradation of the collected images. For this 

reason, an efficient app implementation technique is required to encode an image for smooth 

streaming services. 

In this paper, we propose a new streaming app, called FB-MSVR, where screen 

information is collected from the fb via the jni as shown in Figure 1(b). By accessing the fb 

via the jni, the proposed method overcomes the limitation that the quality of image when 

encoding it is not guaranteed in the process of app development. That is, when being 

compared with the case of using the Android API as shown in Figure 1(a), screen information 

is collected at an average speed of 23~24 fps by collecting images that are stored in the fb in 

the following order: JAVA→jni→C/C++ source code→frame buffer within the Linux Kernel. 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 9, No. 10 (2014) 

 

 

Copyright ⓒ 2014 SERSC  199 

To realize smooth streaming function, the FB-MSVR uses flash video (flv) file format, which 

is a media file format that has been provided by the lower versions of Android operating 

Table 1. Summary of Codec, which is Provided by Android Operating System 
[17] 

Type Format / Codec Encoder Decoder 

Audio 

AAC LC O O 

HE-AACv1 O (ver. 4.1+) O 

HE-AACv2 - O 

AAC ELD O (ver. 4.1+) O (ver. 4.1+) 

AMR-NB O O 

AMR-WB O O 

FLAC - O (ver. 3.1+) 

MP3 - O 

MIDI - O 

Vorbis - O 

PCM/WAVE O (ver. 4.1+) O 

Image 

JPEG O O 

GIF - O 

PNG O O 

BMP - O 

WebP O (ver. 4.0+) O (ver. 4.0+) 

Video 

H.263 O O 

H.264 AVC O (ver. 3.0+) O 

MPEG-4 SP - O 

VP8 O (ver. 4.3+) O (ver. 4.3+) 

Flash Support adobe flash 10.1 (ver. 2.2 +) 

 

system, and thus supports the streaming service with outstanding portability. 

This paper is organized in the following way. In section 2, we analyze the characteristics of 

existing video streaming apps. After showing the functional architecture and operational 

sequences of the proposed app in section 3, we show the graphical user interface of the 

implemented app in section 4. In section 5, we show the evaluation results of the proposed 

app. Finally, we summarize this paper in section 6. 

 

2. Related Works 

2.1. Overview of Codecs Provided by Android 

In Table 1, we summarize codecs provided basically by Android [17].Android supports 

Third-Party and Hardware Media Codecs, I/O devices, and interfaces for content policies. It 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 9, No. 10 (2014) 

 

 

200   Copyright ⓒ 2014 SERSC 

supports the encoder or decoder for videos and images such as 3GPP, MPEG-4, AAC, MP3, 

MPEG-4, H.263, AVC, and JPEG. It also supports speech codecs including AMR-NB and 

AMR-WB, audio codecs including MP3, AAC, and AAC+, media recording codecs including 

3GPP, MPEG-4, and JPEG, video calls based on 324-M and Adobe Flash. With the launch of 

Android, types of the supportable codecs are also being added. In addition, different smart 

Table 2. Specifications of the Existing Apps and the Proposed FB-MSVR 
Higher-Version 

Name 
Streaming Service 

quality (fps) Codec 

screen cast 

video recorder [1] 
Not supported 

screen 

video recorder [2] 
Not supported 

Z-screenrecorder [3] Not supported 

afreecaTV [4] 23~24 H.264 

mobizen [5] Not supporting streaming 

FB-MSVR 23~24 flv 

 

phone manufacturers provide their own additional codecs, thus different devices have 

different types of codecs supported. Thus, among codecs embedded in Android, the flv, 

which has been supported by the lower versions of Android, should be used for not being 

limited by smart phones and Android versions. 

 

2.2. Characteristics of Existing Screen Recording Programs 

In Table 2, we compare the streaming performance of recording apps, which are currently 

used at commercial Android smart phone, with that of the proposed app, FB-MSVR. On the 

following Android smart phone, we evaluated the performance of the existing apps and the 

proposed app: 

 

 Android device: Galaxy Note 2 

 Development program: eclipse juno 64bit 

 Android version: Jelly Bean 4.1.2 

 Android NDK: android-ndk-r9d-windows-x86_64bit 

 Tool for checking codec information (the length of images, the type of codec): 

mediainfo [20] 

 

Among existing apps, only the screen video recorder [2] recorded the screen at an average 

speed of 24 fps by using the MPEG-4. However, it provided neither audio nor streaming 

services. The screen cast video recorder [1] and the Z-screenrecorder [3] did not properly 

record. Also, they had the disadvantage of not providing streaming services. In the case of 

AfreecaTV [4] that is most widely used for real-time streaming service, both recording and 

streaming functions work only in connection with a separate desktop. Also, the streaming 

function of AfreecaTV [4] was supported by using only H.264 codec. In the same way that 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 9, No. 10 (2014) 

 

 

Copyright ⓒ 2014 SERSC  201 

AfreecaTV provides both recording and streaming functions [4], the recording function of 

mobizen [5] was also provided after being connected with a separate desktop. 

 

2.3. Characteristics of the Proposed App 

The proposed app records the audio and the screen of Android smart phones by using of 

the codecs that are basically supported by Android. Thus, it is possible to share smart phone 

screens and audios with other users through the streaming function. In addition, because the  

 

 

Figure 2. Architecture of the Streaming Function 

 

Figure 3. Sequence Diagram for Collecting Screen Information from fb0 

proposed app uses the flv file format for streaming service, it is possible to view the recorded 

images and the audios on various devices. 

 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 9, No. 10 (2014) 

 

 

202   Copyright ⓒ 2014 SERSC 

3. Architecture and Operation of the Proposed App 

It is worth noting that FFMPEG open source libraries [19] support various forms of 

encoding and decoding for images. Thus, we implement the proposed app by using FFMPEG 

open source libraries when encoding images. Specifically, the proposed app encodes an image 

by using the MPEG-4 and ACC codecs, and transmits the encoded image by transforming it 

into the flv file format for streaming service. Here, we use the flv file format for keeping 

portability because the flv file format is supported by various versions of Android operating 

system. Also, because the flv file format can maintain the quality of images while reducing 

the size of the recorded image, the proposed app can take into account the amount of 

bandwidth consumption while streaming the encoded image via the wireless network, and can  

 

 

Figure 4. Sequence Diagram for Collecting Sound Information 

 

Figure 5. Sequence Diagram for the Streaming Function 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 9, No. 10 (2014) 

 

 

Copyright ⓒ 2014 SERSC  203 

be used effectively not only in the Android environment but also in the Web. In the following 

subsections, we show the overall architecture and operation of the streaming function. 

 

3.1. Overall Structure of the Streaming Function 

To broadcast the current screen image and audio on the smart phone properly, the proposed 

app consists of the following modules. After streaming module collects screen information 

and audio information by using the jni and recording module, it encodes the screen image in 

the form of video in the fb0 and transmits the video file to the Red5 RTMP server [19], and 

then streaming service can be provided to users via the Tomcat web server in real time. As 

shown in Figure 2, the streaming function operates based on collaboration among these 

modules in the following way. 

 

3.2. Sequence Diagrams for Supporting the Streaming Function 

 

 
(a) Screen when install App 

 
(b) Main screen 

Figure 6. The Developed App’s Installation and Environment Setting Screens 

3.2.1. Sequence Diagram for Collecting Screen Information: To collect screen information on 

Android devices, the frame buffer should be accessed from the application layer. Types of the frame 

buffer include fb0 and fb1: fb0 for storing the current screen information and fb1 for storing the future 

screen information. However, it is impossible to access the frame buffers from the application layer 

directly. Thus, by following the sequence in Figure 3, the proposed app collects screen information 

from fb0. 

1. From the Android source code, which is written in JAVA language, the jni is called 

for collecting the screen information stored at the fb0. 

2. Because the jni can access to /dev/graphics/fb0, the screen information at the fb0 is 

opened via Open(“dev/graphics/fb0”). 

3. Close the fb0 by using Close("/dev/graphics/fb0"). 

4. Screen information, which is brought from the fb0, is collected at the recording 

module. 

 

3.2.2. Sequence Diagram for Collecting Sound Information:As shown in Figure 4, sound 

information is collected in the following way. 

1. Sound information from the device’s microphone (MIC) is collected by calling 

MediaRecorder().Start(). 

2. Stop collecting the sound information by calling MediaRecorder().Stop(). 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 9, No. 10 (2014) 

 

 

204   Copyright ⓒ 2014 SERSC 

3.2.3. Sequence Diagram for the Streaming Function: As shown in Figure 5, the streaming 

function operates in the following way. 

1. After moving to the OptionPage by calling setOptionBtn(), set the environment for 

recording. 

2. Save values for environment setting by calling optionSave(). 

 

 
(a) Screen while streaming video 

 
(b) Screen for showing in-progress 

service status 

Figure 7. Screens when Streaming Video 

 

 
(a) Screen for Web server login 

 
(b) Screen while watching the video 

Figure 8. Screens for Watching Streaming Video at the Web Server 

3. By calling ScreenRecord(), the proposed app operates in the background mode. 

4. FFMPEG open source libraries are installed by calling installFFMPEG(). 

5. By calling encoding() without calling Recording() as shown in Fig.7, screen 

information in the fb0 is collected, and sound information is also collected from the 

device’s microphone by using the basic Android audio API. Here, the collected 

information is encoded in the format of flv through FFMPEG open source libraries. 

6. The video stream is transmitted to the Red 5 RTMP server via the wireless network 

by calling Streaming(). 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 9, No. 10 (2014) 

 

 

Copyright ⓒ 2014 SERSC  205 

7. After finish() is called, the streaming service that has been operating in the 

background is terminated and completed. 

 

 

Figure 9. Organization of the Experimental Environment 

4. Graphic User Interfaces 

Figure 6 shows the installation (Figure 6(a)) and main (Figure 6(b)) screens of the 

proposed app. While installing the proposed app, it is required to allow the proposed app 

access the fb0 and the microphone. Thus, while installing the app, the root user's right should 

be accepted by the Android operating system. 

Figure 7 shows the screens during streaming (Figure 7(a)) and displaying the progress of 

streaming (Figure 7(b)). While the app operates in the background, the status bar on the upper 

screen in Figure 7(a) shows alarm messages such as "Streaming is on (red box, "스트리밍 

중입니다" in Korean, in Figure 7(a))". For terminating streaming service, if you drag down 

the status bar and then, click the notification "Streaming (red box, "스트리밍중" in Korean, 

in Figure 7(b))", the streaming service is terminated, and the control of the program returns to 

the main screen. 

In Figure 8, we show the screens for the Web server log-in (Figure 8(a)) and watching 

streaming video (Figure 8(b)). If you access to the Web page for watching streaming service, 

the login screen is shown. After a user successes to login to the Web server, the login screen 

changes into the streaming service page, which is provided by the Red 5 Server, and the user 

can watch the streaming video. 

 

5. Performance Evaluation 
 

5.1. Experimental Environment 

As shown in Figure 9, we organized the experimental environment, and the experiment 

was performed to compare the speed of obtaining video information by using the existing API 

as shown in Figure 1(a) and the jni as shown in Figure 1(b), respectively. For client side, we 

used the Android smart phone, whose specification was shown in section 2.2, and for the 

server side, we configure it as follows. 

 

 Server OS: Windows 7 64bit Ultimate 

 Web Server: Tomcat 7.0 

 Streaming Server: Red5 1.0.1 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 9, No. 10 (2014) 

 

 

206   Copyright ⓒ 2014 SERSC 

Table 3. Average fps for Streaming Video Files by Using the API and the 
Proposed App 

# of trials 1 2 3 4 5 Average (fps) 

API 8.1 7.4 7.3 8.9 8.2 7.8 

FB-MSVR 24.3 23.4 24.2 22.9 24.8 23.6 

 

 

Figure 10. Average fps for Streaming Video Files by Using the API and the 
Proposed App 

5.2. Evaluation Results 

To compare the streaming speed between the existing API and the jni, we measured fps for 

10 seconds at each trial in an average. In Figure 10, we show the evaluation results after 

measuring the speed of obtaining screen information by using the Android API and accessing 

fb0 in the native domain via the jni together with the NDK. In Table 3, we also summarize the 

results in a numerical manner. The evaluation results show that the average fps is 7.8 fps 

when using the Android API and 23.6 fps when using the jni. That is, it is shown that while 

streaming service provided by the Android API is not fully met the ream time streaming 

service, and thus the results of encoding showed video with less smoothness, streaming 

service provided by the jni met over 20 frames per second, and thus provides smooth video. 

 

6. Conclusion 

The existing Android screen recording app is dependent on the system specifications of the 

recording function and should provide services by connecting with a separate desktop PC in a 

wired manner. Thus, this study suggested an efficient method of proving the real-time 

streaming service of video file by using flash video files and then, its performance was 

verified in terms of fps during stream service. From the experimental evaluation results, it 

was shown that the proposed app can encode the images smooth by as much as 20 fps without 

changing the encoding method. After the further improvement of the streaming service, we 

expect that many users can watch the streaming video via Android devices. 

 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 9, No. 10 (2014) 

 

 

Copyright ⓒ 2014 SERSC  207 

Acknowledgments 

This work was supported by the Industrial Strategic Technology Development Program 

(10047541, Development of Self-Defending and Auto-Scaling SDN Smart Security 

Networking System) funded by the Ministry of Knowledge Economy(MKE, Korea)". 

 

References 

 

[1] Screen Cast video recorder.  https://play.google.com/store/apps/details?id=com.ms.screencastfree 

[2] Screen video recorder v3.0.  https://play.google.com/store/apps/details?id=com.cocoapps.screenrecorder 

[3] Z-screenrecorder.  https://play.google.com/store/apps/details?id=com.zausan.zscreenrecorder 

[4] AfreecaTV. https://play.google.com/store/apps/details?id=kr.co.nowcom.mobile.afreeca 

[5] Mobizen. http://www.mobizen.com/ 

[6] H. Kim, J. Koo, and K. Chung, “Equation-based Quality Control Scheme for Improving QoE of Multimedia 

Streaming Service”, Proceeding of the KIISE Fall Conference, (2010) November Korea (in Korean). 

[7] J. Koo and K. Chung, “A Novel Rate Control for Improving the QoE of Multimedia Streaming Service in the 

Internet Congestion”, Journal of KIISE: Information Networking, vol. 6, no. 36, (2009) (in Korean). 

[8] B. Wang, W. Wei, Z. Guo, and D. Towsley, “Multipath Live Streaming via TCP: Scheme, Performance and 

Benefits”, Proceeding of the ACM CoNEXT, (2007) December. 

[9] D. Nguyen and J. Ostermann, “Congestion Control for Scalable Video Streaming Using the Scalability 

Extension of H.264/AVC”, IEEE Journal of Selected Topics in Signal Processing, vol. 2, no. 2, (2007). 

[10] B. Libaek and O. Kure, “Generic Application Level Rate Control for Scalable Video Using Shadow Probing”, 

Proceeding of the ICSNC, (2009). 

[11] R. Rejaie, M. Handley, and D. Estrin, “Layered Quality Adaptation for Internet Video Streaming”, IEEE 

Journal of Selected Areas in Communications, vol. 12, no. 18, (2000). 

[12] M. Zink, J. Schmitte, and R. Steinmetz, “Layer-Encoded Video in Scalable Adaptive Streaming”, IEEE 

Transaction on Multimedia, vol. 1, no. 7, (2005). 

[13] A. Ortega, K. Ramchandran, and M. Vetterli, “Optimal trellis-based buffered compression and fast 

approximations”, IEEE Transaction on Image Processing, vol. 1, no. 3, (1994). 

[14] K. Ramchandran, A. Ortega, and M. Vetterli, “Bit allocation for dependent quantization with applications to 

multi-resolution and MPEG video coder”, IEEE Transaction on Image Processing, vol. 5, no. 3, (1994). 

[15] ISO-IEC/JTC1/SC29/WG11, Test Model 5, (1993). 

[16] J. Zdepsky, D.Raychaudhuri, and K. Joseph, “Statistically based buffer control policies for constant rate 

transmission of compressed digital video. IEEE Transaction on Communications”, vol. 6, no. 39, (1991). 

[17] Embedded Android Codec. http://developer.android.com/guide/appendix/media-formats.html 

[18] FFMPEG. http://ffmpeg.mplayerhq.hu/ 

[19] Red 5. http://www.red5.org/ 

[20] Mediainfo. http://mediaarea.net/ko/MediaInfo 

[21] S. Choi, S. Lee, Y. Lee, C. Kim and T. Jeong, “Secure Video Transmission on Smart Phones for Mobile 

Intelligent Network”, IJSIA, vol. 1, no. 1, (2013). 

[22] Y.-S. Park, K.-. Kim, J. Ahn, C.-S. Kim and J.-C. Ryou, “A Real Time Voice Transmission Method for Voice 

Privacy between CDMA Mobile and PSTN Terminal”, IJSIA, vol. 2, no. 1, (2007). 

[23] J. Veijalainen, “Autonomy, Heterogeneity, Trust, Security, and Privacy in Mobile P2P Environments”, IJSIA 

vol. 1, no.1, (2007). 

 

Authors 
 

Sang-min Seo graduated from Yong-In high school at 2008. He is 

currently in the department of computer science, Kyonggi University, 

Suwon, Korea. He is specialized at JAVA programming, Android 

programming, Embedded System and so on. 

 

 

 

 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 9, No. 10 (2014) 

 

 

208   Copyright ⓒ 2014 SERSC 

Yoon-Ho Choi is an assistant professor at department of convergence 

security in Kyonggi University, Suwon, Korea. He received the M.S. and 

Ph.D. degrees from school of electrical and computer engineering, Seoul 

National University, S. Korea, in Aug. 2004 and Aug. 2008, respectively. 

He was a postdoctoral scholar in Seoul National University from Sep. 

2008 to Dec. 2008 and in Pennsylvania State University, University Park, 

PA, USA, from Jan. 2009 to Dec. 2009. He has served as TPC members 

in various international conferences and journals. His research interests 

include Deep Packet Inspection (DPI) for high-speed intrusion 

prevention, mobile computing security, vehicular network security, big 

data analysis and so on. 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.




