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Abstract 

 

Divisible e-cash allows the user to withdraw a single divisible coin and spends the any 

sub-coins by dividing the value of the coin. The first divisible e-cash system in the 

standard model was proposed by Izabachene and Libert. However, the efficiency of the 

spending protocol and the deposit protocol is very low. In this paper, we construct an 

efficient divisible e-cash scheme without random oracle by using the Groth-Sahai (GS) 

proof system and bound accumulators. Our scheme is on-line and truly anonymous 

without a trusted third party. Comparing to Izabachene and Libert's work, we improve the 

efficiency of the spending protocol and deposit protocol by introducing a new 

generational algorithm. Moreover, the bank only needs to look up the coin's serial 

number in a table of previously spent coins. We give the NIZK proofs of bounded 

accumulator in the standard model. Some security properties of our scheme, such as 

anonymity, unforgeability and exculpability, are proved in the standard model. 

Keywords: Divisible E-cash; Binary Tree; Accumulator; P-signature; Groth-Sahai 

Proofs 

1. INTRODUCTION 

Electronic cash (e-cash), introduced by Chaum, is an electronic analogue of physical 

money and has attracted a lot of researchers [5]. An e-cash system consists of three 

parties: the bank B, the user U and the merchant M. U withdraws an e-cash from B and 

spends the e-cash to M, and then M offers goods and services in exchange for e-cash. And 

last, M deposits the e-cash to B. 

Divisible e-cash allows a user to efficiently withdraw a single divisible coin and spend 

this coin in several times by dividing the value of the coin. In order to obtain efficiency, 

all of the existed divisible e-cash schemes, with the exception of [15, 28], are constructed 

in random oracle model. Although Izabachene and Libert [28] propose the first divisible 

e-cash in the standard model, the efficiency of the spending protocol and deposit protocol 

is very low. In this paper, we construct an efficient divisible e-cash without random 

oracle. 
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Much research has been performed in the area of e-cash [1-2, 4-12, 15, 25-28]. 

Okamoto and Ohata proposed the first ideal untraceable electronic cash [8] using the 

cut-and-choose methodology and introduces some basic properties, i.e., untraceability, 

transferability and divisibility. The cut-and-choose methodology causes low efficiency of 

Okamoto and Ohata's scheme. Pailles constructed a new protocol for e-cash [9] which 

develops the anonymity and the divisibility of the e-cash. Unfortunately, the bank has to 

perform a huge amount of computations. As for divisibility, Eng and Okamoto proposed a 

single-term divisible e-cash [11] which is not a practical divisible e-cash. Then Okamoto 

presented the first practical divisible e-cash [7] which was subsequently improved by 

Chan et al. [25]. However, the schemes mentioned above are linkable, since anyone can 

decide whether several spend come from the same coin. In 2000, Nakanishi and 

Sugiyama provided an unlinkable divisible electronic cash [6] by introducing a trusted 

third party. 

The compact e-cash scheme [4] allows a user to withdraw a wallet containing 2L coins 

efficiently and satisfies all the security properties mentioned above. However, the number 

of the coins that the user wants must be chosen in the withdrawal protocol, and be spent 

one by one in the spending protocol. 

The first anonymous divisible e-cash scheme was proposed by Canard and Gouget 

[10]. However, when a user spends a small number of coins, he has to prove the spending 

protocol is constructed correctly by non-interactive zero-knowledge proof of knowledge. 

This is well-known very costly. Au et al: constructed a divisible e-cash [1] from bounded 

accumulators. The efficiency of the computation and the storage is improved in the 

spending protocol. Unfortunately, it does not fulfill unforgeability. 

In order to obtain unforgeability, Canard and Gouget proposed a divisible e-cash 

scheme [12]. However, the number of the accumulator is proportional to the number of 

the level of the binary tree in the withdrawal protocol. 

All the security of above e-cash is proven in the random oracle model. Some results 

[21, 16] have shown that some schemes proven secure in the random oracle model, are 

not secure in the standard model. Belenkiy, Chase, Kohlweiss and Lysyanskaya [19] 

proposed a compact e-cash system with non-interactive spending in the standard model. 

This scheme is based on P-signature [13], simulatable verifiable random functions [23] 

and Groth-Sahai proofs systems [17]. Fuchsbauer et al. [20] constructed the first practical 

transferred constant-size fair e-cash in the standard model. However, each user has to 

keep in memory the data associated to all past transactions to prove her innocence in case 

of a fraud. Izabachene and Libert proposed the first divisible e-cash scheme [28] in the 

standard model. They used a different method to authenticate the spending path. 

Unfortunately, the communication complexity of the spending scheme is proportional to 

the level number of the spent node. Meanwhile, the computational workload of the bank 

depends on the number of previously received coins when it comes to check that the 

received coin does not constitute a double-spending. 

Accumulators were firstly introduced by Benaloh and de Mare [29]. An accumulator 

allows aggregation of a large set of elements into one constant-size accumulator value. In 

2005, Nguyen proposed a dynamic accumulator scheme from bilinear pairings. It allows 
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elements in        for some prime p to be accumulated, where s is the master secret of 

the accumulator instance. Acar and Nguyen [30] give a delegable accumulator which is 

focus on the non-membership proofs. However, with the exception of Acar and Nguyen's 

accumulator, others are used in random oracle model. Acar and Nguyen's accumulator 

only focuses on the non-membership proofs. Therefore, we give the general correctness 

proof of accumulator in the standard model using the GS proof system [17]. 

Groth and Sahai constructed the first efficient non-interactive proof system [17] which 

considers a large class of statements over bilinear group. It is witness indistinguishable, 

i.e., any adversary cannot distinguish which witness is used by the user. The proof can be 

randomized to update the NIZK proof. 

IL's E-cash Scheme. Izabachene and Libert [28] propose the first divisible e-cash in the 

standard model. Their construction relies on the classical binary tree approach [10] and 

the Groth-Sahai non-interactive proof systems [28]. To achieve divisibility without 

resorting to random oracles, they use the different method to authenticate the node 

corresponding to the spent divided coin in the tree. The construction of the binary tree is 

based on the classical binary tree, thus the communication cost of the spending phase is 

O(L-l) to spend a coin of value   , where    is the value of the root node. The more they 

want to divide the wallet into small coins, the more expensive the spending phase is. To 

avoid the spending of an ancestor or a descendant of a spent node, they add a pair 

            in the coin for each node from the root node to the spent node. This makes the 

efficiency of detecting the double-spending is very low. The computation workload of the 

bank depends on the number of previously received coins when it comes to check that the 

user does not a double-spending. This problem is left as an open problem. 

Overview of Our Scheme. We present an intuition on how our scheme is constructed. 

Each e-cash of monetary value    is equipped with an L+1 level binary tree. Using a 

new algorithm, the user constructs the binary tree. To construct the binary tree, the user 

generates    random numbers    for the leaves node, where           . The keys 

of the leaves node are          
            

                 

 
               

  

 
     , where         . To be compatible with the bounded accumulator, the user 

computes the new keys using two hash functions HL and HR. The parent node of the 

leaves node is obtained by the multiplication of the keys of leaves node. The root node is 

generated by the multiplication of two direct child nodes. Then, the user accumulates the 

leaves node and all nodes into accumulator values      and     respectively. The user 

sends the accumulator values      and     to the bank. The bank signs      and    . 

We assume that the user spends a coin of monetary value    and the corresponding 

leaves node is                  . When the user wishes to spend the coin, he uses the 

corresponding leave nodes and computes the serial number                    , a 

security tag        ̂                , where R is generated by the merchant, s is 

generated by the user and the bank together. The user submits S; T and proves to the 

merchant in zero knowledge manner that he is in possession of the bank's signature on 
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Acc,       s, usk and S; T are correctly formed. If a user attempts to spend more than the 

coin of monetary value   , he will have to use the same S and identified. 

That is almost our final solution. We use the bounded accumulator [2] to guarantee that 

the user accumulates the bounded nodes. To make sure that the monetary value of the 

spent node comes from the correct level, we borrow the idea from Belenkiy et al.'s 

scheme [19]. More precisely, the bank generates L P-signatures         on L coin 

indices. The user proves that the same commitment    is used for the proof of T and   . 

Two problems remain, the first one being how be compatible with the Groth-Sahai proof 

system [17] to prove the spending path is correctly formed. The second problem is that 

there is no existing efficiency membership proof for the bounded accumulator in the 

standard model. We solve the first problem by constructing a new algorithm for the 

binary tree. We solve the second problem by making the membership proof of bounded 

accumulator in the standard model. 

Our Contribution. Our construction of the divisible e-cash is a new binary tree 

generation algorithm, in combination with the use of a bounded accumulator [2] and GS 

proof system [17].We make the following contribution: 

We use the nodes of a binary tree to represent the e-cash. In the tree-based 

constructions, one difficulty is for the user to efficiently prove that the spending path is 

well-formed. To solve the problem, efficiency of the Izabachene and Libert's scheme is 

very low. The last is our method. We firstly introduce a new algorithm to construct the 

binary tree. Then we identify the double-spender using the accumulator. In our new 

structure of the binary tree, each node of binary tree is constructed in one cyclic group, 

which would be compatible with Groth-Sahai toolbox [28]. By the accumulator, we 

efficiently prove the path connecting the spent node to the root is well-formed. Therefore, 

our scheme is more efficient in the spending protocol and the deposit protocol than 

Izabachene and Libert's scheme [28]. 

To use the bounded accumulator, we must prove the accumulator correctness of the 

bounded accumulator in the standard model. Therefore, we give the NIZK proof of the 

bounded accumulator using the GS proof system in the standard model. In order to prove 

the correctness of the spending, we use the technique [15] which the bank signatures n 

coin indices, i.e., PSign(1), PSign(2),   PSign(n). Thus, we only need two accumulators 

to prove the correctness of the spending. However, the paper [12] needs L + 2 

accumulators in the withdrawal protocol, to prove the correctness of the spending. 

Our scheme is more efficient than Izabachene and Libert's work [28] in several metrics. 

Firstly, When 

U spends a coin of monetary value    in the spending protocol of Izabachene and 

Libert's scheme [28], U chooses an unspent node at level     in the binary tree. It 

requires        group elements and multi-exponentiations. In contrast, only two 

accumulators are used in our scheme. Secondly, the merchant needs        pairings to 

verify the correctness of the path connecting the spent node to the root. However, we 

verify the correctness of the path with constant pairings in the spending protocol. Thirdly, 

in the deposit protocol of Izabachene and Libert's scheme [28], the bank must check and 

analyze all received coins to decide whether a double-spending had happened. In 
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comparison, we only need to look up the coin's serial number in a table of previously 

spent coins. 

Paper Outline. The rest of the paper is organized as follows. In Section 2 we present 

preliminaries on the various cryptographic tools and assumptions. Security model of 

divisible e-cash is presented in Section 3. We present our construction in Section 4 and its 

efficiency analysis in Section 5. In section 6, we give the security proof. Finally we 

conclude in Section 7. 

 

2. Preliminaries 

2.1 Mathematical Definitions and Assumptions 

Definition 1. (Pairing). A pairing  ̂          is a bilinear mapping from two 

group elements to a group element [17].a.          are cyclic groups of prime order p. 

The elements     generate G1 and G2 respectively. b.       is a non-degenerate 

bilinear map, so  ̂ (g, h) generates    and for all a, b    we have  ̂(     )  

 ̂       .c. We can efficiently compute group operations, compute the bilinear map and 

decide membership. 

The security of our construction is based on the following mathematical assumptions, 

namely Symmetric External Diffie-Hellman [17] and OMDL [3].Definition 2. 

(Symmetric External Diffie-Hellman). The Symmetric External Diffie-Hellman(SXDH) 

Assumption states that the DDH problem is hard in both      . It implies that there is no 

efficiently computable isomorphism from G2 to G1 or vice versa. 

Definition 3. (One-More Discrete Logarithm Assumption). The one-more discrete 

logarithm assumption (OMDL) is defined as follows: on input               and 

dlogg( ) which is the oracle that takes input      and returns its discrete log, namely x 

such that     . The adversary only can make the oracle queries to dlogg( ) at most n 

times, it is computationally infeasible to output the n+1 discrete logarithm. 

 

2.2. Useful Tools 

Groth-Sahai Proofs. Groth and Sahai [17] constructed the first NIZK proof systems. 

They proved a large class of statements in the context of groups with bilinear maps in the 

standard model. In order to prove the statement, the prover firstly commits to group 

elements. Then the prover produces the proofs and sends the commitments, the proofs and 

corresponding parameters to the verifier. And last the verifier verifies the correctness of 

the proof. 

In this paper, SXDH-based commitments are used to commit to group elements. The 

simple description of SXDH-based Groth-Sahai commitments and Groth-Sahai proofs are 

given in the following. 

AFG-commitment. Abe, Fuchsbauer and Groth (AFG) [24] proposed a trapdoor 

commitment scheme, which directly commits group elements in G (a message     ) 

and can be combined with Pedersen commitments. The commitment is length-reducing, 

since the commitment to a tuple of messages yields a commitment consisting of a single 

target group element. 
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We only use the commitment to a message     . In the following, we only describe 

the AFG- commitment to a message     . 

To commit a message     , the commitment keys ck = (G1,G2,G3, g,h, y), the 

opening      are used to obtain the commitment       . And then we send the 

commitment C, the trapdoor opening D to the verifier. The verifier makes sure that the 

commitment is correct by verifying the equation 

 ̂      ̂         ̂      . 

A Multi-block P-Signature. A multi-block P-signature was introduced in [15]. It allows 

a user to sign a block of elements in a cyclic group G in the standard model. Suppose 

   
      

are the Groth-Sahai commits of         respectively. The P-signature 

allows a user to obtain a signature from the signer on the commitments of a block of 

messages        . The signer learns nothing about         while he knows the 

commitments respectively. In the following, we simply describe the P-signature [15]. 

The public parameters are defined as (p,G1,G2,G3, ̂ g,h,         ,  ̂(g,h)), where g 

and h are random elements of G1 and G2 respectively, and         , is the Groth-Sahai 

common reference string. 

The public key and the private key are defined to be pk = 

(        ̃          
    ̃         

 ,) and                 , where u is the 

random element of G1 and         are the random elements of Zp.We define the 

NIZK proof     of a multi-block P-signature for messages             as 

PSign(          ). 

2.3. Algorithms 

The divisible e-cash needs three usual players, namely the user U, the merchant M and 

the bank B. It will include seven polynomial algorithms between them. The following 

give the specific algorithms. 

1. ParamSetup(  ) takes as input a security parameter   and outputs the public 

parameters params. 

2. BKeyGen(params) is a probabilistic algorithm which outputs two key pairs 

(pkP,skP) for issuing coins and (pkC, skC) for signing coin indices. It also defines an 

empty database DB for later use. 

3. KeyGen(params) is a probabilistic algorithm which outputs a user (merchant) key 

pair (skU,pkU)(resp.(skM, pkM)). 

4. Withdraw(U(params, pkP,pkU, skU,L); B(params,pkU,pkP,skP)) is an interactive 

protocol between U and B that permits U withdraws a wallet     of value    from B. B 

debits U's account and stores a piece of tracing information Tr which can be later used to 

identify double-spenders. 

5. Spend(U(params,pkP, pkC,pkM,skU,     );M(params,pkP,pkC,skM)) is a protocol 

that allows the user to spend a value   ` from the divisible wallet     to M. The user 

outputs a updated wallet    
 . The merchant obtains a coin coM. 

6. Deposit(M(params,pkP,pkC,pkM, skM,coM); B(params,pkM,DB)) is a protocol that 

permits M to deposit a coin    to B. B outputs Ok or executes the double-spender 

identification. DB is a database which saves all coins users has spent. 
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7. Identify (params,pkP,pkC,    
 ,     ) is a algorithm which outputs a 

double-spender's public key pkU using the database DB and the two different coins 

   
 ,    . 

2.4. Security Notions 

A secure divisible e-cash scheme provides Anonymity, Unforgeability, Identification 

of double-spenders and Exculpability. We give the specific definitions as follows. 

1. Anonymity. It guarantees that no coalition of banks and merchants can ever learn the 

spending habit of an honest user. 

2. Unforgeability. No coalition of users and merchants can deposit more coins than 

they have withdrawn from the bank. 

3. Identification of double-spenders. It guarantees that coalition of users and merchants 

cannot be able to double-spend a coin with the same serial number or corresponding serial 

number. 

4. Exculpability. No coalition of the banks and users can accuse a honest users from 

having double- spent a coin. 

 

3. Construction of Divisible E-Cash 

To construct our divisible e-cash, we firstly prove the membership proof of the 

bounded accumulators without random oracle. Secondly, a new binary tree generational 

algorithm is introduced. And last, we give the detailed construction of our divisible 

e-cash. 

 

3.1. Bounded Accumulators 

A bounded accumulator scheme was introduced in [2] as an accumulator with a limit s 

as the maximum number of elements that can be accumulated. For every element x in the 

bounded accumulator, there is a unique witness W which can prove the element x is 

accumulated into the accumulator. In this context, we give the membership proof of 

bounded accumulator using the GS proof system in the standard model. We obtain the 

following Theorem 1. 

Theorem 1. The proof for the bounded accumulator     ,  is a NIZK proof with 

perfect completeness, perfect soundness and composable witness-indistinguishability. 

 

3.2. New Binary Tree Structure 

We introduce a new generation algorithm of the binary tree. Each divisible coin of 

monetary value   , is assigned to a binary tree of L+1 levels. The values of the leaves are 

the least, namely 1. Each of the leaves node is assigned a key denoted by       , where 

        . Any other internal node corresponds to an amount of money which is 

exactly the twice amount of their corresponding child node values and also is assigned a 

key defined by      . The root node lies in the 0th level and has the max value, namely 

  . The corresponding key of the root node is     . 
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Using the new generation algorithm, we construct the binary tree from the leaves node. 

Each internal node is obtained by the multiplication of its corresponding leaves node. 

Thus each internal node is independent of the others. Meanwhile we only supply two 

accumulators and corresponding proofs to merchant, to proof the spending is correct. 

When the user wants to spend a node, he supplies the keys of the spent node and the 

corresponding leaves node to the merchant. Although the key of the spent node is known 

by the merchant, the key of the spent node is generated using the leaves node which they 

are obtained by the random number. Therefore, the merchant cannot obtain any 

information from the key. The user generates the internal node only by the multiplication, 

so the efficiency of the construction of the binary tree is improved. The new binary tree is 

given in the above Figure 1. 

7,36,33,2 kkk 3,32,31,2 kkk 
1,30,30,2 kkk 

5,34,32,2 kkk 

1,20,20,1 kkk  3,22,21,1 kkk 

1,10,10,0 kkk 

4,3k
5,3k 6,3k 7,3k0,3k 1,3k 3,3k2,3k

 

Figure 1. Construction of a Binary Tree (L=3) 

3.3. Construction 

In this section, we describe our divisible e-cash construction in detail. Our divisible 

e-cash consists of the setup procedure, withdrawal protocol, spending protocol, deposit 

protocol and the double-spender identification. We construct it using P-signature, 

bounded accumulator and GS proof. 

3.3.1 Setup: A divisible coin has a monetary value set to   . On input a security 

parameter    and a security prime number p. Let  ̂          is a bilinear map, 

where |  |  |  |  |  |   . The elements hU,hM,hT   G2 and g,h generate G1 and 

G2 respectively. The bank randomly chooses          whose discrete logarithms to 

the base g are unknown. Let H       ∗    
∗  HR      ∗    

∗  and H       ∗    
∗  be 

three secure cryptographic hash functions [1]. All these data compose the public 

parameters params. 

The bank creates two key pairs (pkP,skP) for issuing wallets and (pkC,skC) for signing 

coin indices.The bank computes L P-signatures         on the coin indices         

using skC, where                               chooses skU = usk    
∗  (resp. 

skM = msk   
∗ ) as his private key and computes the public key pkU = ̂(g, h     (resp. 

pkM =  
   ). 

3.3.2 Withdrawal Protocol: The withdrawal protocol allows U to withdraw a coin with 

monetary value    from the bank. At first, U computes all keys using the new binary tree 

algorithm which is presented in Figure 1. To be compatible with the bounded accumulator, 

the user obtains the new keys       H (    )       HR(    )            
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HR(       )           H (      )         H (    )       HR(    ), and the 

value of the root is       H (    ). All keys and the new keys of the binary tree are 

stored in a table tr. And last, U generates      random numbers    for          

 . 

U computes two accumulators [1], one is the accumulation of    random numbers 

   Zp for           , namely        

∏        
    
 

, where    is a public 

parameter of the bounder accumulator. This accumulator proves that the user uses the 

correct random numbers to construct the leaves node. And the other one is Acc which is 

the accumulator of all the new keys                                            

namely       

∏     
, where   is a public parameter of the bounder accumulator. This 

accumulator proves that the spent node and corresponding child nodes are correct. To be 

compatible with the P-signature, we compute the hash value of two accumulators, namely 

a = HA(Acc) and aL = HA(    ). The bank produces the corresponding P-signatures 

     on the messages (a, usk, s) and (   s) respectively. 

It is not necessary for the bank to check if the correct keys are accumulated since the 

bounded accumulator is bounded and we use the new generational algorithm. The main 

reason is given in the following, if the user uses the incorrect key to construct the binary 

tree or accumulates the incorrect values, he cannot complete the spending protocol, as the 

merchant can compute all the descendant keys of the node spent using the random 

elements si. 

U's input is params, pkP,usk,    and B's input is params,pkU, skC,   . The withdrawal 

protocol is described as follows. 

1. U chooses at random                  
∗                          

          U computes AFG commitments [24]        
                

 

              
       . And then, the user gives the proofs [28] in zero-knowledge that 

he knows the opening to these values as follows. 

               ̂        ̂     
     ̂      

  , 

            ̂       ̂     
     ̂         

   
 {(      

)  ̂(     
) ̂     

     ̂       }  

     {            ̂         ̂     
     ̂(      )}  

At last, U sends                                 
    

            to B. 

2. If the proofs verifies, B chooses at random    and computes   
    

   
  

and 

corresponding P-signatures                                , where          

  
∗       . And last, B sends   

       and    to the user. 

3. U sets        , and updates commitment   
  into commitment Cs =   

    . 

Then U verifies   and 

  . If the verifies are correct, U obtains the coin    = (a, aL,s,usk,     ), where a = 

HA(Acc);    =HA(    ). 
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3.3.3. Spending Protocol: We suppose that the user wants to spend a coin of monetary 

value   . The protocol works as follows: 

1. M chooses at random        
∗             , computes the AFG commitment 

[24]        
     

  and the proof [28]      {            ̂         ̂     
    

 ̂(      )}  

And last, M sends (d5, y2,Cmsk,     ) to U. M computes R = H(  ||   ||    ), 

where    is the monetary value of the spent coin and time is the current spending time. 

2. If the proof      is correct, U also computes R = H(  ||   ||    ). U chooses a 

node at level     which has not been spent and sends the corresponding random 

elements                          to M, and then obtains the serial number S = hki,j . U 

also chooses                 and computes a commitment    
       

   to 

       , where      ̂(      )   ̂        . Meanwhile, U computes the security 

tag       ̂(              ). Note that in [12], the spent node serial number is represented 

by the serial number of its two child nodes. In our paper, the serial number is known by 

the merchant and the bank. The serial number is generated by multiplication of the 

corresponding leaves node which is obtained by the random number. Thus, it cannot 

supply any information to the adversary. To protect the public key of the user, we use the 

secret value s which are only known by U in the security tag. And last, U gives the 

following NIZK proof that the spent node is accumulated correctly and T is correctly 

formed. 

𝜋𝑐𝑜𝑖𝑛 ← 𝑁𝐼𝑍𝐾   𝐴𝑐𝑐 𝐶𝐴𝑐𝑐   𝑤 𝐶𝑤   𝑤𝐿 𝐶𝑤𝐿
   𝐴𝑐𝑐𝐿 𝐶𝐴𝑐𝑐𝐿 , 

                
 ⋀            

 ⋀        σ       
 ⋀            

  ⋀                
 ⋀      σ 

    
  

⋀ 𝑠 𝐶𝑠 ⋀ 𝑙 𝐶𝑙 ⋀ (𝑙 𝐶𝑙 𝑖  
 )  

 ̂ 𝐴𝑐𝑐 𝑣̂    ̂ 𝑊 𝑣̂ ∏𝑣̂
𝑗

𝑝𝑗

𝑙 

𝑗  

 ⋀𝜎         𝑎 𝑢𝑠𝑘 𝑠 ⋀ 

 ̂ 𝐴𝑐𝑐𝐿  𝑣̂    ̂ 𝑊𝐿  𝑣̂ ∏𝑣̂
𝑗

𝑝𝑗

𝑙 

𝑗  

 ⋀𝜎𝐿         𝑎𝐿  𝑠 ⋀ 

                      𝑇   ̂(      )   ̂(   𝑙  𝑘      𝑠)⋀ 𝑙  𝑃𝑆  𝑛 𝑙  . 

The proof of accumulator is presented in Section 3.1.  ̂      ̂    ̂    ̂ ∏  ̂
 

    
     

proves that the spent node and the corresponding child node are correctly accumulated in 

Acc.  ̂       ̂    ̂     ̂ ∏  ̂
 

    
     proves that the corresponding leaves node of the 

spent node are correctly accu-mulated in     .                   and    

             give the proofs that Acc and      are signed by the bank.   

 ̂(      )   ̂(              ) proves that the security tag is correctly formed.             

gives a proof of the ` is signed by the bank.   in the security tag is the same as the 

  signed in   . Thus the user proves that the spent node comes from the correct level. 

3. M firstly verifies the structure of the binary tree is correct. M computes the 

corresponding leaves node of the spent node using the random elements 
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                         and the two hash functions HL and HR. M obtains keys 

                         and the new values 

                                 . Then M also computes the key of the spent node by 

executing the algorithm presented in Figure 2. And last, Mverifies the proof fiS. If these 

are correct, M obtains the coin               ||      || ||             R       . 

3.3.4 Deposit Protocol 

M deposits a coin               R        to B, where 

      ||      || ||          . At first, B checks the proof   . If it is not correct, B 

rejects the deposit. Otherwise, B checks if these random elements 

                         are already in its database DB. If one of these random elements 

is already in the database, B executes the procedure of double-spender identification. 

Otherwise, B adds    leaves node into the database. Then B checks whether R is fresh. If 

R is fresh; B accepts the coin     {         R      }  credits M’s account. 

Otherwise, M deposits the coin twice. B refuses the deposit and warns M. 

3.3.5. Double-Spender Identification: B obtains two coins 

    {             R         
}  and     {             R         

} . We describe 

the following two cases. 

1. If U spends the same node, then     {             R         
} and    

  

{                   R         
}. Thus, B computes        

     
   

 
     

⁄
; 

2. If U spends the different nodes, then     {             R         
}  and 

   
  {             R         

}. Without loss of generality, we assume     includes 

   , so the leaves node of     includes the leaves node of    . B obtains    
  

  
   S3 = 

S1/S2. B computes the public key        
    

        ⁄  
 

           . 

 

4. Efficiency Analysis 

We analyze the efficiency of our scheme, Izabachene and Libert's scheme [28] and 

Canard and Gouget's scheme [12] from the following 5 aspects, namely the construction 

of the binary tree, the efficiency of the withdrawal protocol, the efficiency of the spending 

protocol, the efficiency of the deposit protocol and security model. According to [15], We 

know P-signature proofs for n messages need 8n + 12 elements ofG1, 8n + 10 elements of 

G2, and 32n + 44 pairings to verify. One ESS+ signature [2] needs the group element 

numbers of G1, G2 and Z*p are 2, 1 and 2 respectively. 
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We assume that C1 is the computation cost of the construction of the binary tree. C2 is 

the efficiency of the withdrawal protocol. C3 is the efficiency of the spending protocol. 

C4 is the efficiency of the deposit protocol. C5 is the security model. ME represents the 

number of multi-exponentiation. GE represents the number of the group elements. P 

represents the number of the pairings. 

We will describe these in detail as follows: 

The construction of the binary tree. When we construct the binary tree of monetary 

value 2L, Izabachene and Libert's scheme [28] does not need multi-exponentiations. The 

reason is that the node is represented by random number. Canard and Gouget's scheme 

[12] needs 2L+2-2 multi-exponentiations. However, we need 2Lmulti-exponentiations. 

The efficiency of the withdrawal protocol. The withdrawal protocol of Izabachene and 

Libert's scheme [28] needs 80 group elements and the same number of 

multi-exponentiations. Canard and Gouget's scheme [12] needs L+2 Acc and L+2 Ess+ 

signatures. Thus it needs 6L+12 group elements and the samenumber of 

multi-exponentiations. Our scheme needs two P-signatures. Therefore, 151 group 

elements and151 multi-exponentiations are needed. 

The eficiency of spending2l. In Izabachene and Libert's scheme [28], to prevent a user 

from double-spending, it provides some security tags and proofs of nodes from the root to 

the spent node. Therefore, the computational workload of the user is proportional to L-l. 

Thus, it needs 206+116(L-l) group elements and the same number of 

multi-exponentiations to compute. In order to verify the correctness, the merchant 

requires 412 + 206(L-l) pairings. The spending protocol of Canard and Gouget's scheme 

[12] needs 60 group elements, 70 multi-exponentiations and 28 pairings to verify. 

On a contrary, our scheme computes 2L-l keys of leaves node, so 2L-l exponentiations 

are needed. However, our scheme only needs two accumulators that prove the correctness 

of the leaves node and the descendant node of spent node. Therefore, our scheme only 

needs 264 group elements and the same number of multi-exponentiations to compute. The 

merchant requires 520 pairings to verify the correctness. 

The efficiency of the deposit protocol. In Izabachene and Libert's scheme [28], the 

bank needs to compare and analyze each node in DB, and decides whether the coin is 

valid. As for every node, the bank extracts the path from the root to the spent node, and 

decides if the corresponding node of the node happens a double-spending. We assume 

that there are k spent nodes in DB, and the spent node comes from the `th level. 

Therefore, every node has 2l+1-1 corresponding nodes. We check whether the2l+1-1 

corresponding nodes had happened double-spending. Thus Izabachene and Libert's 

scheme [28]Efficient Divisible E-cash Without Random Oracle 11Needs O(k *(2l+1-1)). 

In contrary, our new scheme and Canard and Gouget's scheme [12] only need compare 

the coin's serial number with all serial numbers in DB to verify the double-spending. 

Therefore, we only need O (k).The security model. Canard and Gouget's scheme [12] is 

proven in the random oracle model. 

However, our new scheme and Izabachene and Libert's scheme [28] are proven in the 

standard model. Based on the above analysis, we conclude that our scheme is more 

efficient than Izabachene and Libert's scheme [28] in the deposit protocol. In the spending 
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protocol, our scheme is more efficient than Izabachene and Libert's scheme [28] except 

the computation of the leaves node. Although the efficiency of the withdrawal protocol is 

less efficient than Izabachene and Libert's scheme [28], the spending protocol is executed 

much more frequently than the withdrawal protocol. The efficiency of the spending 

protocol is less efficient that Canard and Gouget's scheme [12], but our scheme is proven 

in the standard model. Therefore, our scheme is much more desirable in practice. The 

comparison is given in Table 1. 

Table 1. Efficiency Comparison between Related Work and Our Proposal 

Schemes Canard Gouget [12] Izabachene Libert [28] Ours 

C1 (2L+2- 2)ME 0ME 2LME 

C2 (6L + 12)GE 

(6L + 12)ME 

80GE 

80ME 

151GE 

151ME 

C3 User 60GE 

70ME 

206 + 116(L-l)GE 

206 + 116(L -l)ME 

264GE 

2L-lME 

Merchant 28P 412 + 206(L-l)P 520P 

C4 O(k) O(k *(2l+1- 1)) O(k) 

C5 Random oracle model Standard model 

 

5. Security Analysis 

Regarding the security of our construction, we have the following theorem. Theorem 2. 

In standard model, our divisible e-cash scheme fulfills (i) the anonymity under the SXDH 

assumption, zero-knowledge property of P-signature, and the soundness and 

indistinguishability of GS proofs; (ii) the unforgeability under the collision resistance of 

HA() and the assumptions that P-signature is unforgeable and the bounded accumulator 

scheme fulfills the bound property; (iii) the Identification of double-spenders under the 

soundness and indistinguishability of GS proofs and the unforgeability of the P-signature 

scheme; (iv) the exculpability under the soundness and indistinguishability of GS proofs 

and the one-more discrete logarithm assumption. 

 

6. Conclusion 

We proposed an efficient divisible e-cash scheme in standard model using the 

Groth-Sahai proof system. Firstly, a new generation algorithm of the binary tree was 

introduced in the paper. Thus, we improved the verifying efficiency of the merchant and 

the bank in the spending protocol and the deposit protocol respectively. Secondly, the 

membership proofs of bounded accumulator without random oracle are proven. Using the 

bounded accumulator, the computational efficiency of the user is relatively small in the 

spending protocol. And last, we analyzed the efficiency of our new scheme and made the 

security proof in the standard model. 
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