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Abstract
Divisible e-cash allows the user to withdraw a siQ o e i |S|t)le d spends the any
sub-coins by dividing the value of the coin. ‘ st d| —cash system in the

standard model was proposed by Izabachen d Libert. Ho er, the efficiency of the
spending protocol and the deposit protoc (@ry Io%%thls paper, we construct an
efficient divisible e-cash scheme Wlth(% ndom o y using the Groth-Sahai (GS)
proof system and bound accumu Our n@ls on-line and truly anonymous
without a trusted third party. Co p@i to Iza%’ene and Libert's work, we improve the
efficiency of the spending protocol a @eposit protocol by introducing a new
generational algorithm. over, m&ik only needs to look up the coin's serial

iously F))%ﬁt coins. We give the NIZK proofs of bounded

number in a tableg;} :
accumulator in darkm Some security properties of our scheme, such as

anonymity, ility and Ipability, are proved in the standard model.

Keywords: D|V|sible sh; Binary Tree; Accumulator; P-signature; Groth-Sahai
Proofs

1. INTRODL@ON

Electro sh (e-cash), introduced by Chaum, is an electronic analogue of physical
money quas attracted a lot of researchers [5]. An e-cash system consists of three
pﬁ%’ e bank B, the user U and the merchant M. U withdraws an e-cash from B and
spends the e-cash to M, and then M offers goods and services in exchange for e-cash. And
last, M deposits the e-cash to B.

Divisible e-cash allows a user to efficiently withdraw a single divisible coin and spend
this coin in several times by dividing the value of the coin. In order to obtain efficiency,
all of the existed divisible e-cash schemes, with the exception of [15, 28], are constructed
in random oracle model. Although Izabachene and Libert [28] propose the first divisible
e-cash in the standard model, the efficiency of the spending protocol and deposit protocol
is very low. In this paper, we construct an efficient divisible e-cash without random
oracle.
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Much research has been performed in the area of e-cash [1-2, 4-12, 15, 25-28].
Okamoto and Ohata proposed the first ideal untraceable electronic cash [8] using the
cut-and-choose methodology and introduces some basic properties, i.e., untraceability,
transferability and divisibility. The cut-and-choose methodology causes low efficiency of
Okamoto and Ohata's scheme. Pailles constructed a new protocol for e-cash [9] which
develops the anonymity and the divisibility of the e-cash. Unfortunately, the bank has to
perform a huge amount of computations. As for divisibility, Eng and Okamoto proposed a
single-term divisible e-cash [11] which is not a practical divisible e-cash. Then Okamoto
presented the first practical divisible e-cash [7] which was subsequently improved by
Chan et al. [25]. However, the schemes mentioned above are linkable, since anygne ¢an
decide whether several spend come from the same coin. In 2000, Nakemi and
Sugiyama provided an unlinkable divisible electronic cash [6] by intro@ trusted

third party. 4%
The compact e-cash scheme [4] allows a user to wit \w w/ ining 2L coins

e
efficiently and satisfies all the security properﬂes@ d above ever, the number
of the coins that the user wants must be chosen with rotocol, and be spent

one by one in the spending protocol.

The first anonymous divisible e- ca me was mggsed by Canard and Gouget
[10]. However, when a user spend ms he has to prove the spending
protocol is constructed correctl mter i%g ero-knowledge proof of knowledge.
This is well-known very costﬁk et al; constructed a divisible e-cash [1] from bounded
accumulators. The efficiepsy of the,c tion and the storage is improved in the
spending protocol. Unf ely, |t t fulfill unforgeability.

In order to obtﬁ?x orgeab Canard and Gouget proposed a divisible e-cash
scheme [12]. v@e the J%af the accumulator is proportional to the number of
the level of t ary tre he withdrawal protocol.

All the security of a e -cash is proven in the random oracle model. Some results
[21, 16] have sho some schemes proven secure in the random oracle model, are
not secure in t?&rdard model. Belenkiy, Chase, Kohlweiss and Lysyanskaya [19]
proposed a‘%(%'pact e-cash system with non-interactive spending in the standard model.
This sch based on P-signature [13], simulatable verifiable random functions [23]

@Sahal proofs systems [17]. Fuchsbauer et al. [20] constructed the first practical
tra red constant-size fair e-cash in the standard model. However, each user has to
keep in memory the data associated to all past transactions to prove her innocence in case
of a fraud. lzabachene and Libert proposed the first divisible e-cash scheme [28] in the
standard model. They used a different method to authenticate the spending path.
Unfortunately, the communication complexity of the spending scheme is proportional to
the level number of the spent node. Meanwhile, the computational workload of the bank
depends on the number of previously received coins when it comes to check that the
received coin does not constitute a double-spending.

Accumulators were firstly introduced by Benaloh and de Mare [29]. An accumulator
allows aggregation of a large set of elements into one constant-size accumulator value. In
2005, Nguyen proposed a dynamic accumulator scheme from bilinear pairings. It allows
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elements in Z,{—s} for some prime p to be accumulated, where s is the master secret of
the accumulator instance. Acar and Nguyen [30] give a delegable accumulator which is
focus on the non-membership proofs. However, with the exception of Acar and Nguyen's
accumulator, others are used in random oracle model. Acar and Nguyen's accumulator
only focuses on the non-membership proofs. Therefore, we give the general correctness
proof of accumulator in the standard model using the GS proof system [17].

Groth and Sahai constructed the first efficient non-interactive proof system [17] which
considers a large class of statements over bilinear group. It is witness indistinguishable,
i.e., any adversary cannot distinguish which witness is used by the user. The proof can be
randomized to update the NIZK proof. V

IL's E-cash Scheme. Izabachene and Libert [28] propose the first divisible e the
standard model. Their construction relies on the classical binary tree ap@ 10] and

the Groth-Sahai non-interactive proof systems [28] hleve y without
resorting to random oracles, they use the dlfferen to a%cate the node
corresponding to the spent divided coin in the tr ons i0 the binary tree is
based on the classical binary tree, thus the comm atlon %&%he spending phase is
O(L-]) to spend a coin of value 2!, where 2L e value root node. The more they
want to divide the wallet into small 00| more ex e the spending phase is. To
avoid the spending of an ancestor esc r@f a spent node, they add a pair
(Tj,1, Tj2) in the coin for eac e to the spent node. This makes the
efficiency of detecting the doﬁ&spendmg very low. The computation workload of the

bank depends on the numbeg of previqu ived coins when it comes to check that the
user does not a double- ng Thi Wm is left as an open problem.

Overview of Ou esent an intuition on how our scheme is constructed.
Each e-cash ary v is equipped with an L+1 level binary tree. Using a
new algorith e user, comstructs the binary tree. To construct the binary tree, the user
generates 2& random rwers s; for the leaves node, wherei = 0,---,2% — 1. The keys

s s S,L_
of the leaves n Kri1,0 =80 Keer1 =815 Kpyqoty =8¢ 5 Kppqotg =

giZL‘l : 20,81 € G;. To be compatible with the bounded accumulator, the user

u@the new keys using two hash functions HL and HR. The parent node of the
le ode is obtained by the multiplication of the keys of leaves node. The root node is
generated by the multiplication of two direct child nodes. Then, the user accumulates the
leaves node and all nodes into accumulator values Accy, and Acc respectively. The user
sends the accumulator values Accy and Acc to the bank. The bank signs Acc;, and Acc.
We assume that the user spends a coin of monetary value 2! and the corresponding
leaves node is hky 4, +, hky4q5. When the user wishes to spend the coin, he uses the
corresponding leave nodes and computes the serial number S =hky 10 -hkp,q a
security tag T = pky - &(g h'PkiRs) where R is generated by the merchant, s is
generated by the user and the bank together. The user submits S; T and proves to the
merchant in zero knowledge manner that he is in possession of the bank's signature on
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Acc, Accy, s, uskandS; T are correctly formed. If a user attempts to spend more than the
coin of monetary value 2%, he will have to use the same S and identified.

That is almost our final solution. We use the bounded accumulator [2] to guarantee that
the user accumulates the bounded nodes. To make sure that the monetary value of the
spent node comes from the correct level, we borrow the idea from Belenkiy et al.'s
scheme [19]. More precisely, the bank generates L P-signatures Z,,-:-,Z; on L coin
indices. The user proves that the same commitment C; is used for the proof of T and Z,.
Two problems remain, the first one being how be compatible with the Groth-Sahai proof
system [17] to prove the spending path is correctly formed. The second problem is that
there is no existing efficiency membership proof for the bounded accumulatef in the
standard model. We solve the first problem by constructing a new algorit the
binary tree. We solve the second problem by making the membership pgoo bounded

accumulator in the standard model. 4%

Our Contribution. Our construction of the divisi \e ash |s@w binary tree
generation algorithm, in combination with the u' d aclymulator [2] and GS
proof system [17].We make the following contrib ‘\)

We use the nodes of a binary tree &presen ash In the tree-based
constructions, one difficulty is for the u efﬁuentl ve that the spending path is
well-formed. To solve the problem ncy t@zabachene and Libert's scheme is
very low. The last is our met @ irstly ce a new algorithm to construct the
binary tree. Then we identi e doulgle ender using the accumulator. In our new
structure of the binary tregsseach no ry tree is constructed in one cyclic group,
which would be comp& with qF&&thaﬂ toolbox [28]. By the accumulator, we

efficiently prove th 3& connec the spent node to the root is well-formed. Therefore,

our scheme j eff|C|e spending protocol and the deposit protocol than
Izabachene bert's,sc
To use the bounded mulator, we must prove the accumulator correctness of the

bounded accum using the GS proof system in the standard model. In order to prove
the correcm@f the spending, we use the technique [15] which the bank signatures n
coin indil.e., PSign(1), PSign(2), ---,PSign(n). Thus, we only need two accumulators
to o@the correctness of the spending. However, the paper [12] needs L + 2
ac lators in the withdrawal protocol, to prove the correctness of the spending.

Our scheme is more efficient than Izabachene and Libert's work [28] in several metrics.
Firstly, When

U spends a coin of monetary value 2! in the spending protocol of Izabachene and
Libert's scheme [28], U chooses an unspent node at level L —1 in the binary tree. It
requires O(L —1) group elements and multi-exponentiations. In contrast, only two
accumulators are used in our scheme. Secondly, the merchant needs O(L —1) pairings to
verify the correctness of the path connecting the spent node to the root. However, we
verify the correctness of the path with constant pairings in the spending protocol. Thirdly,
in the deposit protocol of I1zabachene and Libert's scheme [28], the bank must check and
analyze all received coins to decide whether a double-spending had happened. In

bounded accum@b’the standard model. Therefore, we give the NIZK proof of the
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comparison, we only need to look up the coin's serial number in a table of previously
spent coins.

Paper Outline. The rest of the paper is organized as follows. In Section 2 we present
preliminaries on the various cryptographic tools and assumptions. Security model of
divisible e-cash is presented in Section 3. We present our construction in Section 4 and its
efficiency analysis in Section 5. In section 6, we give the security proof. Finally we
conclude in Section 7.

2. Preliminaries
2.1 Mathematical Definitions and Assumptions

Definition 1. (Pairing). A pairing &:G; X G, — G5 is a bilinear ma %F om two

group elements to a group element [17].a. G4, G5, G3 are |c gro e order p.
The elements g, h generate G1 and G2 respectlvely X G, &,ﬁon -degenerate

bilinear map, so &(g, h) generates G; and w have&(g?, hP) =
8(g h)2P.c. We can efficiently compute group 0 ons @@?the bilinear map and
decide membership.

The security of our construction is base the foII % mathematical assumptions,
namely Symmetric External Diffi %fman and OMDL [3].Definition 2.
(Symmetric External Diffie-Hell »The Sv{m&m External Diffie-Hellman(SXDH)
Assumption states that the DEQro Iem is hard%n both G, G,. It implies that there is no
efficiently computable iso phlsm from éb G1 or vice versa.

Definition 3. (One- Dlscret nthm Assumption). The one-more discrete
logarithm assump DL) : med as follows: on input g g*t,..-,g*n+1 and

dlogg(-) whic S.Q racle s input yeG; and returns its discrete log, namely x
such that y e advegsary only can make the oracle queries to dlogg(-) at most n
times, it is computatlon@*easmle to output the n+1 discrete logarithm.

2.2. Useful Tool

Groth-ﬁ%ﬁroofs. Groth and Sahai [17] constructed the first NIZK proof systems.
They pro@ large class of statements in the context of groups with bilinear maps in the
st odel. In order to prove the statement, the prover firstly commits to group
ele s. Then the prover produces the proofs and sends the commitments, the proofs and
corresponding parameters to the verifier. And last the verifier verifies the correctness of
the proof.

In this paper, SXDH-based commitments are used to commit to group elements. The
simple description of SXDH-based Groth-Sahai commitments and Groth-Sahai proofs are
given in the following.

AFG-commitment. Abe, Fuchsbauer and Groth (AFG) [24] proposed a trapdoor
commitment scheme, which directly commits group elements in G (a message m € Zp)
and can be combined with Pedersen commitments. The commitment is length-reducing,
since the commitment to a tuple of messages yields a commitment consisting of a single
target group element.
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We only use the commitment to a message m € Zj,. In the following, we only describe
the AFG- commitment to a message m € Zj.

To commit a message m € Z,, the commitment keys ck = (G1,G2,G3, g,h, y), the
opening d = g" are used to obtain the commitment C = h™Y". And then we send the
commitment C, the trapdoor opening D to the verifier. The verifier makes sure that the
commitment is correct by verifying the equation

&(g O@(d,y™") =2&(gh™).

A Multi-block P-Signature. A multi-block P-signature was introduced in [15]. It allows
a user to sign a block of elements in a cyclic group G in the standard model. Suppose
Cm, ", Cm, are the Groth-Sahai commits of m;,---,m, respectively. The P—Wre
allows a user to obtain a signature from the signer on the commitments of of
messages my, -+, my,. The signer learns nothing about m,,---, m, whi ms the
commitments respectively. In the following, we simply si)) ethe PzSi

The public parameters are defined as (p,G1,G2,G %\ csHe(g,h)), where g
and h are random elements of G1 and G2 respect@ a&;ls the Groth-Sahai
common reference string. g\)

The public key and the priv@ey are~ defined to be pk =

(u,v =h%7 = g% {w;, hbi, ¥ = ghi}n .5} = (a ,-,Bn)), where u is the
random element of G1 anda, 34, the elements of Zp.We define the

NIZK proof mp of a multi-bloc Pag% for messages my,m,,:-,m, as
PSIgn(mllmZI ,y M

2.3. Algorithms

The divisible e- @s thre players namely the user U, the merchant M and
the bank B. It will\ %Iynomlal algorithms between them. The following
give the sped

1. ParamSetup(lA) @)as input a security parameter A and outputs the public
parameters params.

2. BKeyGen@ns) is a probabilistic algorithm which outputs two key pairs
(pkP,skP) rLsVsu g coins and (pkC, skC) for signing coin indices. It also defines an
empty da @ DB for later use.

3 n(params) is a probabilistic algorithm which outputs a user (merchant) key

p%u pkU)(resp.(skM, pkM))

4. Withdraw(U(params, pkP,pkU, skU,L); B(params,pkU,pkP,skP)) is an interactive
protocol between U and B that permits U withdraws a wallet coy of value 2% from B. B
debits U's account and stores a piece of tracing information Tr which can be later used to
identify double-spenders.

5. Spend(U(params,pkP, pkC,pkM,skU,coy, 1);M(params,pkP,pkC,skM)) is a protocol
that allows the user to spend a value 2" from the divisible wallet coy to M. The user
outputs a updated wallet coy;. The merchant obtains a coin coM.

6. Deposit(M(params,pkP,pkC,pkM, skM,coM); B(params,pkM,DB)) is a protocol that
permits M to deposit a coin coyto B. B outputs Ok or executes the double-spender
identification. DB is a database which saves all coins users has spent.
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7. Identify (params,pkP,pkC, coy , coy ) is a algorithm which outputs a
double-spender's public key pkU using the database DB and the two different coins
COp, COpM-

2.4. Security Notions

A secure divisible e-cash scheme provides Anonymity, Unforgeability, Identification
of double-spenders and Exculpability. We give the specific definitions as follows.

1. Anonymity. It guarantees that no coalition of banks and merchants can ever learn the
spending habit of an honest user.

2. Unforgeability. No coalition of users and merchants can deposit more coins than
they have withdrawn from the bank. QK)

3. Identification of double-spenders. It guarantees that coalition of use erchants
cannot be able to double-spend a coin with the same serlalgnher or r@dmg serial
number.

4. Exculpability. No coalition of the banks ar@% onest users from
having double- spent a coin. &)
3. Construction of Divisible E- IQ ; \C‘)

To construct our divisible e-c flrs %%Je the membership proof of the
bounded accumulators without4a oracle \9 dly, a new binary tree generational
algorithm is introduced. An t, we .gl the detailed construction of our divisible

e-cash. \Q
3.1. Bounded Acc E}@u; rs

A bounde’u ulator sch was introduced in [2] as an accumulator with a limit s
as the maxim umb %ements that can be accumulated. For every element x in the
bounded accumulatoy; e is a unique witness W which can prove the element x is
accumulated intw ccumulator. In this context, we give the membership proof of
bounded acc r using the GS proof system in the standard model. We obtain the
m 1.

1. The proof for the bounded accumulator ma.., is a NIZK proof with
mpleteness, perfect soundness and composable witness-indistinguishability.

3.2. New Binary Tree Structure

We introduce a new generation algorithm of the binary tree. Each divisible coin of
monetary value 2%, is assigned to a binary tree of L+1 levels. The values of the leaves are
the least, namely 1. Each of the leaves node is assigned a key denoted by K;,q;, where
0 <j < 2Y—1. Any other internal node corresponds to an amount of money which is
exactly the twice amount of their corresponding child node values and also is assigned a
key defined by K;; . The root node lies in the Oth level and has the max value, namely
2%, The corresponding key of the root node is kg,
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Using the new generation algorithm, we construct the binary tree from the leaves node.
Each internal node is obtained by the multiplication of its corresponding leaves node.
Thus each internal node is independent of the others. Meanwhile we only supply two
accumulators and corresponding proofs to merchant, to proof the spending is correct.
When the user wants to spend a node, he supplies the keys of the spent node and the
corresponding leaves node to the merchant. Although the key of the spent node is known
by the merchant, the key of the spent node is generated using the leaves node which they
are obtained by the random number. Therefore, the merchant cannot obtain any
information from the key. The user generates the internal node only by the multiplication,
so the efficiency of the construction of the binary tree is improved. The new binafy treg is
given in the above Figure 1.

ko,o = kl,O * k1,1

A
&
Qy

lk;l | l’<3,2 'ks,so'\ Q ks,EY\ ,
Figure 13%&%?0n (@@ry Tree (L=3)

)

In this section, we d @e our di e-cash construction in detail. Our divisible

e-cash consists of '@6 procedur ithdrawal protocol, spending protocol, deposit

protocol and thg§ le-s identification. We construct it using P-signature,
r

bounded acc and GS preof.

3.3. Construction

3.3.1 Setup: A divisi in has a monetary value set to 2% On input a security
parameter 1* and %urity prime number p. Let & G; X G, = G3 is a bilinear map,
where |G4| = |G$\G3| = p. The elements hU,hM,hT € G2 and g,h generate G1 and
G2 respectiygly. The bank randomly chooses g,,g, € G; whose discrete logarithms to
the base nknown. Let HL:{0,1}" - Z;,HR: {0,1}* —» Z; and HA:{0,1}" — Z; be
thr @Jre cryptographic hash functions [1]. All these data compose the public
p@ers params.

The bank creates two key pairs (pkP,skP) for issuing wallets and (pkC,skC) for signing
coin indices.The bank computes L P-signatures X,,:--,Z; on the coin indices 1,2,--,L
using skC, where Z; = PSign(i),i € 1,-:-, L. U(resp. M) chooses skU = usk € Z; (resp.
skM = mske Zy) as his private key and computes the public key pkU =&(g, h)usk (resp.
pkM =h[isk),

3.3.2 Withdrawal Protocol: The withdrawal protocol allows U to withdraw a coin with
monetary value 2% from the bank. At first, U computes all keys using the new binary tree
algorithm which is presented in Figure 1. To be compatible with the bounded accumulator,

the user obtains the new keys hkj o = HL(ky,) hkyq = HR(ky), -, hk oy =
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HR(kL,ZL—l)’.“’hkL_lyO = HL(kL—l,O)"”'hkl,O = HL(kl,O)’ hkl,l = HR(kl,l)’ and the

value of the root is hkg o = HL(kO,O). All keys and the new keys of the binary tree are
stored in a table tr. And last, U generates 2% — 1 random numbers s; for i =0,--, 2% —
1.

U computes two accumulators [1], one is the accumulation of 2% random numbers

3"~ Yo tsy)

siezp for i=0,-,2"—1, namely Accy, =u, , Where oy is a public

parameter of the bounder accumulator. This accumulator proves that the user uses the
correct random numbers to construct the leaves node. And the other one is AccAhich 1s
the accumulator of all the new keys hkgo,hk; o, hkyq, -, hky, 0,hkL 1" oL_q

namely Acc = ugla s , Where ais a public parameter of tqe hound umplator. This
accumulator proves that the spent node and correspon @correct To be
compatible with the P-signature, we compute the ue 0 mulators namely
a = HA(Acc) and aL = HA(Accy). The bank proe ces t ponding P-signatures

0,07, on the messages (a, usk, s) and (ar,s) reSpeetively,
It is not necessary for the bank to ch' the correﬁ*cle?/s are accumulated since the

bounded accumulator is bounded a use t eneratlonal algorithm. The main
reason is given in the foIIo ser us ncorrect key to construct the binary
tree or accumulates the inco alues he n complete the spending protocol, as the

merchant can compute allsthe descRn@g ys of the node spent using the random

elements si. @
U's input is para usk, ﬁnd B's input is params,pkU, skC, 2L. The withdrawal

protocol is dese b@as foIIoWQ
1. U C at I‘a@m S,rl,rz,r3,r4EZp,d1—g ,dz—g ,d3=g3,d4=

g4 y€eGy. U com@ AFG commitments [24] Cy = hS'y™,C, = h?y'2,C, =

haLy’s, Cysk = + . And then, the user gives the proofs [28] in zero-knowledge that
he knows m@nmg to these values as follows.
Q g = {(s: C¢): 8(8, Cse(dy, y™") = &g h*)},
Q o = {(a: C): 8(g C)a(dz,y ™) = e(g h™)},
@ a, = {(aL:Cy, ):8(g Cy, )8(ds,y ™) = 8(g )},
Toysk = {(usk: Cysi): 8(g, Cusi)@(ds, y ™) = 8(g hUsk)}.
Atlast, U sends {d;,d;,d3,dy,y, Cgr, g, Cy, 1y, Cy , oy, Cusk Tysk) 0 B.

2. If the proofs verifies, B chooses at random r’ and computes Cg —yilh and

corresponding P-signatures o = PSign(a, usk, s), o;, = PSign(a;,s), where r',r;,x; €
Z5,y1 € Gy. And last, B sends Cg,r’,cand oy, to the user.

3. U sets s=s’"+r', and updates commitment Cg into commitment Cs = C;hr'.
Then U verifies o and

oy.. If the verifies are correct, U obtains the coin coy= (a, aL,s,usk,, o, 01), where a =
HA(Acc); a;, =HA(Accy).

Copyright © 2014 SERSC 161



International Journal of Multimedia and Ubiquitous Engineering
Vol. 9, No. 10 (2014)

3.3.3. Spending Protocol: We suppose that the user wants to spend a coin of monetary
value 2!. The protocol works as follows:

1. M chooses at random x,,r € Zy,ds = g',y, € G, computes the AFG commitment
[24] Crsk = thkYZ and the proof [28] ek = {(mSk: Cmsk): é(g, Cmsk)é(ds'y_l) =
e(g’ hmsk)}_

And last, M sends (d5, y2,Cmsk, T, to U. M computes R = H(2!||mpk]||time),
where 2! is the monetary value of the spent coin and time is the current spending time.

2. If the proof T, is correct, U also computes R = H(2!||mpk|[time). U chooses a
node at level L —1 which has not been spent and sends the corresponding random

elements s;,1, s to M, and then obtains the serial number S h

j2l+1 7 SG+1)2!-1

also chooses 1y, X3 € Z,,y3 = h* and computes a commitment C sk ;U to

= hUsk, where pky = &(g husk) = &(g h)usk. Me ° Uc e security

tag T = pky&(g h'"kiiR'S). Note that in [12], the spe er| is represented

by the serial number of its two child nodes. In o@o the% mber is known by
e

the merchant and the bank. The serial numbe ner multiplication of the
corresponding leaves node which is obtai the ,rapdom number Thus, it cannot
supply any information to the adversary' otect the N ¢ key of the user, we use the

secret value s which are only kno urlty tag. And last, U gives the
following NIZK proof that th&r@ ode |s§ ulated correctly and T is correctly
formed.

Teoin < NIZK{((Acc: @) (w: Cy) N ) (ACCL:CACCL),
{ap: Capidina A {s.C {oL,i: 08, 3ia A {a: Caitiey, A {usk: Cysieiding A {03 Co, Jiy

'\ (%)A(l COM(L: Cy):

I

Q@(Accétﬁ e(w, v, 1_[ 5"))Aa = SPSign(a, usk, s)A

I
A@%cbvo) =e(W,, D, 1_[ v, PIYA\a;, = SPSign(a,, s)A
a
Q\ T = &(g h™") - 8(g K™ ™)AL, = PSign{l}}.

%of of accumulator is presented in Section 3.1. &(Acc,¥y) = &(W, ¥, 1'[] 1 A]p’)

proves that the spent node and the corresponding child node are correctly accumulated in
Acc. é(Accy, ¥y) = é(Wy, ¥, 1'[] 1v ’) proves that the corresponding leaves node of the

spent node are correctly accu-mulated in Acc;,. o = SPSign(a,usk,s) and o =
SPSign(a;,s) give the proofs that Acc and Acc; are signed by the bank. T =
8(g husk) - &(g, h"MkiR's) proves that the security tag is correctly formed. I, = PSign{l}
gives a proof of the * is signed by the bank. 1 in the security tag is the same as the
1 signed in X;. Thus the user proves that the spent node comes from the correct level.

3. M firstly verifies the structure of the binary tree is correct. M computes the
corresponding leaves node of the spent node using the random elements
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Sial Sjaly1r " » S(j+1)2l-1 and the two hash functions HL and HR. M obtains keys

Koot Kjpt 10, Kjq)21-, and the new values

hky ouhky o1 g, hky 0014 Then M also computes the key of the spent node by

executing the algorithm presented in Figure 2. And last, Mverifies the proof fiS. If these

are correct, M obtains the coin coy = {21, 5, s]21||s]2 gl ||s(]-+1)21_1,T, R, 1y, g}
3.3.4 Deposit Protocol d
M deposits a  coin  coy ={2LS,K,T,Rr,ms} to B, ere

K = sj1llsja144 11 11S(41)21-1- At first, B checks the progf m notycorrect, B
rejects the deposit. Otherwise, B  checks A%w gﬁm elements
Sigh Sjgl1r " SG41)2l1 Ar€ already in its databa‘ If c@é random elements

ouble-spender identification.

is already in the database, B executes the @edure i ificati
Otherwise, B adds 2! leaves node mtot base The checks whether R is fresh. If

R is fresh; B accepts the c0| R, rl,ns} credits M’s account.
Otherwise, M deposits the coin refuse &posn and warns M.

3.3.5. Double-Spender dentn‘l& obtains two coins
co, = {21, Sl,Kl,Tl,Rl,r@S } anm@ = {2h ,SZ,KZ,TZ,RZ,rlz,nSZ}. We describe

the followmg two \a
. If U spend Kg same ndd% then co; = {2!,5;,K;, Ty, Ry, 1y, 15, } and cof =
{25, = 51@ Ku oo B2y ‘15, }. Thus, B computes pky = (TR? /TRY) /Ra—Rs;
2. If U spends% ifferent nodes, then co; = {2',5;,Ky, Ty, Ry, 1y, 15, } and
coj = {211,52,K$ 2,rlz,nsz}. Without loss of generality, we assume co, includes

€05, SO th eﬂlss ode of co; includes the leaves node of co,. B obtainsl; = i—l S3=
2
O 1
S%@omputes the public key pky = (T, Rz /T,R1*Ss1s)Re-Ries3Ts,

4. Efficiency Analysis

We analyze the efficiency of our scheme, Izabachene and Libert's scheme [28] and
Canard and Gouget's scheme [12] from the following 5 aspects, namely the construction
of the binary tree, the efficiency of the withdrawal protocol, the efficiency of the spending
protocol, the efficiency of the deposit protocol and security model. According to [15], We
know P-signature proofs for n messages need 8n + 12 elements ofG1, 8n + 10 elements of
G2, and 32n + 44 pairings to verify. One ESS+ signature [2] needs the group element
numbers of G1, G2 and Z*p are 2, 1 and 2 respectively.
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We assume that C1 is the computation cost of the construction of the binary tree. C2 is
the efficiency of the withdrawal protocol. C3 is the efficiency of the spending protocol.
C4 is the efficiency of the deposit protocol. C5 is the security model. ME represents the
number of multi-exponentiation. GE represents the number of the group elements. P
represents the number of the pairings.

We will describe these in detail as follows:

The construction of the binary tree. When we construct the binary tree of monetary
value 2L, Izabachene and Libert's scheme [28] does not need multi-exponentiations. The
reason is that the node is represented by random number. Canard and Gouget's scheme
[12] needs 2L+2-2 multi-exponentiations. However, we need 2Lmulti-exponentiatigns.) ©

The efficiency of the withdrawal protocol. The withdrawal protocol of Izab
Libert's scheme [28] needs 80 group elements and the sanm ber
multi-exponentiations. Canard and Gouget's scheme [ ds L+ L+2 Ess+
signatures. Thus it needs 6L+12 group ele thmenumber of
multi-exponentiations. Our scheme needs th atu efore 151 group
elements and151 multi-exponentiations are need E

The eficiency of spending2l. In Izabach leert e [28], to prevent a user
from double-spending, it provides som y tags an ofs of nodes from the root to
the spent node. Therefore, the comp é&tl w of the user is proportional to L-I.
Thus, it needs 206+116(L«I @ and the same number of
multi-exponentiations to ¢ e. In or verlfy the correctness, the merchant
requires 412 + 206(L ngs. Th protocol of Canard and Gouget's scheme
[12] needs 60 group el& 70 mu onentiations and 28 pairings to verify.

Ona contrary, me co tes 2L | keys of leaves node, so 2L-I exponentiations
are needed. e our sc y needs two accumulators that prove the correctness
of the Ieave and,th scendant node of spent node. Therefore, our scheme only
needs 264 group eleme d the same number of multi-exponentiations to compute. The
merchant requires ﬁbairings to verify the correctness.

The efficien he deposit protocol. In Izabachene and Libert's scheme [28], the
bank need Lcro pare and analyze each node in DB, and decides whether the coin is
valid. As ery node, the bank extracts the path from the root to the spent node, and

eci e@ the corresponding node of the node happens a double-spending. We assume
t re are k spent nodes in DB, and the spent node comes from the “th level.
Therefore, every node has 2l+1-1 corresponding nodes. We check whether the2l+1-1
corresponding nodes had happened double-spending. Thus Izabachene and Libert's
scheme [28]Efficient Divisible E-cash Without Random Oracle 11Needs O(k *(2I+1-1)).
In contrary, our new scheme and Canard and Gouget's scheme [12] only need compare
the coin's serial number with all serial numbers in DB to verify the double-spending.
Therefore, we only need O (k).The security model. Canard and Gouget's scheme [12] is
proven in the random oracle model.

However, our new scheme and Izabachene and Libert's scheme [28] are proven in the
standard model. Based on the above analysis, we conclude that our scheme is more
efficient than Izabachene and Libert's scheme [28] in the deposit protocol. In the spending
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protocol, our scheme is more efficient than Izabachene and Libert's scheme [28] except
the computation of the leaves node. Although the efficiency of the withdrawal protocol is
less efficient than Izabachene and Libert's scheme [28], the spending protocol is executed
much more frequently than the withdrawal protocol. The efficiency of the spending
protocol is less efficient that Canard and Gouget's scheme [12], but our scheme is proven
in the standard model. Therefore, our scheme is much more desirable in practice. The
comparison is given in Table 1.

Table 1. Efficiency Comparison between Related Work and Our Proposal

Schemes Canard | Gouget [12] Izabachene Libert [28] Ours ‘\) ¢
c1 (2-%- 2)ME OME 2"ME Yy
c2 (6L + 12)GE 80GE 15 E4>

(6L + 12)ME A B0ME ©
c3 User 60GE z@e&-ne& 2GE
70ME ‘ %6 * 116(LG)ME T2-'ME
Merchant 28P N 412 + 2% 520P
c4 oK) (\Y | owseit) | ok
A M
C5 Random odel X'tandard model
gdyocl, | >

v \V
5. Security Analysis 4@'& &\

Regarding the security ur cons@e have the following theorem. Theorem 2.

In standard model, our giwsible e-cas)\J eme fulfills (i) the anonymity under the SXDH
assumption, zero-Rqowledge erty of P-signature, and the soundness and
indistinguishability, of GS p (i§) the unforgeability under the collision resistance of

HA() and thg mpti ns@t -signature is unforgeable and the bounded accumulator
scheme fulfills the bou operty; (iii) the Identification of double-spenders under the
soundness and indi ﬁ@ishability of GS proofs and the unforgeability of the P-signature
scheme; (iv) the@pability under the soundness and indistinguishability of GS proofs
and the one@rre iscrete logarithm assumption.

6. @%ion

proposed an efficient divisible e-cash scheme in standard model using the
Groth-Sahai proof system. Firstly, a new generation algorithm of the binary tree was
introduced in the paper. Thus, we improved the verifying efficiency of the merchant and
the bank in the spending protocol and the deposit protocol respectively. Secondly, the
membership proofs of bounded accumulator without random oracle are proven. Using the
bounded accumulator, the computational efficiency of the user is relatively small in the
spending protocol. And last, we analyzed the efficiency of our new scheme and made the
security proof in the standard model.
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